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Abstract
We study the problem of computing an approximate
Nash equilibrium of a game whose strategy space is
continuous without access to gradients of the utility
function. Lack of access to gradients is common in
reinforcement learning settings, where the environ-
ment is treated as a black box, as well as equilib-
rium finding in mechanisms such as auctions, where
the mechanism’s payoffs are discontinuous in the
players’ actions. To tackle this problem, we turn to
zeroth-order optimization techniques that combine
pseudo-gradients with equilibrium-finding dynam-
ics. Specifically, we introduce a new technique that
requires a number of utility function evaluations per
iteration that is constant rather than linear in the
number of players. It achieves this by performing
a single joint perturbation on all players’ strategies,
rather than perturbing each one individually. This is
very important for many-player games, especially
when the utility function is expensive to compute
in terms of wall time, memory, money, or other re-
sources. We evaluate our approach on various games,
including auctions, which have important real-world
applications. Our approach yields a dramatic im-
provement in performance in terms of the wall time
required to reach an approximate Nash equilibrium.

1 Introduction
We tackle the problem of computing an approximate Nash
equilibrium of a game with a black-box utility function, for
which we lack access to gradients. A standard way to learn
player strategies for a game is to use simultaneous gradient
ascent, in which, at each iteration, each player myopically
adjusts its parameters to increase its own utility, treating the
other players as fixed. Computing the simultaneous gradient
requires taking gradients of the utility function, which are un-
available in the black-box setting. To address this obstruction,
one can employ evolution strategies, a family of methods that
perturbs parameters and evaluates the function at those per-
turbed points in order to optimize some objective. This yields

∗An extended version of this paper can be found at https://arxiv.
org/abs/2408.09306.

an unbiased estimator of the gradient of a smoothed version of
the original objective function, also called a pseudo-gradient.
Computing the simultaneous pseudo-gradient through the stan-
dard approach requires a number of utility function evaluations
that is linear in the number of players. Our contribution is to
introduce a new method which requires a number of function
evaluations that is only constant in the number of players. It
performs a joint perturbation on all players’ strategies at once,
rather than perturbing each one individually. When utility func-
tion evaluation is expensive (in terms of wall time, memory,
money, etc.) and the number of players is large, this can yield
dramatic benefits for training. We benchmark our approach
on several games, including various auctions, showing a sig-
nificant reduction in training time. The rest of this paper is
structured as follows. In §2, we describe related research. In
§3, we introduce relevant notation and present a mathematical
formulation of the problem we are solving. In §4, we present
our method. In §5, we present our experimental settings, re-
sults, and discussion. In §6, we present our conclusions.

2 Related Research
Black-box zeroth-order optimization uses only function evalu-
ations to optimize a black-box function with respect to a set
of inputs. In particular, it does not require gradients. There
is a class of black-box optimization algorithms called evo-
lution strategies (ES) [Rechenberg and Eigen, 1973; Schwe-
fel, 1977; Rechenberg, 1978; Bäck, 1996; Bäck et al., 1997;
Eiben and Smith, 2003]. These maintain and evolve a pop-
ulation of parameter vectors. Natural evolution strategies
(NES) [Wierstra and others, 2008; Yi and others, 2009;
Wierstra and others, 2014] represent the population as a dis-
tribution over parameters and maximize its average objective
value using the score function estimator. For many parameter
distributions, such as Gaussian smoothing, this is equivalent to
evaluating the function at randomly-sampled points and esti-
mating the gradient as a sum of estimates of directional deriva-
tives along random directions [Fu and others, 2015; Duchi
and others, 2015; Nesterov and Spokoiny, 2017; Shamir, 2017;
Berahas and others, 2022]. Li and Wellman [2021] tackle the
problem of solving symmetric one-shot Bayesian games with
no given analytic structure, high-dimensional type and action
spaces, many players, and general-sum payoffs. They represent
agent strategies in parametric form as neural networks, and ap-
ply NES to optimize them. For pure equilibrium computation,
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they formulate the problem as bi-level optimization and use
NES to implement both inner-loop best response optimization
and outer-loop regret minimization. For mixed equilibrium
computation, they adopt an incremental strategy generation
framework in which NES produces a finite sequence of approx-
imate best-response strategies. They then calculate equilibria
over this finite strategy set via a model-based optimization pro-
cess. Both methods use NES to search for strategies over the
functional space of policies, given only black-box simulation
access to noisy payoff samples. To tackle symmetric auctions,
Bichler et al. [2021] present a learning method called neural
pseudogradient ascent (NPGA) that represents strategies as
neural networks and applies policy iteration on the basis of
gradient dynamics in self-play to provably learn local equi-
libria. The method follows the simultaneous gradient of the
game and uses a smoothing technique to circumvent discon-
tinuities in the ex post utility functions of auction games. (In
auctions, discontinuities arise at the bid value where an arbi-
trarily small change makes the difference between winning and
not winning.) The method converges to a Bayesian Nash equi-
librium for a wide variety of symmetric auction games. Bich-
ler et al. [2023b] analyze a wide variety of asymmetric auc-
tion models. Their results show that they closely approximate
Bayesian Nash equilibria in all models in which the analytical
Bayes–Nash equilibrium is known. Additionally, they analyze
new and larger environments for which no analytical solution
is known and verify that the solution found approximates equi-
librium closely. Bichler et al. [2023a] introduce an algorithmic
framework for Bayesian games with continuous type and ac-
tion spaces. It discretizes the type and action spaces and then
learns distributional strategies [Milgrom and Weber, 1985]
(a form of mixed strategies for Bayesian games) via online
convex optimization, specifically simultaneous online dual
averaging (SODA). They show that the equilibrium of the dis-
cretized game approximates an equilibrium in the continuous
game. Discretization can work well for small games, but does
not scale to high-dimensional observation and action spaces.
Martin and Sandholm [2023] study the problem of computing
an approximate Nash equilibrium of continuous-action game
without access to gradients. They model players’ strategies as
artificial neural networks. In particular, they use randomized
policy networks to model mixed strategies. These take noise in
addition to an observation as input and can flexibly represent
arbitrary observation-dependent, continuous-action distribu-
tions. Being able to model such mixed strategies is crucial for
tackling continuous-action games that lack pure-strategy equi-
libria. They apply this method to continuous Colonel Blotto
games, single-item and multi-item auctions, and a visibility
game, showing that it can quickly find a high-quality approxi-
mate equilibrium.

3 Problem Formulation
Throughout the paper, we use the following notation. The
operator ⊗ denotes the tensor product. The operator ⊙ denotes
the elementwise a.k.a. Hadamard product. If S is a set, △S is
the set of all Borel probability measures on S . If F is a family
indexed by I, F× =

∏
i∈I Fi. If µi ∈ △Si is a probability

measure for i ∈ I,
⊗

i∈I µi ∈ △S× is the product measure.

We now introduce some key game-theoretic concepts that are
needed to formally understand our problem and subsequent
solution.

Strategic-form game. A strategic-form game is a tuple
(I,S, u) where I is a set of players, Si is a set of strategies
for i ∈ I, and u : S× → RI is a utility function. A strategy
profile is an element of S×, that is, an assignment of a strategy
to each player. The notation s−i denotes s excluding i ∈ I.
Given a strategy profile, a best response (BR) for a player is
a strategy that maximizes its utility given the other players’
strategies. That is, given s ∈ S×, a BR for i ∈ I is an element
of Bi(s−i) = argmaxri∈Si

u(ri, s−i)i. A Nash equilibrium
(NE) is a strategy profile for which each player’s strategy is
a BR to the other players’ strategies. That is, it is an s ∈ S×
such that si ∈ Bi(s−i) for all i ∈ I.

Exploitability. Given s ∈ S×, the BR utility of i ∈ I is
bi(s−i) = supri∈Si

ui(ri, s−i), i.e., the highest utility it could
attain by unilaterally changing its strategy. Player i’s regret is
Ri(s) = bi(s−i)− ui(s), which is the highest utility it could
gain from unilaterally changing its strategy. The exploitability
is defined as Φ =

∑
i∈I Ri. It is non-negative everywhere and

zero precisely at NE. Consequently, it is used as a standard
measure of “closeness” to NE in the literature [Lanctot and
others, 2017; Lockhart and others, 2019; Walton and Lisy,
2021; Timbers and others, 2022]. If NE exist, computing them
is equivalent to globally minimizing exploitability.

Mixed strategies. For any game (I,S, u), there is a game
(I,Σ, ū) where Σi = △Si and ūi(σ) = Es∼

⊗
j∈I σj

ui(s).
That is, each player’s strategy is a probability measure over its
original strategy set (i.e., a mixed strategy), and its utility is
the resulting expected utility in the original game. A mixed-
strategy NE of the original game is an NE of this new game.1

Continuous game. A continuous-action game is a game
whose strategy sets are subsets of Euclidean space, e.g., Si ⊆
Rd. The question of the existence and uniqueness of Nash
equilibria for such games has been studied extensively in the
literature. We briefly review some of these results to show
that the continuous games we are interested in do, in fact,
possess Nash equilibria, and thus that it makes sense to try
to find them with our method. Nash [1950] showed that if
each Si is nonempty and finite, a mixed-strategy NE exists.
Glicksberg [1952] showed that if each Si is nonempty and
compact, and each ui is continuous, a mixed-strategy NE
exists. Glicksberg [1952], Fan [1952], and Debreu [1952]
showed that if each Si is nonempty, compact, and convex,
and each ui is continuous and quasiconcave in si, a pure
strategy NE exists. Dasgupta and Maskin [1986] showed that
if each Si is nonempty, compact, convex, and ui is upper

1More generally, one can consider settings where randomness
is a limited resource (e.g., only a limited number of random bits
are available to the agent) or where the agent can only mix be-
tween a limited number of pure strategies (i.e., its mixed strat-
egy must be sparse). Alternatively, its mixed strategy may be
restricted to some class of representable distributions, such as
an explicit parametric model or implicit density model like a
Generative Adversarial Network [Goodfellow and others, 2014;
Goodfellow and others, 2020].
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semicontinuous and graph continuous and quasiconcave in
si, a pure strategy NE exists. They also showed that if each
Si is nonempty, compact, and convex, and ui is bounded and
continuous except on a subset (defined by technical conditions)
and weakly lower semicontinuous in si, and

∑
i∈I ui is upper

semicontinuous, a mixed-strategy NE exists. Rosen [1965]
proved the uniqueness of a pure NE for continuous-action
games under diagonal strict concavity assumptions.

4 Proposed Method
In order to build up to our method, we first introduce some
key concepts in a gradual fashion.

Pseudo-gradient. Let d ∈ N be a natural number, f : Rd →
R be a function, µ = N (0d, Id) be the d-dimensional stan-
dard normal distribution, σ ∈ R be a scalar, and fσ(x) =
Ez∼µ f(x+ σz). Assume σ > 0. Then fσ = f ∗Gσ, where
Gσ is a Gaussian kernel of width σ. It is a property of con-
volutions that ∇(f ∗ Gσ) = f ∗ ∇Gσ. Therefore, since Gσ

is smooth (i.e., infinitely differentiable), fσ is also smooth.
This holds even if f itself is not even continuous. In the lit-
erature, ∇fσ is called the pseudo-gradient of f . It satisfies
the identity ∇fσ(x) = Ez∼µ

1
σf(x + σz)z. This yields an

unbiased estimator that forms the basis of OpenAI ES [Sali-
mans and others, 2017], an NES method, as described in §2.
The pseudo-gradient can be used to perform zeroth-order, i.e.
gradient-free, optimization of f . This can be useful in cases
where straightforward stochastic gradient ascent is not possi-
ble or desirable. For example, f might not even be continuous
in the first place, let alone differentiable. In other situations, f
is differentiable, but obtaining an unbiased estimator of its gra-
dient is difficult or intractable. This can happen if, for example,
the utility function is an expectation of a non-differentiable
payoff function. An example of such a situation is an auction,
wherein a player wins an item as soon as its bid exceeds a
threshold, yielding a payoff discontinuity. In such a situation,
it might be the case that the ex ante utilities are differentiable
but the ex post utilities are not [Bichler and others, 2021]. The
use of pseudo-gradients for optimization has been studied by
Duchi et al. [2015], Nesterov and Spokoiny [2017], Shamir
[2017], Salimans et al. [2017], Berahas et al. [2022], and Metz
et al. [2021], among others. It has been shown to be a scal-
able alternative to classical methods in reinforcement learning
[Salimans and others, 2017].

Variance reduction. We define

gSP = 1
σf(x+ σz)z (1)

gFD = 1
σ (f(x+ σz)− f(x))z (2)

gCD = 1
2σ (f(x+ σz)− f(x− σz))z (3)

as the single-point (SP), forward-difference (FD), and
centered-difference (CD) (or antithetic) estimators, respec-
tively. These are all unbiased estimators of the pseudo-gradient.
However, the first has a large variance, so the latter two
are typically used in practice [Berahas and others, 2022].
The variance of the pseudo-gradient estimator can be fur-
ther reduced by taking a mean over many perturbations, as in
1

2nσ

∑n
i=1(f(x+σzi)− f(x−σzi))zi, where zi ∼ µ are in-

dependent. Other variance reduction techniques are surveyed
in Mohamed et al. [2020], among other works.

Simultaneous gradient. One common approach to game-
solving in the literature is simultaneous gradient ascent (SGA),
which is defined as follows. Let u : Rn×d → Rn be a util-
ity function, where n is the number of players and d is the
dimensionality of each player’s strategy parameters. The si-
multaneous gradient of u is the function v : Rn×d → Rn×d

where vi = ∇iui. That is, for each player, it is the derivative
that player’s utility with respect to that player’s parameters.
Equivalently, v = diag∇u, where ∇u is the Jacobian of u.
SGA consists of discretizing the ordinary differential equation
d
dtx = v(x) in time. That is, each player tries to greedily in-
crease their own utility, acting as if the other players are fixed.
Explicitly, it uses the iteration scheme xt+1 = xt + αtv(xt)
for t ∈ N, where αt > 0 is some stepsize. Mertikopoulos and
Zhou [2019] analyze the convergence of SGA to NE. They
prove that, if the game admits a pseudoconcave potential or
if it is monotone, the players’ actions converge to NE, no
matter the level of uncertainty affecting the players’ feedback.
Bichler et al. [2021] write that most auctions in the literature
assume symmetric bidders and symmetric equilibrium bid
functions [Krishna, 2002]. This symmetry creates a potential
game, and SGA provably converges to a pure local NE in
finite-dimensional continuous potential games [Mazumdar et
al., 2020]. Thus in any symmetric and smooth auction game,
symmetric gradient ascent with appropriate (square-summable
but not summable) step sizes almost surely converges to a lo-
cal ex-ante approximate Bayes–NE [Bichler and others, 2021,
Proposition 1]. We emphasize that the aforementioned results
are only sufficiency results, not necessity results. That is, they
prove that SGA converges under certain conditions. This does
not mean that SGA does not converge under more general
conditions. Indeed, in practice, SGA has been observed to
converge under more general conditions for a wider class of
games; hence the popularity of SGA in multiagent reinforce-
ment learning.

Optimistic gradient. Another approach to game-solving in
the literature is optimistic gradient ascent (OGA), which iter-
ates xt+1 = xt + αtv(xt) + βt(v(xt)− v(xt−1)) for t ∈ N,
where αt, βt ∈ R. In the standard version of OGA, αt = βt.
OGA uses the past simultaneous gradient v(xt−1) to create an
extrapolation or prediction of the future simultaneous gradient
v(xt+1), and updates according to this prediction. OGA con-
verges in some games where SGA fails to converge or diverges.
OGA has been analyzed by Popov [1980], Daskalakis et al.
[2018], and Hsieh et al. [2019], among others.2

Simultaneous pseudo-gradient. Both SGA and OGA, as
well as other game-solving approaches in the literature, re-
quire computing the simultaneous gradient v. However, in
some situations, v does not exist because u is not differen-
tiable. In other situations, u is differentiable, but obtaining

2There are also other learning dynamics in the literature, which
are surveyed and analyzed by Balduzzi et al. [2018], Letcher et al.
[2019b], Letcher et al. [2019a], Mertikopoulos and Zhou [2019],
Mazumdar et al. [2019], Hsieh et al. [2021], and Willi et al. [2022],
among others, but these are beyond the scope of this paper.
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an unbiased estimator of its gradient is difficult or intractable.
This can happen if, for example, u is an expectation (with
respect to a distribution parameterized by x) of some non-
differentiable function. An example of such a situation is an
auction, which we will describe in §5. To resolve this problem,
we replace the gradient of ui in the definition of v with a
pseudo-gradient. Explicitly, gi =

1
σu(xi + σzi,x−i)izi for

each Player i, where zi ∼ µi and µi is a multivariate standard
normal distribution of the same dimension as xi. That is, we
estimate the pseudo-gradient of ui (which is a scalar-valued
function, since it outputs only the utility of Player i) with re-
spect to the parameters of Player i. This is the approach taken
by Bichler et al. [2021]. It requires one perturbation for each
player and subsequent evaluation of u. Thus, the number of
utility function evaluations per iteration is linear in the number
of players.

Pseudo-Jacobian. We extend the preceding concept of the
pseudo-gradient from a scalar-valued function to a vector-
valued function. Let n ∈ N, f : Rd → Rn, and fσ(x) =
Ez∼µ f(x + σz). By analogy with the pseudo-gradient, we
call ∇fσ the pseudo-Jacobian of f . Furthermore, it satisfies
the identity ∇fσ(x) = Ez∼µ

1
σ f(x+ σz)⊗ z. Therefore, we

have an unbiased estimator for it.
In the remainder of this subsection, we show that this

estimator is not “too noisy”. (For example, it is possible
in principle for an estimator to be unbiased, but have very
large or even infinite variance.) To do this, we give quan-
titative upper bounds on the moments of the magnitude of
this estimator. Suppose that we use the lower-variance cen-
tral difference estimator from Equation 3. This estimator is
J = f(x+σz)−f(x−σz)

2σ ⊗ z where z is a sample from the stan-
dard d-dimensional multivariate normal distribution. Suppose
f is α-Hölder continuous with constant C. That is, for all
x,y ∈ dom f , ∥f(x)− f(y)∥ ≤ C∥x− y∥α. Then

∥J∥F =
∥f(x+ σz)− f(x− σz)∥

2σ
∥z∥ (4)

≤ C∥2σz∥α

2σ
∥z∥ (5)

= (2σ)α−1C∥z∥α+1 (6)

where ∥·∥F is the matrix Frobenius norm. Now, the nth raw mo-
ment of the chi distribution is E ∥z∥n = 2n/2Γ(d+n

2 )/Γ(d2 ),
where d ∈ N is the dimensionality of z. Thus

E ∥J∥nF ≤ (2σ)n(α−1)Cn E ∥z∥n(α+1) (7)

= (2σ)n(α−1)Cn2n(α+1)/2Γ(d+n(α+1)
2 )/Γ(d2 ) (8)

= 2n(3α−1)/2σn(α−1)CnΓ(d+n(α+1)
2 )/Γ(d2 ) (9)

This yields an upper bound on any moment of the norm of
the estimator. It can be applied to C-Lipschitz functions with
α = 1, and to C-bounded-range functions with α = 0.

Joint perturbation. We now combine all of the preceding
concepts that have been discussed so far. That is, we combine
(1) the identity v = diag∇u, (2) the concept of the pseudo-
Jacobian, and (3) the identity diag(a⊗ b) = a⊙ b to obtain
an estimator that requires only a single, joint perturbation

across all players. Specifically, let vσ = v ∗ Gσ, that is, the
smoothing of v by a Gaussian kernel of width σ. Then

vσ(x) = (v ∗Gσ)(x) (10)
= ((diag∇u) ∗Gσ)(x) (11)
= diag(∇u ∗Gσ)(x) (12)
= diag∇(u ∗Gσ)(x) (13)
= diag∇uσ(x) (14)

= diag Ez∼µ
1
σu(x+ σz)⊗ z (15)

= Ez∼µ
1
σ diagu(x+ σz)⊗ z (16)

= Ez∼µ
1
σu(x+ σz)⊙ z (17)

Therefore, we obtain the following unbiased estimator: g =
1
σu(x + σz) ⊙ z. In terms of indices, for clarity: gi =
1
σu(x+ σz)izi. With this new estimator, the number of util-
ity function evaluations per iteration is now constant in the
number of players, rather than linear. This dramatically re-
duces the number of utility function evaluations when there
are many players. Therefore, it makes game solving signifi-
cantly more efficient in many-player games, especially when
the utility function is expensive to evaluate in terms of wall
time, memory, money, or other resources such as real-world
experiments. We call our method joint-perturbation simulta-
neous pseudo-gradient (JPSPG), in contrast to the classical
method, simultaneous pseudo-gradient (SPG). To our knowl-
edge, this is the first work to define the concept of the pseudo-
Jacobian and apply it to the estimation of the simultaneous gra-
dient. The intuition behind our method is that we estimate the
analogue of the gradient (i.e., Jacobian) of the vector-valued
function that returns utilities for all n players simultaneously
(and then select its diagonal), rather than treating the prob-
lem as having n different, separate scalar-valued functions
whose gradients need to be estimated separately. This saves
us work, because we need just 1 rather than n different func-
tion evaluations. For clarity, we emphasize that our method
does not assume or require symmetry across players. It han-
dles general utility functions on general strategy spaces. The
utility function does not need to be symmetric across play-
ers. In fact, the players’ strategy spaces need not be equal.
For example, player 1’s parameters could be 10-dimensional,
player 2’s parameters could be 20-dimensional, and so on. One
can use our method in combination with any gradient-based
learning dynamics from the literature that are based on the
simultaneous gradient. These include learning dynamics such
as standard simultaneous gradient ascent, extragradient ascent
[Korpelevich, 1976], optimistic gradient ascent [Popov, 1980;
Daskalakis and others, 2018], and so on. In the games that
we tested on, simultaneous gradient ascent was sufficient to
obtain convergence to an approximate NE.

5 Experiments
We test our approach against the classical approach on sev-
eral continuous-action games, in particular on many kinds of
auction and on continuous Goofspiel (which can be thought
of as a kind of sequential auction with budget constraints).
These are many-player games where each utility function eval-
uation is expensive, thus highlighting the problem of interest
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and showing the benefits of our method. Specifically, each
utility function evaluation requires solving a linear assignment
problem, solving an integer linear program, running policies
over multiple steps, etc., all of which are expensive operations.
The games we test on cover various theoretical properties of
interest, including various dimensionalities for each player’s
observation, various dimensionalities for each player’s action,
single-step vs. multi-step settings, etc. Our experimental hy-
perparameters are as follows. For each experiment, we run 8
trials. In each graph, solid lines show the mean across trials,
and bands show the standard error of the mean. The classi-
cal method is shown in blue, while our method is shown in
orange. We use a stepsize of 10−4. For the Gaussian smooth-
ing, we use a perturbation scale σ of 10−1. We use a batch
size per iteration of 256. To update parameters, we use the Ad-
aBelief optimizer [Zhuang and others, 2020]. For each player’s
strategy network, we use a single hidden layer of size 64, the
ReLU activation function, and He initialization [He and others,
2015] for initializing the network’s weights. For our code, we
used Python 3.12.3, JAX 0.4.30 [Bradbury and others, 2018],
Flax 0.8.5 [Heek and others, 2023], Optax 0.2.3 [DeepMind
and others, 2020], Matplotlib 3.9.1 [Hunter, 2007], and SciPy
1.14.0 [Virtanen and others, 2020]. Each experiment was run
individually on one NVIDIA A100 SXM4 40GB GPU. GPUs
are massively parallel, and can thus potentially perform sev-
eral utility function evaluations in parallel. We emphasize that
we allow the baseline that we compare against, ordinary SPG,
to exploit this parallelism to the maximum extent possible.
To do this, we use jax’s automatic tensor parallelization and
vectorization capabilities. We do this to put the baseline on
the strongest possible footing, and thus make the comparison
as conservative as possible. Despite this, our method still sig-
nificantly outperforms the baseline. Furthermore, the relative
advantage of our method would be even greater on a CPU,
which is a more sequential architecture, or in any situation
where massive parallelism cannot be exploited for whatever
reason. We estimate the exploitability of the learned strategy
profile as follows. First, we compute approximate BRs for
each player via reinforcement learning, specifically OpenAI
ES [Salimans and others, 2017]. For this, we use the same
batch size and optimizer as before. The BRs are trained for
1024 iterations. Second, as described in §3, exploitability is
defined as Φ(s) =

∑
i∈I(ui(bi, s−i) − ui(s)), where bi is

the BR for player i to s. We estimate each occurrence of ui

in this expression by averaging over 1024 samples of game
play and subsequent payoffs for player i. In the next several
subsections, we present each benchmark and our experimental
results for them.

Multi-item unit-demand auction. An auction is a mecha-
nism by which a set of items are sold to a set of bidders, who
have valuations for items or sets thereof. Auctions play a cen-
tral role in the study of markets and are used in a wide range
of real-world contexts [Krishna, 2002], such as advertising,
commodities, radio spectrum allocation, real estate, and more.
To evaluate their method, Bichler et al. [2021] used auctions
as a benchmark. Here, we consider a type of multi-item auc-
tion called a unit-demand auction. In this auction, we have n
bidders and m non-identical items. Each bidder i has a private

valuation vij for each item j. Furthermore, each bidder has
unit demand, meaning that its value for a bundle of items is
the same as that for the maximum-value item in that bundle:
vi(S) = maxj∈S vij , where S is a bundle of items. Housing
markets are often given as an example of unit-demand pref-
erences. This model was first studied by Shapley and Shubik
[1971]. This is a special case of a limited-demand model with
K units in which each bidder has use for at most L < K
units, as described in Krishna [2002, §13.4.2 and §13.5.2].
The single-unit case corresponds to L = 1. For our exper-
iment, we use a prior where bidder-item valuations vij are
independently sampled uniformly at random from the unit
interval. Each player i submits a bid bij for each item j. To
allocate items, our auction mechanism assigns items to bidders
in a way that maximizes the sum of bids across players. This
requires solving a linear assignment problem, which can be de-
scribed as follows. Given a bid matrix b ∈ Rn×m, compute a
binary assignment x ∈ {0, 1}n×m that satisfies the following:

maximize
∑
i∈[n]

∑
j∈[m]

bijxij (18)

subject to
∑
i∈[n]

xij ≤ 1 ∀j ∈ [m] (19)

∑
j∈[m]

xij ≤ 1 ∀i ∈ [n] (20)

That is, maximize the sum of values subject to the constraint
that each item is assigned to at most one bidder and each bid-
der receives at most one item. The linear assignment problem
was first described in a seminal paper by Kuhn [1955], who
introduced a solution approach called the Hungarian method.
Subsequently, various algorithms have been devised in the
literature. We use the modified Jonker-Volgenant algorithm
[Jonker and Volgenant, 1988] given in Crouse [2016], as im-
plemented in the Python scientific computing library SciPy
[Virtanen and others, 2020], and reimplement it in JAX [Brad-
bury and others, 2018]. This algorithm has a time complexity
of O(n3). Figure 1 shows the exploitability over the course of
training for a unit-demand auction. Both our method and the
classical method attain a similar exploitability for a given iter-
ation count, but our method is dramatically faster in terms of
run time (here expressed in seconds). This is explained by the
fact that the standard method requires many more evaluations
of the utility function per iteration, each of which requires
solving an assignment problem (which is expensive), whereas
ours only requires a single utility function evaluation. The
advantage of our method over the baseline increases as the
number of players increases.
Knapsack auction. Another type of auction is a knapsack
auction. We follow the description given in Aggarwal and Hart-
line [2006]. In a knapsack auction, an auctioneer auctions off
space in a knapsack of known capacity C. Each player seeks
to place exactly one object in the knapsack. Player i values the
placement of its object in the knapsack at vi. The valuations
are private data of each respective player. Each object takes up
a certain amount of space in the knapsack. Player i’s object
takes space ci, and these sizes are publicly known. Thus, the
cis are public while the vis are private. Each player submits a
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Figure 1: 20-player, 20-item unit-demand auction.

bid bi. Among other words, knapsack auctions have been stud-
ied by Dütting et al. [2014] and Berg et al. [2010], who model
the problem of bidding in ad auctions as a penalized multiple
choice knapsack problem. As Aggarwal and Hartline [2006]
note, the knapsack auction problem models several interesting
applications. For example, consider running a single auction to
sell advertising space on a web page over the course of a day.
Suppose statistical information is available for each advertiser
as to how many showings (i.e., impressions) are necessary for
to result in a user click-through and as well how many times
the web page itself will be viewed in a day. The number of
impressions necessary to generate a click-through corresponds
to the cis and the number of total views corresponds to the
capacity of the knapsack, C. Each utility function evaluation
requires solving an optimization problem of the following
form: maximize x · b subject to x · c ≤ C and x ∈ {0, 1}n.
Here, n is the number of players, b is the vector of stated
values (bids) for each player, c is the corresponding vector of
sizes, x is a binary vector indicating whether each player is
included in the knapsack. Player i’s final utility is (vi − bi)xi.
That is, it is the difference between their private value and their
submitted bid, assuming they are included in the knapsack,
and zero otherwise. This problem can be solved using integer
linear programming (ILP). For this, we use the milp function
included in SciPy’s library [Virtanen and others, 2020], which
uses the HiGHS optimization solver [Huangfu and Hall, 2018;
Hall and others, 2023]. Solving an integer program can be
expensive (integer linear programming is NP-hard), so reduc-
ing the number of utility function evaluations during learning

Figure 2: 20-player knapsack auction.

should result in a significant speedup. In our experiment, we
sample the vis and cis from the standard uniform distribution,
and sample C from the standard uniform distribution on [0, n].
Experimental results on the knapsack auction are shown in
Figure 2. Our method requires fewer utility function evalua-
tions per iteration and thus yields a dramatic improvement in
training time for attaining the same exploitability.

Sequential auction for identical items. Consider a multi-
item unit-demand auction in which identical items are sold
sequentially, rather than simultaneously. We follow the de-
scription given in Krishna [2002, §15.1]. In this auction, K
identical items are sold to N > K bidders using a sequence
of first-price sealed-bid auctions. Specifically, on each of K
rounds, one of the items is auctioned using the first-price for-
mat, and the price at which it is sold—the winning bid—is
announced. We focus on the single-unit demand setting, in
which each bidder has use for at most one unit. Thus a bidder
leaves the game once it has won an item. Each bidder has a
private value vi is that is sampled from the standard uniform
distribution. On round K, a bidder’s observation consists of
its own private value as well as all the prices of the preceding
k − 1 rounds, p1, p2, . . . , pk−1. Results are shown in Figure
3. Our method yields a dramatic improvement in terms of the
wall time required to reach a certain level of exploitability.

Continuous-action Goofspiel. Goofspiel, also known as
the game of pure strategy, is a card game invented by math-
ematician Merrill Flood in the 1930s [Tucker, 1984]. This
game is played with a standard 52-card deck. The cards of
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Figure 3: 20-player, 10-item sequential auction.

one suit are given to one player, the cards of a second suit
are given to the other player, and the cards of a third suit
are shuffled and placed face down in the middle. The cards
are valued from low to high as 1 (Ace), 2, 3, . . . , 10, 11
(Jack), 12 (Queen), and 13 (King). A round consists of turning
up the next card from the middle pile and letting the play-
ers simultaneously “bid” on this “prize” card. Players bid
by choosing one of their own cards and revealing it at the
same time as the other player. The player with the highest bid
wins the value of the prize card. In a tie, the prize value is
split between the players. All three cards are then discarded.
The game ends after 13 rounds, and the winner is the player
with the highest score. Because of its simple mechanics but
complex strategy, Goofspiel is commonly used as an exam-
ple in game theory and artificial intelligence, and has been
studied extensively in the literature [Ross, 1971; Dror, 1989;
Ferguson and Melolidakis, 2001; Grimes and Dror, 2013;
Rhoads and Bartholdi, 2012; Lanctot et al., 2014]. We con-
sider the following continuous-action variant of Goofspiel.
Instead of receiving a deck of discrete bids consisting of all
cards of one suit, each player has a continuous budget that
they can spend to bid on the prize card in each round. In each
round, their continuous bid is subtracted from their budget.
This can be thought of as a multi-round, multi-item, auction-
like scenario with a budget constraint for each bidder. To allow
the players to randomize over their 1-dimensional actions (the
bids), we inject their strategy networks with 1-dimensional
latent input noise in addition to the observation, as described in
Martin and Sandholm [2023]. Figure 4 shows the exploitabil-

Figure 4: 20-player continuous Goofspiel.

ity over the course of training on continuous-action Goofspiel.
Our method yields a significant improvement in the run time
required to attain a certain level of exploitability.

6 Conclusions and Future Research
We tackled the problem of computing an approximate Nash
equilibrium of a game with a black-box utility function, for
which we lack access to gradients. To do this, we combined a
standard gradient-based learning dynamics, simultaneous gra-
dient ascent, with a new zeroth-order approach to computing
the simultaneous gradient. Our method performs a joint pertur-
bation on all players’ strategies at once, rather than perturbing
each one individually. This approach reduces the number of
utility function evaluations per iteration from linear in the
number of players to constant in the number of players. When
utility function evaluation is expensive (e.g., in terms of wall
time, memory, or other resources), this can significantly reduce
the cost of training. We compared our approach to the standard
baseline on several benchmark games. Our experimental re-
sults confirm our hypothesis, namely, that our approach yields
a dramatic improvement in the training time required to reach
a certain level of exploitability. One possible direction for fu-
ture research would be to test our method in combination with
other gradient-based learning dynamics, such as extragradient
and optimistic gradient ascent, in games where simultaneous
gradient ascent does not converge to equilibrium. For instance,
optimistic gradient ascent just needs an estimator of the simul-
taneous gradient as an oracle, which our method can provide.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This material is based on work supported by the Vannevar
Bush Faculty Fellowship ONR N00014-23-1-2876, National
Science Foundation grants RI-2312342 and RI-1901403, ARO
award W911NF2210266, and NIH award A240108S001.

References
[Aggarwal and Hartline, 2006] Gagan Aggarwal and Jason D.

Hartline. Knapsack auctions. In SODA, 2006.
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H. M. Winands. Monte Carlo tree search in simultaneous
move games with applications to Goofspiel. In Computer
Games, 2014.

[Letcher and others, 2019a] Alistair Letcher et al. Differen-
tiable game mechanics. JMLR, 2019.

[Letcher and others, 2019b] Alistair Letcher et al. Stable op-
ponent shaping in differentiable games. In ICLR, 2019.

[Li and Wellman, 2021] Zun Li and Michael P. Wellman.
Evolution strategies for approximate solution of Bayesian
games. In AAAI, 2021.

[Lockhart and others, 2019] Edward Lockhart et al. Comput-
ing approximate equilibria in sequential adversarial games
by exploitability descent. In IJCAI, 2019.

[Martin and Sandholm, 2023] Carlos Martin and Tuomas
Sandholm. Finding mixed-strategy equilibria of continuous-
action games without gradients using randomized policy
networks. In IJCAI, 2023.

[Mazumdar et al., 2019] Eric V. Mazumdar, Michael I. Jor-
dan, and S. Shankar Sastry. On finding local Nash equi-
libria (and only local Nash equilibria) in zero-sum games.
arXiv:1901.00838, 2019.

[Mazumdar et al., 2020] Eric Mazumdar, Lillian J. Ratliff,
and S. Shankar Sastry. On gradient-based learning in con-
tinuous games. SIAM Journal on Mathematics of Data
Science, 2020.

[Mertikopoulos and Zhou, 2019] Panayotis Mertikopoulos
and Zhengyuan Zhou. Learning in games with continuous
action sets and unknown payoff functions. Mathematical
Programming, 2019.

[Metz and others, 2021] Luke Metz et al. Gradients are not
all you need. arXiv:2111.05803, 2021.

[Milgrom and Weber, 1985] Paul Milgrom and Robert Weber.
Distributional strategies for games with incomplete infro-
mation. Mathematics of Operations Research, 10:619–632,
1985.

[Mohamed and others, 2020] Shakir Mohamed et al. Monte
Carlo gradient estimation in machine learning. JMLR,
2020.

[Nash, 1950] John Nash. Equilibrium points in n-person
games. PNAS, 36:48–49, 1950.

[Nesterov and Spokoiny, 2017] Yurii Nesterov and Vladimir
Spokoiny. Random gradient-free minimization of convex
functions. FoCM, 2017.

[Popov, 1980] Leonid Denisovich Popov. A modification of
the Arrow-Hurwicz method for search of saddle points.
Mathematical notes of the Academy of Sciences of the
USSR, 1980.

[Rechenberg and Eigen, 1973] Ingo Rechenberg and
M. Eigen. Evolutionsstrategie: Optimierung technischer
systeme nach prinzipien der biologischen evolution.
Frommann-Holzboog Stuttgart, 1973.

[Rechenberg, 1978] Ingo Rechenberg. Evolutionsstrategien.
In Simulationsmethoden in der medizin und biologie.
Springer, 1978.

[Rhoads and Bartholdi, 2012] Glenn C. Rhoads and Laurent
Bartholdi. Computer solution to the game of pure strategy.
Games, 2012.

[Rosen, 1965] J. Ben Rosen. Existence and uniqueness of
equilibrium points for concave n-person games. Economet-
rica, 1965.

[Ross, 1971] Sheldon M. Ross. Goofspiel—the game of pure
strategy. Journal of Applied Probability, 8(3):621–625,
1971.

[Salimans and others, 2017] Tim Salimans et al. Evolution
strategies as a scalable alternative to reinforcement learning.
arXiv:1703.03864, 2017.

[Schwefel, 1977] Hans-Paul Schwefel. Numerische opti-
mierung von computer-modellen mittels der evolution-
sstrategie. Birkhäuser Basel, 1977.
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