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Abstract
Distribution shifts in recommender systems be-
tween training and testing in user-item interac-
tions lead to inaccurate recommendations. Despite
the promising performance of test-time adaptation
technology in various domains, it still faces chal-
lenges in recommender systems due to the imprac-
ticality of fine-tuning models and the infeasibility
of obtaining test-time labels. To address these chal-
lenges, we first propose a Test-Time Adaptation
framework for Graph-based Recommender system,
named TTA-GREC, to dynamically adapt user-
item graphs at test time in a data-centric way,
handling distribution shifts effectively. Specifi-
cally, our TTA-GREC targets KG-enhanced GNN-
based recommender systems with three core com-
ponents: (1) Pseudo-label guided UI graph trans-
formation for adaptive improvement; (2) Ratio-
nal score guided KG graph revision for seman-
tic enhancement; and (3) Sampling-based self-
supervised adaptation for contrastive learning. Ex-
periments demonstrate TTA-GREC’s superiority at
test time and provide new data-centric insights on
test-time adaptation for better recommender system
inference.

1 Introduction
Recommender systems powered by knowledge graphs (KGs)
and modeled by graph neural networks (GNNs) represent a
branch of graph-based recommender systems, i.e., KGNNs.
These systems [Guo et al., 2020; Choudhary et al., 2021;
Yang et al., 2023] play crucial roles in capturing complex
relationships and semantic information between users and
items, enabling highly accurate, personalized, and context-
aware recommendations. Typically, KGNNs learn from
both user-item (UI) interaction graphs and knowledge graphs
(KGs), which enrich user-item relationships through KGs and
capture high-order contextual information through graph con-
volutions, leading to high-quality user-item representations.

However, a major challenge for KGNN-based recom-
mender systems is distribution shift between training and

∗ Corresponding author.

Figure 1: Test-time adaptation on recommender system.

test data [Wu et al., 2024]. It shows in user-item relation-
ship changes, item popularity fluctuations, and contextual
factors. First, the dynamic nature of user preferences leads
to discrepancies between user behaviors during training and
test phases [Shen et al., 2023; Shafiloo et al., 2024]. Sec-
ond, fluctuations in item popularity may cause users to in-
teract with cold or newly introduced items during testing,
which are poorly represented in the training data, thereby
reducing recommendation accuracy [Zhang et al., 2023;
He et al., 2024]. Finally, contextual variations, such as sea-
sonality and marketing campaigns [Adomavicius et al., 2021;
Meng et al., 2022], further exacerbate the differences be-
tween interactions in the training and test stages. These dis-
tribution shifts result in a significant decrease in model per-
formance during testing.

Inspired by test-time adaptation (TTA) methods in com-
puter vision [He et al., 2021; Azimi et al., 2022; Roy et
al., 2023], TTA has emerged as a promising strategy for
dynamically adjusting data or fine-tuning model parameters
at test time to address distribution shifts, improving gen-
eralization. However, existing TTA methods fail in rec-
ommender systems due to key challenges: C1: Impracti-
cality of fine-tuning models: Model updates during test-
ing are resource-intensive and introduce delays, so it is un-
suitable for real-time recommendations [Hou et al., 2023;
Xi et al., 2024]. C2: Infeasibility of obtaining test-time
labels: Sparse data and absent supervision hinder semantic
learning and adaptation [Lee et al., 2018].

To address these challenges, we first propose a novel Test-
Time Adaptation framework for Graph-based Recommender
system, named TTA-GREC, to dynamically adapt user-item
graphs at test time in a data-centric manner, enhancing the
capability of recommender system to handle the distribu-
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tion shift issue. As shown in Figure 1, our proposed TTA-
GREC dynamically adapts the test-time graphs in a data-
centric manner, without fine-tuning models.

Specifically, our proposed TTA-GREC consists of three
key modules: (a) Pseudo-label guided UI graph transfor-
mation for adaptive improvement: It refines the user-item
graph by generating pseudo-labels, pruning edges, and adap-
tively sampling key interactions to enhance semantic infor-
mation; (b) Rational score guided KG graph revision for
semantic enhancement: Rational score is computed by com-
bining entity and relation embeddings. It induces a series of
self-supervised tasks to achieve semantic enhancement and
thus robust adaptation. (c) Sampling-based self-supervised
adaptation for contrastive learning: It enhances semantic
representations through a set of self-supervised tasks, en-
abling robust adaptation through contrastive learning. Ex-
tensive experiments on multiple public datasets demonstrate
that TTA-GREC significantly outperforms existing methods
on key metrics such as Recall and NDCG (e.g., 4.46% Recall
and 1.86× NDCG improvement in Last-FM).

In summary, the contributions of our proposed method are
listed as follows:

• First TTA Framework on Recommendation. To the
best of our knowledge, we are the first to propose
a Test-Time Adaptation framework for Graph-based
Recommender system, i.e., TTA-GREC, to dynami-
cally adapt user-item graphs at test time in a data-centric
manner for better model generalization and adaptability.

• Dual UI and KG Graph Data-centric Transforma-
tion. Our proposed TTA-GREC contains (a) Pseudo-
label guided UI transformation, (b) Rational score
guided KG graph revision, and (c) Sampling-based self-
supervised adaptation.

• Superior Test-Time Performance. Extensive exper-
iments conducted on multiple public datasets demon-
strate that our TTA-GREC significantly enhances the
test-time inference ability of KGNN-based recommen-
dation systems.

2 Related Work
Test-Time Adaptation. Test-time adaptation (TTA) seeks
to perform real-time refinements of test data or adjust the
model parameters during the model deployment phase [Jha
et al., 2021; Ashraf et al., 2022; Zheng et al., 2024; Huang
et al., 2025]. This is done to enhance the model’s gener-
alization ability in conditions where there might be distri-
bution shifts between the training and testing datasets. The
existing TTA methods can mainly be divided into two cate-
gories: (1) Data-centric adaptation: These strategies expand
or perturb the data, helping the model generalize well to the
unseen data [Zheng et al., 2023]. For instance, DropE-
dge counters overfitting by uniformly dropping some edges
[Rong et al., 2019]. Interaction masking or feature perturba-
tion methods help in fusing the graphs [Mishra et al., 2020;
Shanmugam et al., 2021]. (2) Model-centric adaptation: This
approach involves modifying the model parameters during
testing. This can be done by fine-tuning with self-supervised

learning [Wang et al., 2020], or employing contrastive learn-
ing [Chen et al., 2020; Bu et al., 2024]. Such approaches re-
main inadequate for complex recommenders, such as KGNN-
based systems that handle both UI and KG elements.

3 Test-Time Adaptation on Graph-based
Recommendation System (TTA-GREC)

Preliminary. For a user-item (UI) interaction graph, we
have Gui = {(u, v, yuv)}, where u ∈ U represents a user in
the user set U and v ∈ E represents an item belonging to the
entity set E . yuv = 1 indicates that user u interacted with item
v, while yuv = 0 indicates no interaction. For a knowledge
graph (KG), we have Gkg = {(h, r, t)}, which is represented
as a triple set with a head entity h ∈ E , a tail entity t ∈ E , and
a relation r ∈ R, where E and R denote the entity set and
relation set in the knowledge graph, respectively.

Problem Definition. The objective of our TTA-GREC
is to optimize the test UI graph G te

ui dynamically at
test time by constructing a test-time adaptation function
F(u, v|Φ,Gui,Gkg,KGNNθ∗). Here F(·) is a function with
learnable parameters Φ for test-time UI graph transforma-
tion. Additionally, KGNNθ∗ refers to the well-trained KGNN
model optimized on the training set with parameters θ∗,
where its learning objective is to predict the interaction likeli-
hood between a user u and an unseen item v. In our test-time
adaptation process, KGNNθ∗ remains frozen without any pa-
rameter fine-tuning, emphasizing our data-centric approach.

KGNN Training. In the training phase of KGNN-based
recommender models, the primary objective is to effectively
capture the relationships among users, items, and KG enti-
ties, allowing the learning of expressive representations of
user preferences and item attributes. Given a KG Gkg and a
training UI graph G tr

ui, the optimization objective can be writ-
ten as:

argmin
θ

Lrec(KGNNθ|Gkg,G tr
ui), (1)

where Lrec(·) is the recommendation loss (e.g., binary cross-
entropy loss or matrix factorization loss), and KGNNθ cap-
tures user and item features through the following function:

e′u, e
′
h = KGNNθ (eu, er, eh) , (2)

where {eu, eh, er} ∈ Rd represent embeddings of user u, en-
tity h from KG, and relation r from UI and KG, respectively,
and e′u, e

′
h ∈ Rd1 denote the updated user and entity embed-

dings from KGNN by propagating and aggregating neighbor
information through GNN. Then, these embeddings are used
to predict the interaction probability between user u and item
v, providing interaction prediction results for the recommen-
dation system. After training, the KGNN model learns the op-
timal parameters θ∗, resulting in a well-trained recommender
model KGNNθ∗ .

Test-Time KGNN Inference. For a real-world test user-
item list with no existing connections, we still use graph-
based representations for consistent expression, defined as
G te

ui = (ute, vte). We assume that there may be a distribu-
tion shift between the training set G tr

ui and the test set G te
ui.
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Figure 2: Overview of the TTA-GREC framework. The pseudo-label guided UI transformation module optimizes test graph structures to
align training and testing distributions. The rational score guided KG revision module leverages self-supervised feature reconstruction to
handle interaction data. Finally, the contrastive learning framework ensures robust embeddings by aligning representations under noisy and
variable conditions.

This shift primarily manifests as differences in the joint dis-
tribution of users and items, i.e., Ptr(u, v) ̸= Pte(u, v). Typi-
cally, the trained model KGNNθ∗ is used directly to infer the
test graph, such as eu, ev = KGNNθ∗(G te

ui,Gkg). However,
due to potential distribution shifts at test time, the optimal
parameters θ∗ learned from the training graph may not al-
ways be suitable for inference on the test graph. This could
negatively impact the accuracy of predicting item interactions
in the test graph, thereby harming the generalizability of the
KGNN model.

3.1 Methodology
In this work, we propose a data-centric solution by learn-
ing optimal test-time UI and KG transformation distribu-
tion, named TTA-GREC, which aims to improve perfor-
mance through test-time graph data transformation, thereby
achieving better generalization for GNNs. As shown in Fig-
ure 2, our TTA-GREC is composed of three main mod-
ules: (1) Pseudo-label guided UI graph transformation for
adaptive improvement: This module dynamically adjusts the
test-phase user-item interaction graph by generating pseudo-
labels, pruning noisy edges, and performing adaptive edge
sampling. It enhances the semantic structure of the interac-
tion graph by focusing on critical relationships, thus miti-
gating distribution shifts caused by unseen interactions dur-
ing testing; (2) Rational score guided KG graph revision
for semantic enhancement: Rationality scores are computed
by combining entity and relation embeddings, guiding self-
supervised tasks such as edge masking and refactoring to
enhance semantics and refine the user-item graph. These
tasks enable robust adaptation to noisy test data by learning
meaningful representations without supervised labeling; (3)
Sampling-based self-supervised adaptation for contrastive
learning: By constructing positive and negative sample pairs,
this module leverages contrastive learning to align user and
item representations. It reduces noise interference and en-
sures the semantic consistency of embeddings across test-
time data variations, improving the robustness and general-
ization of test-time recommendation. More detailed modular
designs of our proposed TTA-GREC are presented below.

3.2 Modular Design
Pseudo-label Guided UI Graph Transformation. We
have three components in this module: (a) Simulate poten-
tial interaction; (b) Attention scoring and edge sampling; and
(c) Graph augmentation strategy.
(a) Simulate potential interaction. Given a set of M test
users U te = {ute

1 , u
te
2 , · · · , ute

M} and a set of all N items
V = {v1, v2, · · · , vN}, there are no pre-labeled interaction
relationships yuv between these test users and items. To con-
struct a new test graph, use the trained KGNNθ∗ model to pre-
dict the p items that each user u ∈ U te is most likely to inter-
act with, generating a test item set V te = {vte

1 , v
te
2 , · · · , vte

p }.
These predicted interaction relationships serve as pseudo-
labels yte

uv , describing the potential interactions between users
and items. Finally, we combine the test user set, the test
item set, and the pseudo-labels into a new test graph G te

ui =
(U te,V te, yte

uv).
(b) Attention scoring and edge sampling. The attention score
α(u,v) of user-item interactions is calculated based on user
and item embeddings and edge features in the interaction
graph. Given a test graph G te

ui = (V,Eui), where V is all
the nodes of the original graph and Eui is the set of edges.
For each user-item interaction edge Eui, obtain the user em-
bedding eu = fu(G te

ui, u) and the item embedding represen-
tation ev = fu(G te

ui, v). Based on the embeddings of users
and items, as well as the edges Eui of the interaction graph,
calculate the attention score α(u,v) to measure the degree of
user attention to each item:

α(u,v) = Softmax
(
e⊤u ev/

√
d
)
. (3)

During the inference (testing) stage, these attention scores
can be aggregated or averaged to identify which interaction
pairs are most significant for user preferences. The attention
score can be further normalized:

α(u,v) =
exp

(
e⊤u ev/

√
d
)

∑
j∈E exp

(
e⊤u ej/

√
d
) . (4)

To increase the diversity of sampling, a double logarithmic
transformation noise perturbation ϵ is used, the Gumbel dis-
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tribution is introduced to enhance exploration, and finally the
perturbed sampling probability distribution P (e) is obtained:

P (e) =
exp(α(u,v) + ϵ)∑

(u,v)′∈Eui
exp(α(u,v)′ + ϵ)

, (5)

ϵ = − log(− log(U)), U ∼ Uniform(0, 1). (6)

Sampling is performed based on this probability distribu-
tion P (e) to obtain the edge set Esample, and then a new
user-item interaction enhanced graph G+

ui = (V,Esample) is
constructed. By retaining edges with high attention and dis-
carding edges with low attention, the model can adaptively
streamline the graph structure, making the user-item interac-
tion graph closer to the real preference relationships.
(c) Graph augmentation strategy. The enhanced user-item
interaction graph G+

ui is input into the GCN of the KGNNθ∗

model to update node embeddings, and by optimizing the
similarity between user embedding vectors and positive sam-
ple item embedding vectors while increasing the distance be-
tween user embedding vectors and negative sample item em-
bedding vectors, thereby improving recommendation perfor-
mance.

The calculation of the user embedding eu and the item em-
bedding ev is updated through the graph neural network lay-
ers in the optimized interaction graph G+

ui . The embedding
update formula is:

e(l+1)
u = σ

 ∑
v∈N (u)

W(l) · e(l)v√
|N (u)| · |N (v)|

 , (7)

e(l+1)
v = σ

 ∑
v∈N (v)

W(l) · e(l)u√
|N (v)| · |N (u)|

 , (8)

where N (u) is the neighbor set of user u; W(l) is the weight
matrix of the l-th layer; σ is the activation function.

Rational Score Guided KG Graph Revision. We have
two components in this module: (a) Rational scoring func-
tion; and (b) Adaptive masking and reconstruction.
(a) Rational scoring function. The importance of the seman-
tics and relationships contained in different triples (h, r, t) in
the knowledge graph may vary significantly. Different user
preferences for similar products may be influenced by var-
ious complex relationships. Hence, the design goal of the
rational weighting function is to enhance the role of reliable
relationships while suppressing the negative impact of poten-
tial noise and low-correlation relationships on model perfor-
mance. Inspired by the Heterogeneous Graph Transformer
(HGT) [Hu et al., 2020], we propose the rational weighting
score y(h, r, t):

y(h, r, t) = Softmaxh

(
euW · (etW ⊙ er)√

d

)
·deg(h). (9)

Here, eu and et are the embeddings of the head node and the
tail node, respectively, W is a linear projection matrix Rd×d,
where d is the hidden dimension, ⊙ is the element-wise dot
product used to fuse the relationship embedding er, Softmaxh

indicates the normalization of all edges of the head node h,
and deg(h) is the degree of the head node h.
(b) Adaptive masking and reconstruction. Given a knowl-
edge graph Gkg = (E , Ekg), its edge set is defined as Ekg =
{(h, r, t)|h ∈ E , t ∈ E , r ∈ R}. Edges with high attention
scores are usually more important in semantic expression. By
masking these high-importance edges, the model can extract
potential structures and relationships from secondary edges
when key semantic information is missing. Add noise ϵ to
the rational score y(h, r, t) for perturbation and select the top
k edges with the highest scores for masking:

Topk = argsort(y(h, r, t) + ϵ)[: k]. (10)

The noise ϵ = − log(− log(U)), where U ∼ Uniform(0, 1).
The set of high-attention edges Etop is obtained:

Etop = {(hi, ri, ti)|i ∈ Topk}. (11)

Masking only high-attention edges may cause the model to
focus too much on prominent features. To avoid the model
focusing too much on prominent features and ignoring poten-
tial long-tail features, a random mask Randomk covering the
entire graph is further introduced:

Erand = {(hi, ri, ti)|i ∈ Random({1, 2, . . . , |E|})}. (12)

Combining the high-attention edge mask and the random
mask, the final mask set is obtained:

Emask = Etop ∪ Erand. (13)

We convert the original knowledge graph Gkg into a new
graph structure G+

kg = (E , Enew), where Enew = Ekg \ Emask.
On the new graph G+

kg, the head node embedding eh =

fk(G+
kg, h) and the tail node embedding et = fk(G+

kg, t) are
calculated, and these embeddings are used to optimize the
objective function.

Sampling-based Self-supervised Adaptation. We have
two components in this module: (a) Adaptive sampling; and
(b) Latent space projection.
(a) Adaptive sampling. We dynamically select representative
UI and KG edges based on the attention scores of the edges to
enhance the learning effect of the model, respectively. Adap-
tive sampling of KG edges filters out edges with higher ratio-
nal weighting scores y(h, r, t) in Topk(y(h, r, t)) to retain im-
portant relationship information while discarding edges with
low correlation. Given the knowledge graph Gkg = (E , Ekg),
create a Boolean mask

Mkg[i] =

{
True, h, r, t ∈ Topky(h, r, t)
False, x ≥ 0

. (14)

The retained edge indices E′
kg and their types T ′

kg are se-
lected through the mask Mkg:

E′
kg = Ekg ·Mkg, (15)

T ′
kg = Tkg ·Mkg. (16)

Adaptive sampling of UI edges uses the average attention
α(u,v) of items as the basis of the sampling probability P (e)
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to ensure that edges with high attention are more likely to be
retained. The sampled edges according to probability:

E′
ui = sample(Eui, P (e), k). (17)

To maintain the average of the overall weight, adjust the
weight of the sampled edges:

W′
ui = Wui/(1− ϕ), (18)

where ϕ represents the edge drop rate, the number of retained
edges is k = ⌊(1−ϕ)×|E|⌋, Wui is the original edge weight.
(b) Latent space projection. In our proposed TTA-GREC, a
two-layer multi-layer perceptron (MLP) is used to perform
nonlinear transformation on the embedding vectors, thereby
enhancing the expressive ability of embedding representation
and the effect of contrastive learning. First, the GCN of the
KGNNθ∗ model is used to encode the user-item interaction
graph and the knowledge graph, respectively, to obtain en-
hanced item embedding vectors:

Xkg
v = GCNkg(eh, E

′
kg, T

′
kg), (19)

Xui
v = GCNui(eu, ev, E

′
ui,W

′
ui). (20)

To align the embedding vectors in the user-item interaction
graph and the knowledge graph, this paper uses a two-layer
multi-layer perceptron (MLP) to map the embedding vectors
into the latent space. The specific process is as follows:

z∗ = ReLU(W2 · ReLU(W1 ·X∗
v + b1) + b2). (21)

Through the nonlinear transformation of the above two-
layer MLP, the embedding vectors are mapped into the latent
space to form more expressive and discriminative representa-
tions.

3.3 Optimization Objective
Mask Reconstruction Loss Lmae. The rationale for this pro-
cess is that by filtering out critical and randomly important
edges through the masked edge set, the new graph structure
can more effectively capture the core semantic information
in the knowledge graph while reducing the interference of
noise and irrelevant relationships, thereby improving the rec-
ommendation performance and generalization ability of the
model. After masking, the goal of the model is to recover
the masked information as much as possible. The masked
edges are reconstructed using a dot product decoder, and the
reconstruction optimization objective of the masked edges is
defined as follows:

Lmae = − 1

|Emask|
∑

Ei∈Emask

log σ (r′) , (22)

where r′ = ⟨eh, et ⊙ r⟩, and σ(·) represents the sigmoid
function.
Recommendation Loss Lrec. In the user-item interaction
graph dynamic optimization module, the recommendation
loss is used to optimize the relationship between user embed-
dings and item embeddings of positive and negative samples.
The optimization function is defined as:

Lrec = − 1

|D|
∑

(u,vpos,vneg)∈D

log σ
(
eu

⊤evpos − eu
⊤evneg

)
,

(23)

where D is a set of triples containing users, positive samples,
and negative samples. Through the graph augmentation strat-
egy, the structure of UI graph is more in line with real user
preferences.
Contrastive Learning Loss Lcl. The objective of the opti-
mization function is to maximize the similarity between pos-
itive samples and minimize the similarity between positive
and negative samples through contrastive learning. To con-
struct negative sample pairs, a random permutation method
is used to generate negative sample indices j, thus forming
negative sample pairs of

(
zui
i , z

kg
j

)
and

(
zui
j , z

kg
i

)
. We adopt

InfoNCE-based contrastive loss function as follows:

Lcl =
1

N

N∑
i=1

log
exp (sii/τ)∑

j ̸=i

(
exp (sij/τ) + exp (sji/τ)

) .
(24)

Here, sij = cos(zui
i , z

kg
j ), cos(·) is the cosine similarity and τ

is the temperature parameter.
The total loss function of the model can be expressed as:

Ltotal = Lmae + Lrec + Lcl. (25)

By minimizing Ltotal, the model can jointly improve rec-
ommendation performance and generalization ability in three
aspects: knowledge graph enhancement, user-item interac-
tion optimization, and contrastive learning.

4 Experiment
In this section, we answer several research questions related
to TTA-GREC through experiments: Q1: How does the pro-
posed TTA-GREC perform on pre-trained KGNNs for rec-
ommendation tasks under different test-time graph distribu-
tion shifts? Q2: How do different submodules and learn-
ing strategies in TTA-GREC contribute to its performance?
Q3: How sensitive is TTA-GREC to hyperparameter set-
tings? Q4: How does TTA-GREC perform in terms of run-
time efficiency and visualization?

4.1 Experimental Settings
Datasets. We utilize three different datasets: Last-FM,
MIND, and Alibaba-iFashion, which respectively represent
different domains of recommendation systems. Last-FM
[Wang et al., 2019; Zhao et al., 2019]: It is a dataset of user-
music interaction logs with rich metadata. MIND [Tian et
al., 2021]: It is a news recommendation dataset with com-
plex user-item interactions and semantic content. Alibaba-
iFashion [Wang et al., 2021]: It is a dataset focused on fash-
ion product recommendations, featuring dynamic user pref-
erences and detailed item attributes. We follow the proce-
dures and partitions in previous works [Wang et al., 2019;
Tian et al., 2021; Wang et al., 2021; Yang et al., 2023]. More
statistical information of datasets is listed in the Appendix.
Test-time Evaluation Protocol. For each KGNN model,
we follow a standard training pipeline and train it on the train-
ing set until it achieves the best performance on the validation
set in terms of recommendation. These ‘well-trained’ GNN
models remain fixed during the entire test-time adaptation
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Dataset Method KGIN KGCL

Recall NDCG Precision Hit Ratio Recall NDCG Precision Hit Ratio

Last-FM

Baseline-TT 0.0873 0.0766 0.0357 0.3595 0.0971 0.0888 0.0405 0.3760
Dropedge-TT 0.0707 0.1511 0.0578 0.3634 0.1670 0.1850 0.0773 0.5099
Featmask-TT 0.0713 0.1205 0.0569 0.3837 0.2857 0.3008 0.1411 0.7468
TTA-GREC (Ours) 0.0911 0.2191 0.0969 0.5319 0.2877 0.3054 0.1433 0.7517

MIND

Baseline-TT 0.0340 0.0212 0.0107 0.1795 0.0338 0.0209 0.0090 0.1573
Dropedge-TT 0.0301 0.0808 0.0207 0.3704 0.1228 0.1065 0.0548 0.5295
Featmask-TT 0.0281 0.0586 0.0141 0.2666 0.2211 0.1791 0.0849 0.7471
TTA-GREC (Ours) 0.0348 0.0564 0.0309 0.3497 0.2161 0.1757 0.0839 0.7369

Alibaba-iFashion

Baseline-TT 0.1172 0.0732 0.0196 0.3238 0.1270 0.0801 0.0213 0.3464
Dropedge-TT 0.0894 0.1733 0.0273 0.5192 0.2387 0.1501 0.0377 0.5637
Featmask-TT 0.1072 0.2141 0.0317 0.5869 0.2255 0.1394 0.0356 0.5399
TTA-GREC (Ours) 0.1295 0.2526 0.0409 0.7035 0.2387 0.1491 0.0377 0.5640

Table 1: Comparison of performance metrics across datasets and methods. The best and second-best performances are highlighted in bold
and underlined, respectively.

process, ensuring that no model parameters are updated dur-
ing testing. To ensure a fair comparison, we maintain consis-
tent settings in all baselines and TTA-GREC. All evaluations
are conducted under a full-ranking setup, and average perfor-
mance across multiple runs is reported to ensure reliability.
We evaluate performance using Recall@N and NDCG@N,
with N = 20, to assess the model’s capability in generating
top-N recommendations effectively.

Baseline Methods. To evaluate the effectiveness of the pro-
posed TTA-GREC, we compare it with the following three
groups of baseline methods: (a) Knowledge graph-enhanced
recommenders: we use a Baseline-TT setting where the
model is traditionally trained, and the fixed model parameters
are directly applied during the test phase without modifica-
tion to the test data; (b) Graph structure based self-supervised
learning: DropEdge [Rong et al., 2019] is a widely used
graph data augmentation method that randomly removes
edges during the training process. We apply DropEdge-TT
to modify the UI graph during the test phase. The resulting
embeddings are passed to the contrastive learning module for
predictions; (c) Graph feature based self-supervised learning:
NodeFeatureMask [Mishra et al., 2020] is a feature-level en-
hancement that randomly masks node features. We design a
Featmask-TT approach where feature masking is applied to
UI embedding during the test phase and subsequently used
for contrastive learning.

4.2 Experimental Results
Performance of Test-time Recommendation. To evaluate
the effectiveness of the proposed test-time adaptation frame-
work TTA-GREC, we compare its performance with baseline
methods across multiple datasets, as shown in Table 1. Across
all datasets, the proposed TTA-GREC outperforms all base-
line methods on key metrics for both KGIN and KGCL mod-
els. On Last-FM, TTA-GREC achieves a Recall of 0.0911
and 0.2877 for KGIN and KGCL, respectively, represent-
ing a relative improvement of 4.36% and 0.70% over the

Dataset Model Recall NDCG

Last-FM

TTA-GREC (Ours) 0.0911 0.2191
w/o UI transformation 0.0814 0.1520
w/o KG revision 0.0707 0.1511
w/o CL 0.0890 0.1761

MIND

TTA-GREC (Ours) 0.0348 0.0564
w/o UI transformation 0.0139 0.0187
w/o KG revision 0.0301 0.0808
w/o CL 0.0265 0.0470

Alibaba-iFashion

TTA-GREC (Ours) 0.1295 0.2526
w/o UI transformation 0.1175 0.1597
w/o KG revision 0.0894 0.1733
w/o CL 0.1137 0.1788

Table 2: Ablation Study on the contribution of submodules in TTA-
GREC.

best-performing Featmask-TT. On MIND, while Featmask-
TT slightly surpasses TTA-GREC in Recall for KGCL, TTA-
GREC still achieves competitive results across NDCG, Pre-
cision, and Hit Ratio. For example, TTA-GREC produces
an NDCG of 0.0564 for KGIN, which outperforms Baseline-
TT and Dropedge-TT. On Alibaba-iFashion, TTA-GREC
demonstrates superior performance, particularly in metrics
that highlight overall recommendation quality. For KGIN,
it achieves a Hit Ratio of 0.7035, surpassing Featmask-TT.
For KGCL, TTA-GREC yields consistent improvements in
Precision and NDCG.

In summary, the self-supervised edge masking and recon-
struction strategies employed in our framework mitigate the
effects of data sparsity and improve semantic embedding
quality. This explains the significant improvements in NDCG
for datasets with rich KG information. By constructing pos-
itive and negative sample pairs, TTA-GREC introduces ad-
ditional supervision signals, which reduce noise interference
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Figure 3: Hyper-parameter mask size analysis on Alibaba-iFashion
dataset.

Figure 4: Hyper-parameter τ analysis on Alibaba-iFashion dataset.

and improve the discriminability of embeddings. This adap-
tation is particularly effective in dynamic scenarios, where
user preferences frequently change.

Ablation Study of TTA-GREC. To evaluate the contribu-
tion of each submodule in TTA-GREC, we conduct ablation
studies by sequentially removing: (I) w/o UI transforma-
tion: Removes UI graph transformation with only the origi-
nal test UI list. (II) w/o KG revision: Removes KG transfor-
mation by only origanal KG embedding. (III) w/o CL: Re-
moves sampling-based contrastive learning by the Euclidean
distance of the embedding. We report the results of the ab-
lation study in Table 2 and draw the following observations:
First, removing the UI transformation module leads to a sig-
nificant decline in Recall and NDCG. This indicates that this
module is crucial to refining user-item interactions, eliminat-
ing noise, and optimizing key interactions. Second, removing
the KG revision module has the most significant impact on
the NDCG of all datasets, for example, it drops by more than
30% on Alibaba-iFashion. This highlights the critical role
of this module in improving knowledge graph embeddings,
enriching semantic information, and alleviating data sparsity.
Lastly, removing the CL module has a relatively small im-
pact on Recall and NDCG, but there is a significant decline
on all datasets, which verifies its value in further enhancing
the robustness and discriminability of the model through con-
trastive learning.

Hyper-parameter Sensitivity Analysis. The results in Fig-
ures 3 and 4 highlight the impact of mask size and tempera-
ture parameter on Recall and NDCG. Figure 3 shows the ef-
fect of different mask sizes on Recall and NDCG. The main
observations are as follows: the best performance is achieved
with a mask size of 128. This indicates that smaller mask
sizes are effective in retaining key semantic information while
introducing enough noise for robust representation learning.
Both metrics continue to decline as the mask size increases to
256 and larger. This suggests that too large a mask may re-
sult in excessive information loss, reducing the model’s abil-

Model Dataset Train Time (s) Test Time (s)

KGIN
Last-FM 421.82 421.82
MIND 851.84 851.84
Alibaba-iFashion 354.67 354.67

DropEdge-TT
Last-FM 296.13 296.13
MIND 2035.77 2035.77
Alibaba-iFashion 1209.93 1209.93

Featmask-TT
Last-FM 164.21 164.21
MIND 1130.28 1130.28
Alibaba-iFashion 733.45 733.45

TTA-GREC (Ours)
Last-FM 488.17 488.17
MIND 712.63 712.63
Alibaba-iFashion 895.56 895.56

Table 3: Runtime efficiency comparison (Evaluated on NVIDIA-
RTX 4090 GPU).

ity to generate high-quality embeddings. Figure 4 shows the
effect of different values of τ on Recall and NDCG. We ob-
serve that both Recall and NDCG reach their highest values
when τ = 0.1. This indicates that smaller temperatures can
effectively balance the positive and negative sample distribu-
tions, improving contrastive learning performance. When τ
exceeds 0.2, both metrics show a significant decrease. This
means that a too high value of τ reduces the effectiveness of
negative sampling.

Running Time Comparison. Table 3 shows the training
and testing times for each model. Details on KGCL are pro-
vided in the Appendix. For each method, we run the exper-
iments until the best hyperparameters are obtained, and the
report training and testing times are averaged over multiple
runs. TTA-GREC achieves competitive runtime efficiency
across all datasets. While TTA-GREC exhibits a moder-
ate increase in runtime compared to lightweight models like
KGIN, it significantly outperforms more computationally ex-
pensive models such as DropEdge. TTA-GREC’s runtime
efficiency is evident in its ability to provide test-time adap-
tation with minimal computational overhead. Its testing time
on larger datasets, such as Alibaba-iFashion, demonstrates its
scalability.

5 Conclusion
We first propose a Test-Time Adaptation framework for
Graph-based Recommender system, named TTA-GREC, to
address the key issue of distribution shift between training
data and test data. The framework adopts a data-centric
approach. TTA-GREC achieves test-time adaption through
three core components: (1) Pseudo-label guided UI graph
transformation for adaptive improvement, (2) Rational score
guided KG graph revision for semantic enhancement, and
(3) Sampling-based self-supervised adaptation for contrastive
learning. Experiments conducted on public datasets demon-
strate the effectiveness of the method. In the future, we will
focus on more efficient TTA strategies to enhance the real-
time use of online recommender systems.
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