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Abstract
While previous diffusion-based neural vocoders
typically follow a noise-to-data generation pipe-
line, the linear-degradation prior of the mel-
spectrogram is often neglected, resulting in lim-
ited generation quality. By revisiting the vocod-
ing task and excavating its connection with the sig-
nal restoration task, this paper proposes a time-
frequency (T-F) domain-based neural vocoder with
the Schrödinger Bridge, called BridgeVoC, which
is the first to follow the data-to-data generation
paradigm. Specifically, the mel-spectrogram can
be projected into the target linear-scale domain
and regarded as a degraded spectral representation
with a deficient rank distribution. Based on this,
the Schrödinger Bridge is leveraged to establish a
connection between the degraded and target data
distributions. During the inference stage, starting
from the degraded representation, the target spec-
trum can be gradually restored rather than gener-
ated from a Gaussian noise process. Quantitative
experiments on LJSpeech and LibriTTS show that
BridgeVoC achieves faster inference and surpasses
existing diffusion-based vocoder baselines, while
also matching or exceeding non-diffusion state-of-
the-art methods across evaluation metrics.

1 Introduction
Neural vocoders are essential for generating high-quality
waveforms from acoustic features, playing a crucial role in
speech and audio generation tasks such as text-to-speech
[Wang et al., 2017; Ren et al., 2019; Tan et al., 2024], text-
to-audio [Huang et al., 2023; Majumder et al., 2024], singing
voice synthesis [Liu et al., 2022c; Hwang et al., 2025], voice
conversion [Qian et al., 2019; Choi et al., 2021], audio edit-
ing [Wang et al., 2023], and speech enhancement (SE) [Liu
et al., 2022a; Liu et al., 2022b].

In recent years, significant improvements in vocoding qual-
ity have been achieved because of the application of deep

∗Andong Li is the corresponding author.

Figure 1: Illustrations of the various neural vocoder paradigms.

neural networks (DNNs). Auto-regressive (AR) methods
such as WaveNet [Dieleman et al., 2016; Oord et al., 2018],
SampleRNN [Mehri et al., 2022], and LPCNet [Valin and
Skoglund, 2019] often face challenges with slow generation
speeds due to their sequential nature. Flow-based vocoder
methods, such as WaveGlow [Prenger and Valle, 2019],
FlowWaveNet [Kim et al., 2019], and RealNVP [Laurent
et al., 2017], address these issues by enabling faster gen-
eration speeds and improved performance through bijective
mappings between a normalized probability distribution and
the target data distribution using stacked invertible modules.
Additionally, non-autoregressive (NAR) methods like HiFi-
GAN [Kong et al., 2020] have emerged, offering parallel pro-
cessing and enhanced efficiency.

Most recently, time-frequency (T-F) domain-based neural
vocoders have gained prominence. In these methods, the
network estimates the spectral magnitude and phase in the
Short-Time Fourier Transform (STFT) domain, and the in-
verse STFT (iSTFT) operation is then utilized to generate
waveforms. These T-F methods have demonstrated com-
petitive performance and faster inference speeds compared
to time-domain methods [Lee et al., 2023; Hubert, 2024;
Du et al., 2024]. Typically, these non-diffusion methods gen-
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erate waveforms by taking acoustic features, such as the mel-
spectrogram, as input. They employ various generators to es-
timate the spectral magnitude and phase or directly produce
the waveform, as illustrated in Figure 1(a).

Diffusion-based methods typically have slower inference
speeds and lower objective metrics, but offer greater flexi-
bility, diversity, and more natural-sounding audio than non-
diffusion vocoders. For example, WaveGrad refines white
Gaussian noise into high-fidelity audio via a gradient-based
sampler conditioned on the mel-spectrogram, balancing in-
ference speed and quality [Chen et al., 2021]. DiffWave,
a non-autoregressive diffusion model, efficiently generates
high-fidelity audio through a Markov chain by optimizing a
variational bound, requiring less computation and a smaller
model size than WaveGrad, and excelling at unconditional
generation [Kong et al., 2021]. PriorGrad replaces Dif-
fWave’s standard Gaussian prior with a data-driven adaptive
prior, enabling faster convergence and improved perceptual
quality [Lee et al., 2022]. Compared to PriorGrad and Dif-
fWave, FreGrad achieves much faster training and inference,
and a smaller model size, by operating in a simplified fea-
ture space and using frequency-aware components [Nguyen
et al., 2024]. As shown in Figure 1(b), diffusion vocoders
start from random Gaussian noise and iteratively denoise it,
conditioned on mel-spectrograms or other features, following
a noise-to-data pipeline.

In this work, we revisit neural vocoding task and intro-
duce the Schrödinger Bridge to establish a data-to-data pro-
cess between target and corrupted spectrograms in the T-
F domain from a restoration perspective rather than simple
generation, as shown in Figure 1(c). Mel-spectrograms, de-
rived from a linear-to-mel transform, can be projected back
to the linear-scale domain using its pseudo-inverse [Lv et
al., 2024] based on the range-null decomposition (RND) the-
ory, which provides strong structural information of the tar-
get. Our vocoding goal is to reconstruct ground-truth spectro-
grams from mel-spectrograms, addressing both the spectral
compression and phase information problems. According to
our rank analysis, the mel-domain conversion and reversion
process tends to decrease the spectral rank, necessitating that
the neural vocoding task increases the spectral rank to restore
clean speech. In contrast, the speech denoising task exhibits
an opposite trend. Therefore, this work offers a novel per-
spective to bridge the connection between waveform genera-
tion and the commonly used restoration techniques in speech
enhancement[Lei et al., 2025b]. Additionally, the multi-
period discriminator [Kong et al., 2020] and multi-resolution
spectrogram discriminator [Won et al., 2021] are employed
to further improve the generation quality.

The contributions of this paper are summarized as follows:

• BridgeVoC is the first T-F domain-based vocoder with
the Schrödinger Bridge (SB) framework, exploring a
data-to-data process rather than the conventional noise-
to-data process in the previous literature.

• BridgeVoC introduces a novel perspective on bridging
waveform generation and restoration, a connection not
investigated in the preliminary literature.

• By integrating the SB framework with multi-mel losses

and a generative adversarial network (GAN), BridgeVoC
achieves performance comparable to the state-of-the-art
model BigVGAN, addressing the limitations of diffu-
sion models in achieving excellent objective metrics.

2 Motivation
In this section, we start with the fundamental signal models to
elucidate the transition from the conditional mel-to-waveform
paradigm to the spectrum-to-spectrum restoration paradigm.
Firstly, through the RND theory, a novel insight is provided
to convert the mel-spectrogram back to degraded counterpart
in the linear-scale spectrogram. Subsequently, rank analysis
reveal contrasting rank trends between vocoding and denois-
ing tasks. This observation inspired us to apply restoration
methods commonly used in SE to the vocoding task.

2.1 Signal Models
The signal model of the speech denoising task in the T-F do-
main is represented as:

Xt,f = St,f +Nt,f , (1)

where {X,S,N} ∈ CT×F are the mixture, target, and noise
signals; t and f index time and frequency.

For the vocoding task, mel-spectrograms Y mel ∈
RT×Fmel are obtained through the following signal model

Y mel = |S|A, (2)

where A ∈ RF×Fmel is the linear mel filter, with Fmel ≪ F
for compression. This transform discards phase and linearly
compresses the frequency dimension.

2.2 Range-Null Space Decomposition
For a classical signal compression physical model in the
noise-free scenario, the target x ∈ RD and the observed sig-
nals y ∈ Rd can be simplified into y = Ax. If the pseudo-
inverse of A ∈ Rd×D is defined as A† ∈ RD×d, which sat-
isfies AA†A ≡ A and d ≪ D, then the signal x can be
decomposed into two orthogonal sub-spaces:

x ≡ A†Ax+
(
I−A†A

)
x, (3)

where A†Ax is the range-space component and (I−A†A)x
is the null-space component. Comparing Eq. (2) and Eq. (3),
we notice the mel-spectrogram can be converted into the
range space, i.e., the first term on the right-hand side of the
equal sign in Eq. (3), by left-multiplying the pseudo-inverse
of A, i.e., A†. Since the null-space component is unknown
in practice, the vocoding task can be formulated into the tar-
get estimation problem given the range-space component as
the prior input, which is actually a classical signal recovery
problem. Thanks to the powerful capability of the generative
approach, we can effectively recover the remaining null-space
component. Therefore, the RND theory provides us a differ-
ent perspective to rethink the vocoding task. Recall that in the
classical compressive sensing (CS) field [Zhang and Ghanem,
2018], a similar target is shared, where the target signal can
be recovered from a linearly-compressed representation with
the help of the structural sparseness prior. Next, we delve into
the analysis from the perspective of the matrix rank.
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Figure 2: Relative rank difference with respect to the target spectrum
for denoising and vocoding tasks. The ranks are calculated from the
test set of the VoiceBank-DEMAND dataset. An absolute threshold
η of 0.5 is set for rank calculation.

2.3 Rank Analysis
Following the RND, we use the pseudo-inverse to map mel-
spectrograms back to the original linear-scale domain, de-
spite imperfections due to information loss, non-unique in-
verse mapping, approximation limitations, and lack of phase
information [Meinard, 2015]. This process is formulated as:

Ŷ = Y melA† = |S|AA†, (4)

where A† ∈ RFm×F is the pseudo-inverse transform matrix
satisfying AA†A ≡ A. The linear-scale representation Ŷ ∈
RT×F matches the feature dimensions of the target signals S.
By appending a zero-phase component to Ŷ , we can obtain its
complex form S† ∈ CT×F :

S† = Ŷ + i · 0, (5)

where 0 ∈ RT×F is the zero matrix. Mapping S† to S is a
restoration task similar to speech denoising, but while denois-
ing (additive degradation) may increase spectral rank, vocod-
ing (compression) reduces it. We illustrate these spectral rank
changes below, defining R(·) : RT×F → Z as the matrix
rank operation. By basic rank properties, we have

R(|X|) ≈ R(|S|+ |N |) ≤ R(|S|) +R(|N |), (6)

R(Ŷ ) = R(|S|AA†) ≤ min{R(|S|),R(AA†)}. (7)
In Eqs. (6)-(7), the phase component is omitted, as the rank

is associated with eigenvalues, which are more closely related
to signal energy. Eq. (6) provides an upper bound on the rank
of the mixture spectrum X . This implies that after adding
noise N , the upper bound of the matrix rank tends to increase,
and the stronger the noise, the higher the upper bound. For
Eq. (7), it is deduced that with the decrease in the number of
mel bands, i.e., R(AA†) decreases, the rank R(Ŷ ) tends to
decrease. These two disparities in the rank distribution be-
tween noise-induced and mel-oriented degradations are visu-
alized in Figure 2, where we calculate the rank difference be-
tween the degraded and target spectrum, defined as:

∆Rdenoising = R(|X|)−R(|S|), (8)

∆Rvocoding = R(Ŷ )−R(|S|). (9)
The noise degradation employs three levels: “mild”, “mod-
erate”, and “heavy” with decreasing signal-to-noise ratios

(SNRs). For vocoding, we use three mel-band configura-
tions (40, 80, and 100) to represent varying spectral compres-
sion. An STFT operation results in 257-dimensional features.
Higher noise level has higher spectral rank and hinders spar-
sity, while higher mel-band compression leads to a negative
rank difference. Therefore, from the perspective of the ma-
trix rank, the vocoder and speech enhancement can share a
similar goal, i.e., decrease the rank difference between the
degraded and target spectra, further motivating us to address
the vocoding task with the restoration paradigm.

3 BridgeVoC
In this section, we introduce BridgeVoC, an SB-based T-F
domain vocoder. We begin with a brief overview of com-
monly used diffusion models, specifically score-based gen-
erative models (SGMs), including the forward and reverse
stochastic differential equations (SDE) and the score match-
ing objective of the score network. Then we define the paired
data for the restoration task based on the signal model de-
scribed in Section 2.3. Next, we detail the operations of SB
and the model’s training objectives. Finally, we describe the
loss functions used in training.

3.1 Score-Based Generative Models
Given a data distribution pdata(x),x ∈ Rd, SGMs [Song et
al., 2021] are built on a continuous-time diffusion process
defined by a forward SDE:

dxt = f(xt, t)dt+ g(t)dwt, x0 ∼ p0 = pdata, (10)

where t ∈ [0, T ] is a finite time index, xt ∈ Rd is the state
of the process, f is a vector-valued drift term, g is a scalar-
valued diffusion term, and wt ∈ Rd is a standard Wiener
process. To ensure that the boundary distribution is a Gaus-
sian prior distribution pprior = N (0, σ2

T I), we construct the
drift term f and the diffusion term g accordingly. This con-
struction guarantees that the forward SDE has a correspond-
ing reverse SDE:

dxt = [f(xt, t)− g2(t)∇ log pt(xt)]dt+ g(t)dw̄t,

xT ∼ pT ≈ pprior, (11)

where w̄t is the reverse-time Wiener process, and
∇ log pt(xt) is the score function of the marginal distribution
pt. To enable inference generated data samples at t = 0, we
can replace the score function with a score network sθ(xt, t)
and solve it reversely from pprior at t = T . A score net-
work is usually learned by the denoising score matching ob-
jective [Song et al., 2021] :

Ep0(x0)pt|0(xt|x0),t

[
∥sθ(xt, t)−∇ log pt|0(xt|x0)∥22

]
,

(12)
where t ∼ U(0, T ) and pt|0 is the conditional transition distri-
bution from x0 to xt, determined by the pre-defined forward
SDE and analytical for a linear drift f(xt, t) = f(t)xt.

3.2 Schrödinger Bridge
The SB problem [Schrödinger, 1932; Bortoli et al., 2021]
originates from the optimization of path measures with con-
strained boundaries. For vocoding task, we define the target
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Sch. gmax Scaled VP VE

f(t) 0 − 1
2 (β0 + t∆β) 0

g2(t) β0 + t∆β c(β0 + t∆β) ck2t

αt 1 e−
1
2

∫ t
0
(β0+τ∆β)dτ 1

σ2
t

t2∆β
2 + β0t c(e

∫ t
0
(β0+τ∆β)dτ − 1)

c(k2t−1)
2 log(k)

Table 1: Demonstration of the noise schedules in BridgeVoC.

distribution pS to be equal to the data distribution pdata, and
we consider the distribution of S†, denoted as pS† , to be the
prior distribution. Considering p0, pT the marginal distribu-
tions of p at boundaries, SB is defined as minimization of the
Kullback-Leibler (KL) divergence:

min
p∈P[0,T ]

DKL(p ∥ pref), s.t. p0 = pS, pT = pS† , (13)

where P[0,T ] is the space of path measures on a finite time
index [0, T ] with pref the reference path measure. When pref
is defined by the same form of forward SDE as SGMs in Eq.
(10), the SB problem is equivalent to a couple of forward-
backward SDEs [Wang et al., 2021; Chen et al., 2022]:

dxt = [f(xt, t) + g2(t)∇ logΨt(xt)]dt+ g(t)dwt, x0 ∼ pS,
(14)

dxt = [f(xt, t)−g2(t)∇ log Ψ̂t(xt)]dt+g(t)dw̄t, xT ∼ pS† ,
(15)

where f , g and wt are from the forward SDE in Eq. (10).
With Ψt and Ψ̂t the optimal forward and reverse drifts, the
marginal distribution of the SB state xt can be expressed as
pt = Ψ̂tΨt. Typically, SB is not fully tractable; closed-form
solutions exist only when the families of pref are strictly lim-
ited [Bunne et al., 2023; Chen et al., 2023].

3.3 Schrödinger Bridge between Paired Data
We assume the maximum time T = 1 for convenience.
Exploring the tractable SB between Gaussian-smoothed
paired data with linear drift in SDE, we consider Gaus-
sian boundary conditions pS = NC(x0, ϵ

2
0I) and pS† =

NC(x1, e
2
∫ 1
0
f(τ)dτ ϵ20I). As ϵ0 → 0, Ψ̂t and Ψt converge

to the tractable solution between the target data x0 and the
corrupted data x1:

Ψ̂t = NC(αtx0, α
2
tσ

2
t I),Ψt = NC(ᾱtx1, α

2
t σ̄

2
t I), (16)

where αt = e
∫ t
0
f(τ)dτ , ᾱt = e−

∫ 1
t
f(τ)dτ , σ2

t =
∫ t

0
g2(τ)
α2

τ
dτ

and σ̄2
t =

∫ 1

t
g2(τ)
α2

τ
dτ are determined by f and g in the ref-

erence SDE, which are analogous to the noise schedule in
SGMs [Kingma et al., 2021]. The marginal distribution of
the SB also has a tractable form:

pt = ΨtΨ̂t = N
(
αtσ̄

2
tx0 + ᾱtσ

2
tx1

σ2
1

,
α2
t σ̄

2
t σ

2
t

σ2
1

I

)
. (17)

Several noise schedules [Chen et al., 2023; Ante et al.,
2024], such as variance-preserving (VP), variance-exploding
(VE) and gmax, are listed in Table 1 with ∆β = β1 − β0.

3.4 Loss Function
Following the approach in [Ante et al., 2024], we let the
neural model Bθ directly predict the target data, using both
reconstruction and adversarial losses as the training criteria,
where S denotes the target signal and S̃ = Bθ(xt,xT , t) rep-
resents the current estimate produced by the neural network.
We empirically observe that the introduction of adversarial
loss can effectively improve the generation quality.

Given that we employ the pseudo-inverse to map mel-
spectrograms back to the original uncompressed linear-scale
spectrogram, the extraction of amplitude information in the
mel domain can assist the model in better reconstructing the
original linear-scale information. Therefore, the reconstruc-
tion losses include both the mean-square error (MSE) loss
Lmse and the mel loss Lmel following the settings in [Ai and
Ling, 2023; Du et al., 2024]. The former is defined as the
MSE between S̃ and S in the STFT domain:

Lmse =
1

FT

∑
f,t

∥∥∥S̃f,t − Sf,t

∥∥∥2
2
. (18)

The adversarial losses includes the hinge GANs of discrim-
inators Dm and generator Bθ, denoted as Ld and Lg , respec-
tively:

Ld =
1

M

M∑
m=1

max (0, 1−Dm (s)) +max (0, 1 +Dm (̃s)) ,

(19)

Lg =
1

M

M∑
m=1

max (0, 1−Dm (̃s)) , (20)

where s̃ = iSTFT(S̃) ∈ RL denotes the reconstructed wave-
forms, iSTFT (·) refers to the iSTFT operation, and M is
the number of sub-discriminators. Discriminators includes
multi-period discriminator [Kong et al., 2020] and multi-
resolution spectrogram discriminator [Won et al., 2021;
Lei et al., 2025a]. Besides, the feature matching loss is also
utilized:

Lfm =
1

LM

∑
l,m

|fml (̃s)− fml (s) |, (21)

where fml (·) denotes the l-th layer feature for the m-th sub-
discriminator. Finally, the loss for the neural model is

LB = Lmse + λmelLmel + λgLg + λfmLfm, (22)

where λmel, λg , and λfm are the are the weight hyperparam-
eters of corresponding loss. Detailed settings can be found in
[Lei et al., 2025c].

4 Experiments
4.1 Datasets
Two benchmarks are used in this study: LJSpeech [Keith and
Linda, 2017] and LibriTTS [Heiga et al., 2019]. LJSpeech
contains 13,100 clean speech clips from a single female
speaker at 22.05 kHz, partitioned into 12,500/100/500 clips
for training, validation, and testing, following the VITS

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Shedules Losses Sampler PESQ VISQOL UTMOS
gmax mse SDE 4.005 4.182 3.966
Scaled VP mse SDE 4.207 4.389 3.804
VE mse SDE 4.195 4.421 3.640
gmax +mel SDE 4.314 4.681 4.062
gmax +mmel SDE 4.400 4.805 4.195
gmax +mmel ODE 4.311 4.778 4.203
gmax +mmel+GAN SDE 4.416 4.798 4.217
Scaled VP +mmel+GAN SDE 4.379 4.796 3.987
VE +mmel+GAN SDE 4.370 4.816 3.796

Table 2: Ablation study of loss function and noise schedules on the
LJSpeech benchmark.

Recon. #Param.(M) PESQ VISQOL UTMOS
map 16.2 4.416 4.798 4.217
crm 16.2 4.418 4.817 4.237
decouple 16.2 4.369 4.764 3.765
crm 36.5 4.431 4.807 4.258
crm 64.9 4.440 4.824 4.262

Table 3: Ablation study of the signal reconstruction methods and net
sizes on the LJSpeech benchmark.

repository. LibriTTS, sampled at 24 kHz, includes di-
verse recording conditions; we use the {train-clean-100,
train-clean-300, train-other-500} subsets for training, dev-
clean+dev-other for objective evaluation, and test-clean+test-
other for subjective evaluation, as in [Lee et al., 2023].

To evaluate the generalization capability of neural
vocoders, the VCTK dataset [Yamagishi, 2012] is utilized for
out-of-distribution evaluations, where around 200 clips are
randomly selected from the dataset for evaluations.

4.2 Configurations
Since the bridge between the target data S and the corrupted
data S† can be viewed as a restoration task, it is intuitive to
choose the noise-conditional score network (NCSN++) [Song
et al., 2021] as the backbone neural model. Our ablation
study experimented with three sizes of NCSN++, with train-
able parameter counts of 16.2M, 36.5M, and 64.9M, respec-
tively. The number of the sampling in the reverse process is
empirically set to 10. In terms of noise schedulers, β0 = 0.01
and β1 = 20 are set for both gmax and scaled VP types. For
VE type, we use k = 2.6 and c = 0.40, and for scaled VP
type, we use c = 0.30. The processing time for the pro-
posed SB is set to T = 1 with tmin = 10−4. The reverse
SDE and the probability flow Ordinary Differential Equation
(ODE) [Chen et al., 2022] samplers are chosen in the infer-
ence stage. More ablation studies are conducted and can be
found in the supplementary material.

For the weight hyperparameters in Eq. (22), λmel, λg and
λfm are 0.1, 10.0 and 10.0, respectively. “+GAN” refers to
the inclusion of the loss terms Lg and Lfm in Eq. (22).

We train all models for 1 million steps, except for BigV-
GAN, which is trained for 5 million steps. The training con-
figurations for the T-F domain SE models are aligned with
those of APNet2 and BigVGAN. For feature extraction, we
employ a 1024-point FFT, a Hann window of length 1024,

Figure 3: Metrics with different numbers of sampling steps during
the reverse process on the test set of the LJSpeech dataset.

and a hop size of 256. For the LJSpeech dataset, we utilize 80
mel-bands with the upper-bound frequency fmax set to 8 kHz,
meaning the model is required to conduct a super-resolution
task to generate the spectral component over 8 kHz. For Lib-
riTTS, the mel-bands and upper-bound frequency are set to
100 and 12 kHz, respectively.

4.3 Results and Analysis

For vocoding performance comparisons, we select popu-
lar vocoding models as baselines, including time-domain
methods (BigVGAN [Lee et al., 2023], HiFiGAN [Kong
et al., 2020]), T-F domain methods (Vocos [Hubert, 2024],
FreeV [Lv et al., 2024], APNet2 [Du et al., 2024]), and
diffusion-based methods (DiffWave [Kong et al., 2021], Pri-
orGrad [Lee et al., 2022], and FreGrad [Nguyen et al., 2024]).
To compare the model efficiency, we calculate the number
of model parameters (#Params) and real-time factor (RTF)
which is measured on a single Tesla V100 GPU.

Eight metrics are involved in the objective evaluations:
(1) Wide-band version of Perceptual evaluation of speech
quality (PESQ) [Rec, 2005] serves to assess the objec-
tive speech quality. (2) Extended Short-Time Objective In-
telligibility (ESTOI) [Taal et al., 2011] measures the in-
telligibility of speech. (3) Periodicity RMSE, V/UV F1
score, F0, and pitch RMSE [Morrison et al., 2022; Kawa-
hara et al., 1999] are regarded as major artifacts for non-
autoregressive neural vocoders. (4) Virtual Speech Quality
Objective Listener (VISQOL) [Hines et al., 2015] predicts
the Mean Opinion Score-Listening Quality Objective (MOS-
LQO) score by evaluating the spectro-temporal similarity. (5)
UTMOS [Saeki et al., 2022] is used to obtain subjective
scores related to the perceived quality of speech, providing
an objective approximation of human judgment.

For subjective evaluations, we employ the MUSHRA and
ABX testing methodologies based on the BeaqleJS plat-
form [Kraft and Zölzer, 2014]. A total of 19 participants,
all specializing in audio signal processing, are involved in the
testing. In the MUSHRA test, each participant is required to
rate the speech processed by various algorithms on a scale
from 0 to 100, based on the overall similarity to a reference.
In the ABX test, participants are asked to select the clip they
prefer in terms of overall speech quality, or choose “equal” if
no preference can be given.
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Models Domain #Param. #MACs Inference PESQ↑ ESTOI↑ V/UV↑ VISQOL↑ UTMOS↑ Periodicity↓ Pitch↓ F0↓
(M) (Giga/5s) Speed F1 RMSE RMSE RMSE

HiFiGAN-V1 T 14.0 152.90 0.0092 3.574 0.8892 0.9474 4.771 4.219 0.1344 33.69 36.23
BigVGAN-base T 14.0 152.90 0.0395 3.603 0.9569 0.9562 4.822 4.210 0.1198 30.28 39.21
BigVGAN T 112.4 417.20 0.0584 4.065 0.9782 0.9716 4.863 4.296 0.0838 20.69 34.43
APNet2 T-F 31.5 13.53 0.0027 3.476 0.9412 0.9592 4.752 3.985 0.1126 25.36 41.76
Vocos T-F 13.5 5.80 0.0009 3.522 0.9455 0.9559 4.774 3.970 0.1213 29.13 36.56
FreeV T-F 18.3 7.84 0.0015 3.593 0.9474 0.9603 4.743 4.015 0.1118 25.99 39.09
DiffWave T 6.91 231.07×200 0.8738 3.652 0.9321 0.9375 4.325 3.871 0.1585 27.42 37.84
FreGrad T 2.62 34.42×50 0.3959 3.774 0.9475 0.9432 4.450 3.933 0.1413 24.17 36.72
PriorGrad T 2.62 71.43×50 0.8874 3.961 0.9579 0.9506 4.509 4.004 0.1283 19.46 36.07
BridgeVoC-base(ours) T-F 16.2 113.79×10 0.1747 4.418 0.9883 0.9576 4.817 4.237 0.1160 15.24 32.94
BridgeVoC(ours) T-F 64.8 450.45×10 0.5409 4.440 0.9896 0.9598 4.824 4.262 0.1136 15.04 32.72

Table 4: Results of objective evaluations on the dev-clean and dev-other subset of LJSpeech dataset. “#Param.” denotes the number of
trainable parameters. Metrics with ↓ indicate that lower values are better. The inference speed on a GPU is evaluated based on a single Tesla
V100. The computational complexity of the diffusion methods needs to be multiplied × by the number of reverse sampling steps. The best
and second-best performances are namely highlighted in bold and underlined.

Models PESQ↑ Periodicity↓ V/UV↑ Pitch↓ VISQOL↑
RMSE F1 RMSE

WaveGlow-256† 3.138 0.1485 0.9378 - -
HiFiGAN-V1 3.056 0.1671 0.9212 52.53 4.721
iSTFTNet-V1 2.880 0.1672 0.9177 53.07 4.655
UnivNet-c32† 3.277 0.1305 0.9347 41.51 4.753
Avocodo 3.217 0.1611 0.9134 51.60 4.762
BigVGAN-base(1M steps)† 3.519 0.1287 0.9459 - -
BigVGAN(1M steps)† 4.027 0.1018 0.9598 - -
BigVGAN-base(5M steps)† 3.841 0.1073 0.9540 32.54 4.907
BigVGAN(5M steps)† 4.269 0.0790 0.9670 24.28 4.963
APNet 2.897 0.1586 0.9265 39.66 4.666
APNet2 2.834 0.1529 0.9227 46.37 4.582
Vocos† 3.615 0.1146 0.9484 35.58 4.879
PriorGrad 4.043 0.1277 0.9435 28.34 4.381
FreGrad 3.793 0.1443 0.9309 39.88 4.337
BridgeVoC-base(ours) 4.419 0.1021 0.9584 17.84 4.908
BridgeVoC(ours) 4.459 0.0980 0.9609 14.89 4.914

Table 5: Objective comparisons among baselines on the LibriTTS
benchmark. “-” denotes the results are not reported, and † denotes
the results are calculated using the open-sourced model checkpoints.

Ablation studies
To determine the optimal configuration of diffusion hyperpa-
rameters and network settings for BridgeVoC, we conducted
ablation experiments on the LJSpeech benchmark.

Table 2 presents the test performance with various combi-
nations of losses and noise schedules when the network pa-
rameter count is 16.2M. From the experimental results, it is
evident that the introduction of auxiliary losses, single mel
loss “+mel” and multi-mel loss “+mmel”, can significantly
enhance the model’s performance. Furthermore, adding GAN
on top of “+mmel” further improves the WB-PESQ score
by 0.016. Correspondingly, other metrics also show certain
improvements. When comparing Scaled VP and VE under
the “+mmel+GAN” condition, gmax emerges as the optimal
choice for the majority of indicators. Additionally, when the
sampler is switched from the reverse SDE to the probability
flow ODE, there is a slight degradation in performance.

Table 3 lists the results for the methods of reconstruct-
ing the signal from the network output and varying the net-
work size under the settings of “gmax”, “+mmel+GAN”, and
“SDE”. “map” and “crm” denote that the network output is

Models PESQ↑ V/UV↑ Pitch↓ VISQOL↑ MUSHRAF1 RMSE
Ground Truth - - - - 89.61±0.62
HiFiGAN-V1 3.090 0.9428 33.29 4.723 72.47±1.07
Vocos 3.684 0.9649 23.46 4.866 75.77±1.24
BigVGAN-base(5M steps)† 3.859 0.9649 28.85 4.893 80.23±0.99
BigVGAN(5M steps)† 4.282 0.9722 20.32 4.958 82.78±0.81
PriorGrad 3.911 0.9323 19.56 4.278 77.53±1.10
FreGrad 3.653 0.9268 27.93 4.201 78.06±1.11
BridgeVoC-base(ours) 4.323 0.9463 19.31 4.855 82.15±0.93
BridgeVoC(ours) 4.334 0.9473 18.31 4.863 *83.34±1.02

Table 6: Metric comparisons on VCTK. All models are pretrained on
the LibriTTS dataset. For the MUSHRA test, with a confidence level
of 95%, we performed a t-test comparing BridgeVoC with BigV-
GAN, yielding a p-value of less than 0.05 (*p<0.05).

Figure 4: Average preference scores (in %) of ABX tests between
BridgeVoC-base and two other baselines. (a)-(c) Mel-spectrograms
are obtained from natural speech clips in the LibriTTS test set. (d)-
(f) Mel-spectrograms are synthesized from F5-TTS [Chen et al.,
2024], where the transcripts are from the LibriTTS test set.

the complex spectrum mapping and the complex mask, re-
spectively. “decouple” indicates that the network outputs the
amplitude and phase of the signal separately, which are then
coupled to form the output signal. The results indicate that
the “crm”configuration is optimal for our task, rather than the
previously default “map” form used in the NCSN++ network.
In addition, increasing the size of the network also improves
the final output scores.

For the case of “gmax” / “+mmel” / “map” / “16.2M”, Fig-
ure 3 shows the results of the number of reverse sampling
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Figure 5: Spectral visualization of different vocoder methods. The audio clip is a singing voice from the MUSHDB18 test set.

steps ablations. We observe that increasing the number of
steps improves some metrics, while others peak at a specific
step count, consistent with findings in other diffusion-based
studies [Ho et al., 2020]. This phenomenon maybe due to
the trade-off between the granularity of the sampling process
and the accumulation of numerical errors. As the number
of sampling steps increases, the model can more accurately
capture the underlying data distribution, leading to improved
performance for some metrics. However, beyond a certain
point, the benefits of additional steps may be outweighed by
the increased potential for error accumulation, resulting in a
decline in performance for other metrics. This finding also
implies that 10 steps are adequate for BridgeVoC, while re-
ducing the number of steps to 7 does not lead to a substantial
performance decline, suggesting that BridgeVoC can further
lower computational cost and speed up inference.

Comparisons with SoTA methods
Tables 4 and 5 present objective comparisons on the
LJSpeech and LibriTTS datasets, revealing key observations.
First, the T-F domain-based methods exhibit faster inference
speeds compared to the time-domain methods, primarily due
to the use of STFT and its inverse transform, iSTFT, which
eliminate the need for upsampling operations. Second, the
T-F domain-based methods have significantly lower compu-
tational complexity, e.g., 5.8 GMACs for Vocos versus 152.9
GMACs for HiFiGAN, making them increasingly attractive.
Third, despite these advantages, the speech quality of these
existing T-F domain-based neural vocoders remains inferior
to that of BigVGAN. Fourth, previous diffusion-based meth-
ods start from noise in the time domain and use the mel-
spectrogram as a diffusion condition, failing to leverage the
prior information of the mel-spectrogram. The proposed
BridgeVoc, however, benefits from the prior structural in-
formation provided by the pseudo-inverse operation and the
combination of the T-F domain-based Schrödinger bridge and
auxiliary losses. This allows BridgeVoc to achieve both fast
inference speeds and promising performance. Notably, even
when compared to BigVGAN trained for 5 million steps on
the LibriTTS benchmark, our method remains competitive,
validating the effectiveness of the proposed approach.

Table 6 presents the results on the out-of-domain test set.
Compared to Table 5, the relative advantage of BridgeVoc

over BridgeVoc-base in objective metrics slightly decreases.
This is because the amount of data in LibriTTS is probably
insufficient for a large NCSN++ network. The MUSHRA
results on the test set of the VCTK dataset reveal that our
BridgeVoc is statistically superior to BigVGAN (p < 0.05),
further demonstrating the advantage of our method in achiev-
ing subjective quality close to the ground truth signal.

The preference scores are shown in Figure 4. For both na-
ture and synthesized mel cases, the preference performance of
the BridgeVoC-base is significantly better over FreGrad (p <
0.001), and is not significantly different from BigVGAN and
Vocos (p > 0.05). Note that we choose PriorGrad as the base-
line diffusion model because the Mean Opinion Score (MOS)
experiments in [Nguyen et al., 2024] indicate that PriorGrad
achieves higher subjective scores compared to FreGrad.

Figure 5 presents spectral visualizations of different
models for a vocal clip from the out-of-distribution
MUSDB18 [Rafii et al., 2017] test set. Our approach more
effectively recovers harmonic details and avoids artificial
harmonic fluctuations compared to other baselines, particu-
larly BigVGAN-base. Subjective experiments revealed that
some listeners reported “strange pitch shifts” relative to the
ground truth in the MUSHRA experiments, with most in-
stances traced back to BigVGAN-base. While BigVGAN
also shows some “artificial generation” artifacts, their extent
is significantly reduced.

5 Conclusions
In this paper, we introduce a novel time-frequency (T-
F) domain-based diffusion neural vocoder that effectively
bridges the gap between the data-to-data Schrödinger Bridge
framework and range-null decomposition theory. Our ap-
proach involves converting the original acoustic features from
the mel-scale domain to the target linear-scale domain using
the range-space component, while the null-space component
reconstructs the remaining spectral details through a diffu-
sion generation process. By incorporating generative adver-
sarial networks and optimizing various hyperparameters, our
method achieves promising results in both objective and sub-
jective evaluations. Extensive experiments on the LJSpeech
and LibriTTS benchmarks demonstrate the efficacy and supe-
riority of the proposed approach.
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