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Abstract
Current text-driven Video Moment Retrieval
(VMR) methods encode all video clips, including
irrelevant ones, disrupting multimodal alignment
and hindering optimization. To this end, we
propose a denoise-then-retrieve paradigm that
explicitly filters text-irrelevant clips from videos
and then retrieves the target moment using puri-
fied multimodal representations. Following this
paradigm, we introduce the Denoise-then-Retrieve
Network (DRNet), comprising Text-Conditioned
Denoising (TCD) and Text-Reconstruction
Feedback (TRF) modules. TCD integrates cross-
attention and structured state space blocks to
dynamically identify noisy clips and produce a
noise mask to purify multimodal video repre-
sentations. TRF further distills a single query
embedding from purified video representations
and aligns it with the text embedding, serving as
auxiliary supervision for denoising during training.
Finally, we perform conditional retrieval using text
embeddings on purified video representations for
accurate VMR. Experiments on Charades-STA
and QVHighlights demonstrate that our approach
surpasses state-of-the-art methods on all metrics.
Furthermore, our denoise-then-retrieve paradigm
is adaptable and can be seamlessly integrated into
advanced VMR models to boost performance.

1 Introduction
Text-driven Video Moment Retrieval (VMR) aims to local-
ize moments in untrimmed videos that semantically match
the given query text. Unlike conventional temporal action lo-
calization constrained by predefined action categories, VMR
flexibly localizes the moment through free-form linguistic
expressions. VMR streamlines video analysis and benefits
downstream applications [Miao et al., 2024b; Miao et al.,
2024a], including video semantic segmentation, user-friendly
video editing, and mass surveillance.

Traditional two-stage VMR methods [Xiao et al., 2021;
Zhang et al., 2020; Xu et al., 2019] aim to extract a set of
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Figure 1: (a) Distribution of Ground Truth Moments (left) and noisy
clips (right) relative to video duration in QVHighlights. (b) Our
Text-Conditioned Denoising effectively identifies noisy and relevant
video clips. (c) Previous transformer-based VMR methods use all
video clips for multimodal encoding, including irrelevant ones. (d)
Our DRNet approach explicitly excludes noisy video clips, enhanc-
ing purified multimodal modeling.

moment proposals using proposal generation networks, treat-
ing the task as a matching and ranking problem between the
proposals and the query text. However, to achieve high re-
call, they generate numerous proposals of varying durations
and locations, reducing efficiency and complicating matching

In recent years, Transformer architectures have become
prevalent in multimodal understanding tasks [Miao et al.,
2023; Miao et al., 2024c], including VMR [Lin et al., 2023;
Liu et al., 2022; Moon et al., 2023b; Xu et al., 2023;
Liu et al., 2024a], due to their strong feature interaction
and representation capabilities. These methods utilize trans-
former encoders to perform fine-grained word-clip interac-
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tion and integrate multimodal representations for moment re-
trieval. However, they treat all video clips equally, inevitably
introducing semantically irrelevant noisy clips into the multi-
modal representations (see Fig. 1 (c)) which eventually leads
to suboptimal performance.

In VMR, input videos include both text-relevant and text-
irrelevant clips. Relevant clips are frames semantically
aligned with the text query, including ground-truth frames
(perfect alignment) and challenging non-target frames (par-
tial alignment). Irrelevant (noise) clips are frames with little
or no alignment. For example, in Fig. 1 (b), the clips where
the “man talks to the camera” are text-relevant, which can
provide useful context for prediction. In contrast, the scenery
and walking clips are noise. We argue that relevant clips typ-
ically occupy only a small portion of a video, while noisy
clips dominate. To validate this, we analyze all videos in
the QVHighlights dataset. As shown in Fig. 1 (a), ground
truth (GT) clips occupy less than 30% of the duration in most
videos, while noisy clips account for over 60% clips in most
videos. With excessive noisy clips throughout the video, gen-
erating abundant proposals with noisy clips or using all clips
for transformer-based multimodal interaction can hinder the
VMR model from focusing on the text-relevant clips that are
more likely to be the target.

To address this issue, we propose a denoise-then-retrieve
paradigm that explicitly removes noisy clips to narrow the
retrieval range and strengthens purified multimodal represen-
tations for moment retrieval, as shown in Fig. 1 (d). Specif-
ically, we design a Text-Conditioned Denoising (TCD) mod-
ule to filter out noisy clips by dynamically generating noise
masks. It integrates cross-attention and structured state space
models for text-video interaction, and generates dynamic ker-
nels to produce noise masks for purified multimodal repre-
sentations. To provide direct feedback on denoising quality,
we introduce a Text-Reconstruction Feedback (TRF) module,
which aligns the generated query from purified video fea-
tures with the input text, serving as auxiliary supervision for
TCD during training. Finally, the decoder performs purified
multimodal interaction between noise-masked video features
and text embeddings, enabling accurate retrieval from text-
relevant clips. Additionally, when applied to other methods,
our denoise-then-retrieve paradigm leads to notable perfor-
mance improvements, showcasing the generalization capabil-
ity. For example, UniVTG [Lin et al., 2023] achieves an in-
crease of 2.75% points on the mAP@Avg metric. Our contri-
butions are summarized as follows:

• We propose the Denoise-then-Retrieve Network (DR-
Net) with Text-conditioned Denoising and Text-
reconstruction Feedback. Our DRNet effectively ex-
tracts purified visual representations to enhance text-clip
alignment, achieving top-tier performance on popular
benchmarks.

• We propose a text-conditioned denoising approach that
integrates cross-attention and structured state space
blocks for effective multi-level multimodal fusion, gen-
erating dynamic kernels for accurate noise identification.

• We introduce a text-reconstruction feedback mechanism
that aligns the generated query from purified video fea-

tures with the input text, providing auxiliary supervision
for denoising during training.

• We demonstrate that the denoise-then-retrieve paradigm
integrates seamlessly into current VMR models, yield-
ing significant improvements across all metrics.

Experiments on the Charades-STA and QVHighlights
benchmarks show that our approach significantly outperforms
existing state-of-the-art methods on all metrics. On Charades-
STA, we surpass the nearest competitor MESM [Liu et al.,
2024b] by 4.36% points on the mAP@0.7 metric.

2 Related Work
Two-stage VMR Methods [Zhang et al., 2021; Wang et
al., 2021; Chen et al., 2020a; Qu et al., 2020; Yuan et
al., 2019] extract a set of moment proposals through multi-
scale sliding windows or proposal-generating networks and
treat the task as a matching and ranking problem between
proposal candidates and the text query. However, sliding
window-based methods [Liu et al., 2018; Jiang et al., 2019;
Ge et al., 2019] suffer from inefficient computation due to
the re-computation of many overlapping areas in the densely
sampled process with predefined multi-scale sliding win-
dows. To reduce the number of candidates, proposal-based
methods [Xu et al., 2019; Chen and Jiang, 2019; Xiao et al.,
2021] devise various proposal-generating networks. For in-
stance, QSPN [Xu et al., 2019] generates proposals by in-
troducing query representations as guidance for video encod-
ing, while SAP [Chen and Jiang, 2019] pre-trains a visual
concept detection CNN with paired query-clip training data
to calculate the visual-semantic correlation score for clips,
grouping high-scoring clips to form proposals. Differently,
BPNet [Xiao et al., 2021] directly utilizes VSLNet [Zhang et
al., 2020] to generate moment proposals. To ensure high re-
call, these methods generate numerous proposals of varying
durations and locations, which reduces efficiency and com-
plicates matching.
Transformer-based VMR Approaches [Lin et al., 2023;
Liu et al., 2022; Moon et al., 2023b; Lei et al., 2021;
Xu et al., 2023; Moon et al., 2023a; Yang et al., 2024] use
Transformer encoders to perform word-clip level interactions
between text and videos to establish a shared embedding
space and regress the temporal span based on the aligned
visual-text features. [Lei et al., 2021] introduces detection
Transformer (DETR) into the VMR task and models the task
as a temporal moment detection problem. To fully exploit the
information of a given query, [Moon et al., 2023b] uses cross-
attention layers in the encoding stage to explicitly inject the
context of text into video representation. Unlike works that
enforce text engagement in each clip, CG-DETR [Moon et
al., 2023a] carefully controls the degree of query text engage-
ment in cross-modal interaction to enhance multimodal rep-
resentations. However, text-referred moments occupy only
a small portion of videos while noisy clips occupy a signif-
icant part and are spread throughout the video. As a result,
treating all video clips equally in multimodal modeling can
lead to suboptimal multimodal representations. In this work,
we explicitly remove noisy clips to narrow localization range
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and perform masked context aggregation and decoding to en-
hance retrieval.

3 Method
Given an untrimmed video V containing Lv clips and a text
query T with Lt words, our objective is to localize the target
moment as (mc,mσ), where mc and mσ denote the central
temporal coordinate and the span of the moment, respectively.
Fig. 2 illustrates the overview of our DRNet and its modules.

Our overall architecture is described in Fig. 2. Given
a video and text representation extracted from fixed back-
bones, DRNet first identifies noisy clips and generates pu-
rified video representations by masking them. To further en-
hance the denoising, we regenerate query embeddings from
purified video representations and aligns it with the input text,
providing auxiliary supervision for denoising process during
training. Finally, the decoder performs multimodal interac-
tion on the purified representations for accurate retrieval.
Video and Text Encoders. We represent video features us-
ing the concatenation of CLIP [Radford et al., 2021] and
SlowFast [Feichtenhofer et al., 2019], and extract text fea-
tures using the CLIP text encoder, consistent with previ-
ous works [Lei et al., 2021; Liu et al., 2022; Moon et al.,
2023b]. The input video V and text T are encoded with
frozen encoders and projected to the same dimension D via
two Feed-Forward Networks (FFN). The resulting video em-
beddings V = [v1, v2, ..., vLv

] and text embeddings T =
[t1, t2, ..., tLt

] are then fed into the TCD module.

3.1 Text-Conditioned Denoising (TCD)
As shown in Fig. 2 (b), to dynamically identify noisy clips,
we leverage the query text to guide video representation
learning, multimodal interaction, and noise mask generation.
Specifically, we first inject textual context into video clips
via cross-attention, obtaining text-aware video representa-
tions. These representations, along with text features, are
then processed by state space models to propagate intra- and
inter-modal context, generating refined multimodal represen-
tations. Finally, text-driven dynamic convolution kernels are
constructed to identify and filter out noisy clips.

We first apply cross-attention between video clips and text
embeddings to enhance the target awareness. Here, we use
italicized letters to denote the query, key, and value in the
cross-attention layer. Specifically, the video representations
V serve as the query, while the textual features T are used as
the key and value:

Attn(QV,KT, VT) = softmax(
QV(KT)

T

√
D

)VT (1)

The updated video representations are obtained by comput-
ing a weighted sum of the text features T, where the attention
scores are projected through a Multi-layer Perceptron (MLP)
and integrated into the original video representations, result-
ing in text-aware video representations V̂ = [v̂1, v̂2, ..., v̂Lv

].
For text-clip interaction and context integration, we design

the Context Interaction Operator (CIO) based on state space
models, which have demonstrated significant success in vi-
sual understanding tasks[Zhu et al., 2024; Chen et al., 2024],

including Mamba [Gu and Dao, 2023]. The gating mech-
anisms and linear complexity of these models facilitate ef-
ficient modeling of long sequences. Specifically, each CIO
consists of two separate Mamba blocks [Gu and Dao, 2023]
that propagate the context of feature sequences in both for-
ward and backward temporal directions.

We concatenate the text-aware video representations V̂
with the text features to form a multimodal sequence, and
add learnable global tokens at the end of the sequence to ag-
gregate global features. These global tokens are denoted as
G = [g1, g2, ..., gLq

], where Lg denotes the number of global
tokens. To preserve positional and modality-specific informa-
tion during cross-modal interaction, learnable position em-
beddings Ep and modality-type embeddings Em are incorpo-
rated into each modality. The input multimodal sequence F
to the CIOs is then represented as

Ṽ = V̂ +Ep
V +Em

V , (2)

T̃ = T+Ep
T +Em

T , (3)

G̃ = G+Ep
G +Em

G , (4)

F = [T̃, Ṽ, G̃] (5)

where F ∈ R(Lg+Lt+Lv)×D. After encoding with the bi-
directional Mambas in the CIO, the output of the backward
Mamba block is flipped and added to the corresponding out-
put of the forward Mamba block along the temporal channel,
completing one round of context interaction. The multimodal
sequence F undergoes intra- and inter-modal context integra-
tion by stacking three CIOs.

The interactions occur at three levels: 1) Intra-modal con-
textual interaction: Tokens within each modality learn con-
textual semantics from surrounding tokens through forward
and backward Mamba propagation. 2) Cross-modal con-
textual interaction: The forward Mamba block propagates
textual semantics into visual features, while the backward
Mamba block integrates visual semantics into textual fea-
tures. 3) Global context integration: Through information
propagation of bi-directional Mambas, the global tokens at
the end of the sequence integrate semantics from both text
and video features. By stacking multiple CIOs, we generate
a context-aware multimodal sequence, where ft, fv , and fg

represent text, video, and global features, respectively.
Dynamic Denoising. To purify the visual context, we em-

ploy text features to create dynamic kernels [Chen et al.,
2020b], which performs point-wise convolutions to identify
noisy clips. The word-level text feature ft is first pooled
to a fixed length of Lk to handle varying text lengths, fol-
lowed by a fully-connected layer to generate dynamic ker-
nels Θ = {θi}Nk

i=1, where Nk is the number of kernels, and
θi ∈ RD×1. These dynamic kernels are then applied to fv to
update the visual features:

fv
′ = (φ(θ1fv ⊕ · · · ⊕ θNk

fv) + fv) (6)

where ⊕ denotes concatenation along the channel dimension,
and φ(·) represents a 1 × 1 convolution for dimensionality
reduction.

After applying the Sigmoid function σ, we obtain the text-
clip alignment scores S = [s1, s2, . . . , sn], which indicate
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Figure 2: Overview of our DRNet. Dashed lines represent components used only during training. TCD identifies noisy clips and generates
purified video representations by masking them. TRF provides feedback on TCD’s denoising quality using regenerated query embeddings
from purified representations. The decoder performs multimodal interaction on the purified representations for accurate retrieval.

the degree of semantic relevance to the text. By applying
a threshold µ, we generate the noise mask vector M =
[m1,m2, . . . ,mn],

S = σ(fv
′) (7)

mi =

{
1 if si > µ

0 otherwise
for i = 1, 2, . . . , n (8)

where mi = 0 means that the i-th clip is semantically irrel-
evant to the text (a noisy clip), and mi = 1 means relevant.
Finally, M is applied to mask out noisy clips and produce pu-
rified visual representations f̂v . Fig. 3 visualizes the text-clip
alignment scores S and the noise mask M for a given case,
demonstrating that our TCD module effectively identifies rel-
evant clips and filters out noise. The updated textual, visual,
and global features are then concatenated as F′ = [ft, f̂v,fg]
and fed into the decoder.

3.2 Text-Reconstruction Feedback (TRF)
TRF further enhances denoising by regenerating query em-
beddings from the purified visual representations. It aligns
the regenerated query with the input text in textual semantic
space, providing auxiliary supervision for denoising process
during training. This feedback not only improves denoising
quality but also strengthens the purified video representations.

Specifically, as shown in Fig. 2 (c), we distill a query em-
bedding from the purified video representations f̂v using con-
text interaction operators (CIO) (see Section 3.1), projecting
f̂v into the text semantic space. To achieve this, we introduce
a learnable query embedding Q′

s ∈ RD×1 and construct a
mapping network D by stacking three CIOs. The query em-
bedding Q′

s interacts with the purified video representations
f̂v to generate the reconstructed sentence-level embedding:

Q̂s = D(f̂v,Q
′
s) (9)

where Q̂s ∈ RD×1. The sentence-level embedding of the
input text, Ts, is obtained by average pooling its word-level
embeddings, T. We then compute the semantic consistency
loss Lt between Ts and Q̂s using cosine similarity:

Lt = λt(1−
Ts · Q̂s

||Ts|| ||Q̂s||
), (10)

where λt(λt = 2) is a hyperparameter balancing the loss
terms. Since the regenerated query embeddings from text-
relevant clips capture key visual semantics, minimizing Lt

forces the purified visual representations to maximally reflect
the input text semantics, enhancing the denoising process.

3.3 Decoder
After masking noisy clips, we perform multimodal interac-
tion on the purified visual and textual features to capture fine-
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grained differences between text-relevant clips. The resulting
purified multimodal representations are then decoded for ac-
curate retrieval.

As shown in Fig. 2 (d), we use context interaction opera-
tors (CIO) (see Section 3.1) to build a multimodal encoder E
with three layers. The encoder takes the noise-masked multi-
modal sequence F′ from the TCD module as input. Through
cross-modal context encoding, the purified multimodal rep-
resentation F = E(F′) is generated and passed to different
decoding heads for target moment retrieval. We denote the
global, textual, and visual features within the F sequence as
f̄g , f̄t, and f̄v , respectively.

Moment retrieval. 1) Global retrieval. We use the global
features f̄g to directly regress the central temporal coordinate
mc via an MLP, and regress the moment span mσ via a fully
connected layer. The global localization loss combines an L1
loss and a generalized IoU loss LgIoU (·) following [Moon et
al., 2023b].

Lg = λg
L1||m− m̂||+ λg

iouLiou(m, m̂), (11)

where m is the ground-truth moment and m̂ is the corre-
sponding prediction, each containing the center coordinate
and span.
2) Boundary prediction. Following [Lin et al., 2023], we ap-
ply three 1× 3 Conv layers with Nk filters and ReLU activa-
tion to the output f̄v ∈ RLv×D from the multimodal encoder
E . The final layer has two output channels, representing the
left and right offsets d̂i ∈ R2×Lv for each clip. The predicted
boundaries b̂i are then calculated, and the boundary loss Lb,
which includes smooth L1 and IoU losses, is used to super-
vise the predictions.

Lb = λb
L1LSmoothL1(d̂i, di) + λb

iouLiou(b̂i, bi). (12)

3) Text-conditioned Foreground Classification. As illustrated
in Fig. 1 (d), we pool the text features f̄t to a fixed length
Nk and apply a fully connected layer to generate convolution
kernels Θt ∈ RD×Nk . The decoder head for clip classifi-
cation (foreground/background) is the same as the boundary
prediction head. However, in this case, we use Θt as the con-
volution kernels in the first layer, and the final layer outputs a
single channel to classify each clip ĉi. Binary cross-entropy
loss is applied for classification.

Lc = −λc(cilogĉi + (1− ci)log(1− ĉi)). (13)

4) Contrastive Learning. Following prior works [Lei et al.,
2021; Lin et al., 2023; Moon et al., 2023b], we incorporate
intra-video and inter-video contrastive learning during train-
ing. Intra-video contrastive learning treats clips within the
ground truth moment as positive pairs and those outside as
negative pairs, while inter-video contrastive learning uses text
from other samples in the batch as negative pairs. The rel-
evance between a clip embedding and a sentence-level text
embedding Qs is quantified by cosine similarity ri.

Lintra
r = −log

exp(rp/τ)
exp(rp/τ) +

∑
j∈Ω exp(rj/τ)

(14)

Linter
r = −log

exp(rp/τ)∑
k∈Ω′ exp(rk/τ)

, (15)

Model R1 mAP
@0.5 @0.7 @0.5 @0.75 @Avg.

MDETR21neurips 52.89 33.02 54.82 29.4 30.73
UMT22cvpr 56.23 41.18 53.38 37.01 36.12
MomentDiff24neurips 57.42 39.66 54.02 35.73 35.95
UniVTG23iccv 58.86 40.86 57.60 35.59 35.47
QD-DETR23cvpr 62.4 44.98 62.52 39.88 39.86
MESM24aaai 62.78 45.2 62.64 41.45 40.68
UVCOM24cvpr 63.55 47.47 63.37 42.67 43.18
TR-DETR24aaai 64.66 48.96 63.98 43.73 42.62
Our Model 66.73 50.52 64.17 45.79 43.73

Table 1: Comparison on the QVHighlights test split obtained from
the official server. All methods use only video (no audio) data, with
Slowfast and CLIP as the visual backbones for fair comparison.

where Ω and Ω′ are negative sets, rp is the relevance score
of positive samples, and τ is a temperature parameter. The
overall contrastive learning loss is Lr = λintraLintra

r +
λinterLinter

r . Finally, after combining the textual reconstruc-
tion loss Lt, our total training objective becomes:

L =
1

Lv

Lv∑
i=1

(Lr + Lb + Lc) + Lg + Lt. (16)

4 Experiments
Datasets. We validate the effectiveness of our method
through extensive experiments on two popular datasets:
QVHighlights and Charades-STA. QVHighlights [Lei et al.,
2021] is designed for moment retrieval and highlight detec-
tion, comprising over 10,000 videos, each averaging 150 sec-
onds. The dataset includes 10,310 human-written text queries
describing relevant segments, with an average segment length
of 24.6 seconds, resulting in 18,367 annotated moments.
We follow the original data splits, using the training set for
model training and the test set for evaluation. Charades-
STA [Sigurdsson et al., 2016] is focused on temporal sen-
tence grounding, derived from the Charades dataset. It
contains 12,408 training and 3,720 testing moment-sentence
pairs, with videos averaging 29.8 seconds in length, capturing
various human actions and corresponding text queries.

Evaluation Metrics. Following previous VMR work [Li
et al., 2023], we use the standard evaluation metric R@n,
IoU=m. This metric measures the percentage of queries
that have at least one correctly retrieved moment (IoU >m)
among the top-n output moments. For QVHighlights, we fol-
low standard metrics [Lei et al., 2020], using Recall@1 with
IoU thresholds 0.5 and 0.7, mean average precision (mAP)
with IoU thresholds 0.5 and 0.75, and the average mAP over a
series of IoU thresholds [0.5:0.05:0.95] for moment retrieval.
For Charades-STA, we follow [Lin et al., 2023] and use Re-
call@1 with IoU thresholds 0.3, 0.5, and 0.7, and mIoU.

Implementation Details. For a fair comparison, we use
pre-extracted SlowFast and CLIP video features, and CLIP
text features, for both datasets, provided by [Lin et al., 2023].
In our DRNet, all encoders constructed using CIO consist of
three CIO layers, each with a hidden size of D = 1024. Loss
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Method feat. R1@0.5 R1@0.7 mAP@0.5 mAP@0.7 mAP@Avg Method feat. R1@0.5 R1@0.7 mIoU
RaNet21arxiv⋆ VGG 42.91 25.82 53.28 24.41 28.55 MDETR21neurips SF+C 52.07 30.59 45.54
MomentDETR21neurips⋆ VGG 50.54 28.01 57.39 25.62 29.87 QD-DETR23cvpr SF+C 57.31 32.55 -
UMT22cvpr‡ VGG 48.44 29.76 58.03 27.46 30.37 VMS24arxiv SF+C 57.18 36.05 -
MMN22aaai⋆ VGG 46.93 27.07 58.85 28.16 31.58 UniVTG23iccv SF+C 58.01 35.65 50.1
QD-DETR23cvpr⋆ VGG 51.51 32.69 62.88 32.6 34.46 TR-DETR24aaai SF+C 57.61 33.52 -
MomentDiff24neurips VGG 51.94 28.25 59.86 29.11 31.66 LLMEPET24arxiv SF+C - 36.49 50.25
MESM24aaai VGG 56.69 35.99 67.94 33.64 37.33 UVCOM24cvpr SF+C 59.25 36.63 -
DRNet VGG 59.03 36.26 69.75 38 39.33 DRNet SF+C 60.86 39.78 52.07

Table 2: Comparison on Charades-STA test split. ‡: methods that use additional audio data. ⋆: results re-implemented under the same training
strategies as [Li et al., 2024; Liu et al., 2024b]. SF+C: SlowFast and CLIP features.

TCD TRF Decoder R1 mAP
CA DK LGT @0.5 @0.7 @0.5 @0.75 Avg.

A1 ✓ ✓ 56.45 39.61 56.55 35.94 34.89
A2 ✓ ✓ ✓ ✓ 66.84 51.87 65.23 46.79 45.18
A3 ✓ ✓ ✓ ✓ 67.21 52.63 64.87 46.52 44.82
A4 ✓ ✓ ✓ 66.84 51.23 65.1 46.19 44.51
A5 Mamba → Transformer 64.58 47.74 61.67 42.45 40.07
B1 ✓ ✓ ✓ ✓ 63.29 49.68 61.48 43.76 42.62
B2 ✓ ✓ ✓ ✓ 67.81 52.97 64.51 46.6 44.98
B3 ✓ ✓ ✓ ✓ 67.16 53.16 64.23 46.78 45.34

Full model ✓ ✓ ✓ ✓ ✓ 68.06 54.58 65.2 48.02 46.11

Table 3: Ablation study on QVHighlights val split. A1-A4 analyze the modules of DRNet, while B1-B3 analyze the components in TCD.
CA, DK, and LGT denote cross-attention, dynamic kernels and learnable global tokens, respectively. A5: replaces Mamba within CIOs
with standard Transformer encoder. B2: replaces text-conditioned dynamic convolutions with standard convolutions. B3: removes learnable
global tokens used for global retrieval.

weights are set as: λt = 2, λg
L1 = 5, λg

iou = 1, λb
L1 = 10,

λb
iou = 1, and λc = 10 for both datasets. For QVHighlights,

λintra and λinter are set to 2 each, while for Charades-STA,
they are set to 1 and 0.5, respectively. All experiments are
conducted on a single RTX 3090 GPU.

4.1 Comparison to State-of-the-art Methods
We compare our method to many state-of-the-art meth-
ods: LLMEPET [Jiang et al., 2024], MomentDiff [Li et
al., 2024], MESM [Liu et al., 2024b], UVCOM [Xiao et
al., 2024], LMR [Liu et al., 2024a], TR-DETR [Sun et
al., 2024], VMS [Chen et al., 2024], UniVTG [Lin et al.,
2023], QD-DETR [Moon et al., 2023b], UMT [Liu et al.,
2022], RaNet [Gao et al., 2021], MomentDETR [Lei et al.,
2021],MDETR [Lei et al., 2021].
QVHighlights. Table 1 compares our method with state-
of-the-art (SOTA) approaches. Our method sets new SOTA
benchmarks, demonstrating significant improvements on all
metrics. Specifically, it outperforms the latest 2024 methods
by 9.63% over MomentDiff24neurips, 3.64% over MESM24aaai,
2.14% over UVCOM24cvpr, and 1.4% over TR-DETR24aaai
on the average of all metrics. Notably, MomentDiff24neurips
and UVCOM24cvpr use diffusion-based generative and gen-
eral Transformer-based architectures, respectively, while
MESM24aaai and TR-DETR24aaai employ DETR-based Trans-
former architectures. These substantial performance gains
across various VMR architectures underscore the effective-
ness and superiority of our method.
Charades-STA. In Table 2, we evaluate our model’s perfor-
mance against the SOTA approaches using both VGG and
SF+C backbones. Our method consistently achieves top-

tier performance across all metrics and backbones. With the
VGG backbone, our method outperforms MomentDiff24neurips
and MESM24aaai by an average of 8.31% and 2.16%, respec-
tively. For the SF+C backbone, our method surpasses the
latest SOTA models by 4.76% compared to TR-DETR24aaai,
2.56% over LLMEPET24arxiv, and 2.38% over UVCOM24cvpr.
In particular, for the challenging mAP@0.7 and R1@0.7 met-
rics, which require high semantic alignment and IoU accu-
racy, our method surpasses the nearest competitors by 4.36%
and 3.15% using the VGG and SF+C backbones, respectively.
Overall, the superior performance of our method across all
metrics on real-world datasets demonstrates that removing
noisy clips under text constraints and performing contextual
fusion on the purified clips effectively enhances video mo-
ment retrieval (VMR).

4.2 Ablation Study
Ablation on DRNet. Table 3 (A1-A5) evaluate the contri-
bution of each module in DRNet. A1-A3 present the results
of removing the TCD, TRF, and Decoder modules respec-
tively, each resulting in a performance drop. Notably, re-
moving TCD (A1) leads to an average performance drop of
11.71%, highlighting the critical role of noise filtering. Com-
pared with A3, removing both the TRF and Decoder modules
in A4 results in a more significant performance drop than re-
moving only the Decoder. This is because the semantic con-
sistency loss computed in the TRF module provides auxiliary
supervision for the denoising process, encouraging the gener-
ation of cleaner visual features for subsequent decoding.
In A5, replacing Mamba with standard Transformer encoders
as the base in DRNet leads to a significant 5.1% performance
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Figure 3: Text-clip alignment scores show that our method effectively filters out noisy clips and accurately localizes the target moment within
relevant segments.

Model R1@0.5 R1@0.7 mAP@0.5 mAP@0.75 mAP@Avg.
UniVTG23iccv 60.52 42.39 59.08 37.12 36.66
UniVTG23iccv† 62.77 (↑ 2.25) 44.77 (↑ 2.38) 60.83 (↑ 1.75) 39.67 (↑ 2.55) 39.38 (↑ 2.72)
VMS24arxiv 65.48 50.06 62.92 45.2 43.62
VMS24arxiv† 66.58 (↑ 1.1) 51.87 (↑ 1.81) 64.51 (↑ 1.59) 45.97 (↑ 0.77) 44.76 (↑ 1.14)
DRNet 68.06 54.58 65.2 48.02 46.11

Table 4: Comparison of methods with and without video denoising on QVHighlights val split. All methods are re-implemented based on
their official codes. † indicates results with denoising, with red values showing the performance improvement.

Metrics TCD TRF Decoder
2 3 4 2 3 4 2 3 4

R1@0.5 67.54 68.06 67.12 67.2 68.06 66.7 67.6 68.06 67.2
R1@0.7 54.25 54.58 53.96 53.8 54.58 53.5 54.1 54.58 53.5

Table 5: Ablation study on CIO layers in each module.

drop. We attribute this to Mamba’s selective information
propagation, which more effectively integrates key textual in-
formation into visual features than the Transformer’s global
self-attention mechanism, which has information redundancy.

Ablation on TCD. Ablation experiments for removing
each component in TCD (see B1-B3 of Table 3) shows a per-
formance drop. The highest drop is observed for removing
cross-attention (B1), highlighting the importance of cross-
attention for integrating text and visual features after Mamba-
based multimodal interaction. Similarly, the dynamic kernels
(B2) and adding query tokens at the end of multimodal se-
quences also contribute to improved retrieval performance.

Ablation on CIO layers. In this ablation study, we inves-
tigate the effect of varying the layers of CIO in each mod-
ule. Specifically, while adjusting the layers in one module,
we keep the CIO layers in other modules fixed at three lay-
ers to ensure a fair comparison. As shown in Table 5, us-
ing three layers of CIO consistently achieves optimal perfor-
mance across all modules, confirming the effectiveness and
simplicity of the current design.

Denoise-then-Retrieve Paradigm Generalization. We
apply the generated noise masks to existing Transformer-
based (UniVTG) and Mamba-based (VMS) VMR methods
without modifying their architectures. As shown in Table 4,
this leads to notable performance gains across all metrics for
both UniVTG [Lin et al., 2023] and VMS [Chen et al., 2024].
Specifically, by removing noisy clips, UniVTG and VMS see

improvements of 2.72% and 1.14% points on mAP@Avg and
2.38% and 1.81% points on the challenging R1@0.7 metric,
respectively. These results underscore the effectiveness and
generalization of our denoise-retrieve paradigm.

4.3 Qualitative Results
We present visualizations in Fig. 3, where blue and orange
curve denote text-clip alignment scores in TCD and Decoder
modules, respectively. Red dashed line is the noise filtering
threshold µ, with gray background clips indicating those fil-
tered out. The text-conditioned denoising module enables our
method to effectively distinguish between text-relevant and
noisy clips, while the decoder module can further localize the
target clips within the text-relevant clips precisely. Specifi-
cally, the blue curve illustrates that in TCD, there is a signifi-
cant disparity in text-clip alignment scores between noisy and
relevant clips, with consistently high alignment scores among
the relevant clips. In contrast, the orange curve shows a clear
distinction between the relevant clips, accurately identifying
the text-referred clips.

5 Conclusion
In this work, we analyzed the importance of denoising
in Video Moment Retrieval (VMR) and introduced DR-
Net, a Text-conditioned Denoising and Text-reconstruction
Feedback approach. Our method filters irrelevant clips by
generating noise masks and refines the process by align-
ing re-generated queries, distilled from purified video rep-
resentations, with the input text. Extensive experiments
on Charades-STA and QVHighlights benchmarks validate
the effectiveness of denoising, demonstrating substantial im-
provements over state-of-the-art methods and showcasing our
paradigm’s adaptability to enhance other VMR models.
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