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Abstract
By virtue of its great utility in solving real-world
problems, optimization modeling has been widely
employed for optimal decision-making across var-
ious sectors, but it requires substantial expertise
from operations research professionals. With the
advent of large language models (LLMs), new
opportunities have emerged to automate the pro-
cedure of mathematical modeling. This survey
presents a comprehensive and timely review of
recent advancements that cover the entire technical
stack, including data synthesis and fine-tuning for
the base model, inference frameworks, benchmark
datasets, and performance evaluation. In addition,
we conducted an in-depth analysis on the quality
of benchmark datasets, which was found to have
a surprisingly high error rate. We cleaned the
datasets and constructed a new leaderboard with
fair performance evaluation in terms of base LLM
model and datasets. We also build an online portal
that integrates resources of cleaned datasets, code
and paper repository to benefit the community.
Finally, we identify limitations in current method-
ologies and outline future research opportunities.

1 Introduction
Optimization modeling aims to mathematically model com-
plex decision-making problems that arise from a wide range
of industry sectors, including supply chain [Cuthbertson,
1998], healthcare [Delgado et al., 2022], air traffic flow
management [de Matos and Ormerod, 2000; Zhang et al.,
2023] and geometry problems [Xiao and Zhang, 2023].
Despite its potential to enhance operational efficiency, there
exists an expertise barrier that limits the broader adoption of
modeling tools. According to a survey of Gurobi users, 81%
of them hold advanced degrees, with nearly half specializing
in operations research [Gurobi Optimization, 2023].

To automate the procedure and reduce the dependence
on domain-specific modeling experts, NL4Opt (Natural Lan-
guage for Optimization) [Ramamonjison et al., 2023] has

∗Corresponding Author.

Parameters: 𝑃𝑖
𝑚𝑖𝑛, 𝑃𝑖

𝑚𝑎𝑥, 𝑐𝑖 , 𝑐𝑖
𝑆𝑈, 𝐷𝑖, 𝑅𝑡  

Variables: 𝑢𝑖,𝑡, ∈ 0,1 , 𝑥𝑖,𝑡 ≥ 0, 𝑦𝑖,𝑡 ∈ {0,1}

Constraints:

    Power Limits for On Units:  𝑃𝑖
𝑚𝑖𝑛𝑢𝑖,𝑡 ≤ 𝑥𝑖,𝑡 ≤ 𝑃𝑖

𝑚𝑎𝑥𝑢𝑖,𝑡,  ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇
    Demand Satisfaction:  σ𝑖∈𝐼 𝑥𝑖,𝑡 ≥ 𝐷𝑡, ∀𝑡 ∈ 𝑇
    Reserve Requirement:  σ𝑖∈𝐼(𝑃𝑖

𝑚𝑎𝑥 − 𝑥𝑖,𝑡) ≥ 𝑅𝑡 
    Startup Definition:  𝑦𝑖,𝑡 ≥ 𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1,  ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇

Objective: minimize σ𝑡=1
𝑇 σ𝑖∈𝐼(𝑐𝑖𝑥𝑖,𝑡 + 𝑐𝑖

𝑆𝑈𝑦𝑖,𝑡)

Output: modeling result

Power generation units are grouped into three distinct types, with different 

characteristics for each type (power output, cost per megawatt hour, startup cost, 

etc.). A unit can be on or off, with a startup cost associated with transitioning from 

off to on, and power output that can fall anywhere between a specified minimum 

and maximum value when the unit is on. A 5-hour time horizon is with an 

expected total power demand for each hour. The model decides which units to turn 

on, and when, in order to satisfy demand for each time period. The model also 

captures a reserve requirement, where the selected power plants must be capable 

of increasing their output, while still respecting their maximum output, in order to 

cope with the situation where actual demand exceeds predicted demand.

Input: problem description

Figure 1: An example of an optimization modeling task. The orange
text in the problem description implies domain-specific terminology,
and the green text denotes implicit constraints.

emerged as an attractive but challenging NLP task. Its
objective is to translate the text description of an OR problem
into math formulations for optimization solvers. Figure 1
illustrates an instance of NL4Opt task. It transforms an input
problem text into a formal mathematical model, including
variables, constraints, and objective function. The problem is
challenging because the optimization problems often require
a large amount of domain-specific knowledge to understand
terminologies, such as “megawatt hour” and “startup cost”,
highlighted in orange text. Moreover, these descriptions may
contain numerous implicit constraints that need to be inferred
by human experts. Automatic optimization modeling can
enhance time and cost efficiency while enabling access for
users without deep optimization expertise.

Recently, large language models (LLMs) offer a promis-
ing way to make optimization more accessible. They can
understand the complicated text descriptions — identity the
optimization objective and extract the decision variables
and constraints. Consequently, they automatically build the
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mathematical model and generate the code. Numerous works
have been proposed in this rapidly expanding field:

• Domain-specific LLM. Representative works such as
ORLM [Tang et al., 2024] and LLMOPT [Jiang et al.,
2024] take advantage of data synthesis and instruction
tuning to enhance the capability of base model for
optimization modeling.

• Advanced Inference Framework: Various reasoning
frameworks have emerged, include multi-agent systems
(e.g. Chain-of-Experts [Xiao et al., 2024b] and Op-
tiMUS [AhmadiTeshnizi et al., 2024]) and chain-of-
thought variants (e.g. Tree of Thoughts [Yao et al.,
2023], Autoformulation [Astorga et al., 2024]).

• Benchmark Datasets and Evaluation. There have
been multiple benchmark datasets released, such as
IndustryOR [Tang et al., 2024], NL4Opt [Ramamon-
jison et al., 2023] and MAMO [Huang et al., 2024].
However, these datasets vary significantly in quality, and
evaluation methods lack standardization across different
studies.

Thus, it is of high necessity to present a just-in-time
survey to summarize the progress and indicate possible future
research directions. In this paper, we propose the first
systematic review of optimization modeling in the era of
LLMs. As shown in Figure 3, we present a detailed taxonomy
of the various methodologies employed to harness the power
of LLMs for optimization modeling. Besides, we noticed that
existing benchmark datasets are associated with high error
rates and performed data cleaning to enhance quality. We
constructed a new leader-board with fair comparison in terms
of base model and benchmark datasets, and deliver new in-
sights of performance evaluation. To benefit the community,
these datasets and implementation code are accessible from
our online portal1.

2 Background
2.1 Problem Definition
Optimization modeling transforms a problem description in
natural language P into a model M. Mathematically, an
optimization model is defined by an objective and a set of
constraints, as shown in Equation 1.

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p

(1)

Here, x is the vector of decision variables, f(x) denotes the
objective function, gi(x) and hj(x) represent the inequality
and equality constraints respectively.

2.2 Abstract Model and Concrete Model
In practice, optimization models can be categorized into two
types: abstract models and concrete models. A model whose
parameters are denoted by mathematical symbols called a
abstract model, while a model whose parameters are specified

1https://llm4or.github.io/LLM4OR

Description

Description

Parameters

Concrete

Model

Abstract

Model

LLM

Concrete

Modeling

Abstract

Modeling

𝒎𝒊𝒏  𝟐𝒙𝟏 + 𝟑𝒙𝟐

𝒔. 𝒕.  𝟑𝒙𝟏 + 𝟒𝒙𝟐 ≥ 𝟏

𝒙𝟏, 𝒙𝟐 ≥ 𝟎

LLM

𝒔. 𝒕.  σ𝒋=𝟏
𝒏 𝒂𝒊𝒋𝒙𝒋 ≥ 𝒃𝒊

𝒎𝒊𝒏  σ𝒋=𝟏
𝒏 𝒄𝒋𝒙𝒋

𝒙𝒋 ≥ 𝟎 

∀𝒊 = 𝟏 … 𝒎

∀𝒋 = 𝟏 … 𝒏

Parameters +
Infill

Figure 2: Comparison between concrete and abstract models. The
right part illustrates a linear programming formulation example.

by numerical values is called a concrete model. Correspond-
ingly, optimization modeling can be divided into two types:
concrete modeling and abstract modeling, as illustrated in
Figure 2. Concrete modeling directly translates a problem
description containing numerical parameters into a concrete
model. In contrast, abstract modeling follows a model-
data separation approach where the problem description only
contains the model structure, with parameters are provided
separately at a later stage.

3 Technical Stack of Optimization Modeling
This section presents a typical technical stack for applying
LLMs to optimization modeling. The pipeline consists of
four key steps: (1) data preparation and LLM fine-tuning; (2)
inference; (3) benchmarking; and (4) evaluation. Figure 3
shows the representative works in each step of this pipeline.

3.1 Data Synthesis and Fine-tuning
Data Synthesis Methods
It is a common practice to fine-tune language models for
specialized domains such as optimization modeling. How-
ever, fine-tuning requires a substantial amount of high-quality
training data. In the field of optimization modeling, data
availability is limited due to the scarcity of problem sources
and the high cost of problem annotation. To address this chal-
lenge, current approaches employ data synthesis to generate
training datasets. Formally, the data synthesis process can
be defined as seed → {P ′,M′}, where P ′ represents the
generated problem description, M′ denotes the correspond-
ing modeling and seed is the seed data of generation process.
Depending on the primary focus of the generation process,
existing works can be divided into two approaches: problem-
centric and model-centric.

Problem-centric The problem-centric approach involves
two steps. First, it takes an existing problem P and generates
a new problem P ′. Then, it automatically produces the
corresponding model M′ using LLMs, with human experts
filtering out low-quality annotations. In the first step, OR-
Instruct [Tang et al., 2024] devises three primitives to in-
crease the diversity of a problem: modifying constraints and
objectives, rephrasing questions for scenario diversity, and
adding multiple modeling techniques for linguistic diversity.
Besides, the data augmentation pipeline introduced in LL-
MOPT [Jiang et al., 2024] proposes seven primitives to fur-
ther enhance diversity by incorporating new instructions on
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Data

Synthesis

OptiMUSMulti-Expert

Prompt

X-of-Thought CAFA

LLMOPT

Autoformulation

Model-wise

OptiBench

MILP-Evolve

RareMIP

Graph Edit Distance

OptLLM

ReSocratic

ComplexOR

MAMOConcrete Model

OptiChat

WIQOR

EOR

LLM
Routine

City-LEO TTG

IndustryOR

Evo-Step

CoT ToT

Fine-tuning

Evaluation

Abstract Model

Objective-wise

LLM’s 

Technical Stack

GoT

OR-Instruct Evo-Step-Instruct

Graph isomorphism

Test-driven

ChatGPT

NL4Opt protocol

Exact Answer Match

pretrained

fine-tune

Problem-centric

Model-centric OptiBench Pipeline

NLP4LP

LLMOPT Pipeline

OptiGuide

OpenAI o1

LLMOPT RareMIPSFT KTO

ReSocratic

2025

Figure 3: Left: Taxonomy of LLMs-based optimization modeling, organized according to the LLMs’ technical stack. Right: Representative
works for each category are presented in chronological order. The dashed arrows indicates where later works build upon techniques proposed
in earlier studies.

modifying the problem type and scenario. Beyond diversity,
Evo-Step-Instruct [Wu et al., 2025] introduces complexity
as an additional dimension, along with a method to modify
constraints, parameters, and objectives progressively to create
more challenging problems. However, the problem-centric
approach is limited in its ability to escalate complexity. As the
complexity grows, generating a valid solution model becomes
more difficult, leading to a higher risk of errors in annotations.
To address this, Evo-Step-Instruct employs a sophisticated
workflow to filter out unqualified data.

Model-centric The model-centric method adopts a differ-
ent approach by first generating an augmented model M′

and then crafting a corresponding problem description P ′.
Compared to problem-centric approach, this methodology
provides more fine-grained control over instance types and
difficulty while ensuring the labeled model remains solvable.
MILP-Evolve [Li et al., 2024] pioneer this approach by using
existing model code as input, prompting LLMs to add, delete,
or mutate code elements to evolve new models. However,
since this work focus solely on generating MILP instances,
it does not incorporate the problem description generation
step. Similarly, OptiBench [Wang et al., 2024b] prioritizes
model code generation but differs by using simple seeds such
as model types (e.g., MILPs or MIPs), problem classes (e.g.,
knapsack problem), and domains (e.g., cargo loading) instead
of existing models. This approach enables better control
over dataset distribution. After code generation, LLMs
transform the solver code into detailed word description.
Another work, ReSocratic [Yang et al., 2025], extends this
paradigm by defining models as semantically rich formatted
demonstrations. Unlike pure code, these demonstrations
incorporate structured data for variables, objective func-

tions, and constraints, along with their natural language
descriptions, resulting in richer semantic content. ReSocratic
employs a multi-step sampling method with LLMs to first
generate such documentation, which is then transforms into
comprehensive problem descriptions as data points.

Fine-tuning Methods
Once the data is prepared, the next step is to fine-tune
open-source LLMs to enhance their optimization modeling
capabilities. Fine-tuning typically involves two key steps:
model instruction training and model alignment. Existing
works [Tang et al., 2024; Wang et al., 2024a; Wu et al.,
2025] focus on the first step by applying supervised fine-
tuning (SFT) with synthetic data. Meanwhile, LLMOPT
[Jiang et al., 2024] introduces Kahneman-Tversky Optimiza-
tion (KTO) [Ethayarajh et al., 2024], which further aligns
model outputs with human preferences and helps mitigate
biases. Despite these advancements, there remains a notable
gap in research exploring innovative training techniques and
paradigms for optimization modeling, highlighting the need
for further investigation.

3.2 Inference
During the inference stage, trained LLMs translate the prob-
lem description P into the modeling result M, which can
be either executable code or structured documentation. As
with other domain-specific tasks, prompt engineering is a
straightforward yet effective method for applying LLMs to
optimization modeling problems. Moreover, as illustrated in
Figure 4, the capabilities of LLMs can be enhanced along two
dimensions. One approach involves inference-time scaling,
which encourages LLMs to generate additional intermediate
reasoning steps (referred to as “X-of-thought”). The other
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Problem
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+
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Figure 4: Three types of inference methods.

approach scales up the single LLM to the LLM-based multi-
agent system (referred to as “multi-expert”).

Prompt At the advent of ChatGPT, NL4Opt [Ramamon-
jison et al., 2023] pioneers the use of ChatGPT for solving
optimization modeling problems. This work introduces a
simple prompt template comprising three components: the
problem description, task instructions, and format control.
Since then, many studies have leveraged LLMs for optimiza-
tion modeling via prompt engineering, which varies between
training-based and training-free approaches.

For training-based approaches, prompts are primarily de-
signed for format control, helping the model generate output
that conforms to the training set’s label format. For example,
ORLM [Tang et al., 2024] prompts the model to first produce
a plain-text description of the model and then generate the
corresponding code. Similarly, LLMOPT [Jiang et al.,
2024] instructs the trained LLM to output a five-element
formulation, while RareMIP [Wang et al., 2024a] prompts
the model to generate LaTeX code that details the model-
building process. Additionally, TTG [JU et al., 2024] uses
prompts to produce JSON output, which can be easily parsed
into a symbolic model suitable for solvers.

For training-free approaches, the goal shifts toward infus-
ing richer domain knowledge into LLMs through the prompt.
For instance, OptiChat [Chen et al., 2023] provides the LLM
with step-by-step instructions that mimic the guidance of
an optimization expert, thereby equipping the model with
domain-specific insights. It also employs few-shot learning
by supplying examples of optimization problems paired with
expert solutions. Similarly, City-LEO [Jiao et al., 2024]
adopts in-context learning techniques to construct its LLM
pipeline, and another work [Li et al., 2023b] incorporates
prior knowledge into prompt design to further enhance LLM
performance on routine tasks.

Although prompt engineering can be rapidly implemented,
it only scratches the surface of what LLMs can achieve in
tackling complex modeling problems. Much of their potential
remains untapped. The following sections introduce two
promising directions to unleash this power: X-of-thought and
Multi-Agent.

X-of-Thought To enhance the reasoning capabilities of
LLMs and tackle increasingly complex optimization model-

ing problems, researchers have begun exploring LLMs’ po-
tential during inference time. The chain-of-thought (CoT) ap-
proach [Wei et al., 2022] pioneers LLM reasoning by encour-
aging the model to think step-by-step, effectively bridging
logical gaps during inference. Building on this foundation,
Tree of Thoughts (ToT) [Yao et al., 2023] and Graph of
Thoughts (GoT) [Besta et al., 2024] further enhance rea-
soning by employing tree- and graph-structured exploration
of intermediate thoughts. Collectively, these approaches are
known as “X-of-thought” [Chu et al., 2024]. Although orig-
inally designed for general reasoning tasks, these methods
have also been successfully applied to optimization modeling
[Xiao et al., 2024b].

Subsequently, several X-of-thought methods tailored for
optimization modeling have emerged. For instance, CAFA
[haoxuan deng et al., 2024] defines the inference process
as a linear sequence of steps that explicitly captures the
reasoning required for modeling. Furthermore, Autoformu-
lation [Astorga et al., 2024] treats the modeling process
as a Monte Carlo Tree Search, where each level of the
tree corresponds to a specific modeling step—sequentially
addressing parameters and decision variables, the objective
function, equality constraints, and inequality constraints.
This framework integrates an LLM with two key components:
(1) a dynamic formulation hypothesis generator responsible
for exploring the Monte Carlo Tree, and (2) an evaluator that
provides feedback on the correctness of solutions at the leaf
nodes.

Recently, OpenAI’s o1 [OpenAI, 2024] has attracted sig-
nificant attention for its exceptional reasoning capabilities in
tackling complex problems, including optimization model-
ing. It explicitly integrates an extended internal chain-of-
thought into its inference process, representing a promising
direction that merits further investigation.

Multi-Expert Another approach to scaling language mod-
els for complex reasoning is the use of multi-agent col-
laboration systems [Qian et al., 2024]. In the field of
optimization modeling, LLMs are adapted to mimic human
experts and collaborate to complete the entire modeling
process. This system is referred to as multi-expert system.
Early examples include OptiMUS [AhmadiTeshnizi et al.,
2024] and Chain-of-Experts (CoE) [Xiao et al., 2024b]. Both
systems predefine a set of LLM-based experts, with two
key roles: a formulator for optimization modeling and a
programmer for code generation. They differ in how they
manage the workflow: OptiMUS uses a predefined workflow
to engage experts in collaborative problem-solving, while
CoE employs a special expert called the “Conductor” to
orchestrate the entire process. Additionally, CoE introduces
a system-level reflection mechanism to adjust answers based
on external feedback.

Subsequently, the OptiGuide framework [Li et al., 2023a]
is proposed with a focus on improving the reliability and
readability of modeling results. Specifically, it incorporates
a safeguard agent to address potential output errors and an
interpreter that generates human-readable explanations of
both the modeling results and the solver’s solution. Similarly,
OptLLM [Zhang et al., 2024a] includes a diagnostic agent
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that reformulates the modeling output based on internal
feedback when code fails syntax tests. Explainable Opera-
tions Research (EOR) [Zhang et al., 2025] adopts a similar
framework to OptiGuide but focuses on what-if analysis for
optimization modeling, in which way it can evaluate the
impact of complex constraint changes on decision-making.

Compared to X-of-Thought, the merits of multi-expert
methods lie in their interpretable intermediate results and bet-
ter capability of safeguarding against potential errors hidden
in the output, making them a popular direction for future
research.

3.3 Benchmarks
To evaluate performance of LLMs-based optimization mod-
eling methods, several benchmarks have been proposed. As
discussed in Section 2, these benchmarks can be categorized
into two types: concrete modeling and abstract modeling.

Concrete Modeling NL4Opt [Ramamonjison et al., 2023]
is the first optimization modeling benchmark proposed in a
competition, featuring a test set of 289 instances. However,
NL4Opt primarily focuses on simple optimization modeling
problems. To address the need for more challenging cases,
IndustryOR [Tang et al., 2024] is introduced, consisting of
100 real-world industry cases. IndustryOR covers a variety
of problem types—including mixed integer programming and
nonlinear integer programming—and features descriptions
with or without tabular data, thereby increasing problem
complexity. However, IndustryOR suffers from quality con-
trol issues, which result in a high error rate. To overcome
this limitation, ReSocratic [Yang et al., 2025] introduces
a comprehensive framework that applies multiple filters to
remove erroneous cases, efficiently improving dataset quality
and expanding the test set to 605 instances. While the annota-
tions in these three benchmarks focus solely on providing an
objective as final answer, MAMO [Huang et al., 2024] goes a
step further by including optimal variable information, offer-
ing additional perspectives for evaluating model correctness.
Note that MAMO also categorize problems into three classes:
EasyLP, ComplexLP and ODE. Our study primarily focuses
on the former two categories. All these benchmarks are
designed for end-to-end modeling tasks. WIQOR [Parashar
et al., 2025], on the other hand, employs what-if analyses to
assess performance, providing insights into whether LLMs
possess a deeper understanding of the modeling process.

Abstract Modeling ComplexOR [Xiao et al., 2024b] is
an abstract modeling benchmark introduced in the CoE,
containing 37 instances collected from both industrial and
academic scenarios. In ComplexOR, numerical parameter
values are separated from the problem descriptions. NLP4LP
[AhmadiTeshnizi et al., 2024] is another early abstract mod-
eling benchmark, extending the number of instances to 269.
Although both datasets are relatively small, the subsequent
release of OptiBench [Wang et al., 2024b] offers a larger
collection of 816 instances following a model-data separation
format. While most existing research focuses on concrete
modeling, abstract modeling is more prevalent in industrial
scenarios due to its reusability. However, developing high-
quality benchmarks for abstract modeling remains challeng-

Dataset Size Complexity Error Rate
NL4Opt 289 5.59 ≥ 26.4%
IndustryOR 100 14.06 ≥ 54.0%
EasyLP 652 7.12 ≥ 8.13%
ComplexLP 211 13.35 ≥ 23.7%
ReSocratic 605 7.45 ≥ 16.0%
NLP4LP 269 5.58 ≥ 21.7%
ComplexOR 37 5.98 ≥ 24.3%

Table 1: Quality statistics of optimization modeling benchmarks.
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Figure 5: Statistics of complexity distribution for each benchmark
visualized using a violin plot. X-axis shows different benchmarks,
and y-axis shows the complexity indicator.

ing because of its inherent complexity.

Analysis on Benchmarks
To assess the quality of current benchmarks, we conduct an
in-depth analysis of them. The results are shown in Table
1 and Figure 5. We evaluate three key statistical features:
(1) Data Size: the number of instances in the benchmark’s
test set; (2) Complexity: for each problem, we first use
standard prompting to generate a model and then use the
number of variables and constraints in the model to indicate
its complexity; (3) Error Rate: to compute this metric,
we have 11 human experts manually identify errors in the
problems, and each error case is cross-validated by at least
three different experts.

According to our results, we obtain several key findings.
First, in current benchmarks, the error rate is relatively high.
As shown in Table 1, except for EasyLP in MAMO, the error
rates of other benchmarks exceed 15%, with IndustryOR even
reaching as high as 54%, indicating that these benchmarks
are not entirely reliable for evaluation. The errors can be
caused by three main factors: (1) logical errors in prob-
lem descriptions, such as unbounded constraints; (2) poorly
defined parameters that lead to unsolvable models; and (3)
incorrect ground truth data. To address these issues, we
manually filter all error cases and compile a unified, cleaned
collection of optimization modeling benchmarks to facilitate
future research.

Takeaway #1: The high error rates in current benchmarks
undermine their reliability. We curate a cleaned and
unified set of optimization modeling benchmarks to
facilitate more accurate evaluation.
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Methods NL4Opt IndustryOR EasyLP ComplexLP NLP4LP ReSocratic ComplexOR
Standard 61.2% 38.1% 70.3% 57.7% 73.6% 48.4% 42.9%
CoT 62.2% 40.5% 49.5% 42.3% 74.7% 43.6% 39.2%
Chain-of-Experts 66.7% 31.2% 94.4% 50.6% 87.4% 71.2% 57.1%
CAFA 68.1% 41.1% 71.2% 44.5% 50.0% 40.1% 46.4%

ORLM-LLaMA-3 8B 73.8% 42.9% 90.4% 59.5% 76.4% 61.8% 50.0%

Table 2: Performance comparison of existing fully open-source methods on cleaned benchmarks in a unified setting (use GPT-4o for training-
free methods and use accuracy as metric). All results are reproduced using our standardized evaluation method.

Second, our analysis of benchmark complexity reveals that
current benchmarks mainly cover simple cases and exhibit
an imbalanced distribution. As shown in Table 1, NL4Opt,
NLP4LP, and ComplexOR clearly present low levels of chal-
lenge. Figure 5 further shows that most instances concentrate
at the simple and medium complexity levels, with instances of
complexity greater than 10 being very scarce, which indicates
a lack of truly complex cases.

Takeaway #2: Existing benchmarks are dominated by
simple and moderate problems, with very few challenging
cases. This imbalance highlights the need for more high-
complexity benchmarks.

3.4 Evaluation
Evaluating optimization models can be challenging because
it is often difficult to determine the correctness of the results.
There are two primary approaches exist. The first is objective-
wise evaluation, which focuses exclusively on the final objec-
tive value produced by the solver. The second is model-wise
evaluation, where the generated model is directly compared
against a ground truth model.
Objective-wise In objective-wise evaluation, the focus is
solely on the correctness of the final objective. This approach
originates from mathematical word problems [Cobbe et al.,
2021], where LLMs directly generate a final answer and
compare it to the ground truth, referred as the exact answer
match method. However, in optimization modeling, LLMs
produce a model rather than a final answer. To address this,
a test-driven method is introduced in Chain-of-Experts (CoE)
[Xiao et al., 2024b], where a solver takes the generated model
(with specified parameters), computes the final objective, and
compares it to the ground truth. Subsequent works, including
ORLM [Tang et al., 2024], CAFA [haoxuan deng et al.,
2024], and Autoformulation [Astorga et al., 2024], adopt this
same test-driven method.
Model-wise While objective-wise evaluation is straight-
forward, it has a notable limitation: a correct objective
value does not necessarily guarantee a correct model. To
address this, model-wise evaluation is introduced. NL4Opt
[Ramamonjison et al., 2023] pioneers a protocol that converts
modeling results into a canonical formulation, where the
coefficients of the objective function and constraints are
extracted into matrices and then are compared with ground
truth. Although this method captures model correctness
comprehensively, it provides only a binary metric and fails to

reflect the degree of correctness, which is essential for fine-
grained assessments. To overcome this limitation, a graph-
based evaluation method [Xing et al., 2024] is proposed,
representing modeling results as a graph and using graph edit
distance to produce a continuous correctness score between
0 to 1. Building on this, a modified graph isomorphism
testing algorithm [Wang et al., 2024b] offers even more
precise evaluation, with theoretical guarantees ensuring the
correctness of its comparisons.

Evaluation Result of Existing Methods
In this survey, we observe that the reported evaluation results
across existing works often exhibit inconsistencies, making
fair comparisons challenging. These discrepancies arise
primarily from three factors.

• Choice of Base Model: Researchers use different com-
mercial LLMs as base model. For example, Chain-
of-Experts employs GPT-3.5, whereas Autoformulation
uses GPT4-mini, due to the rapid evolution of LLMs.

• Dataset Preprocessing Approaches: Different strate-
gies are used for handling incorrect samples and decimal
precision, resulting in varying preprocessing pipelines.

• Evaluation Metrics: Metrics also vary: ORLM reports
micro and macro average accuracy, whereas Chain-of-
Experts focuses on compile error rates.

These factors collectively contribute to the difficulty of
establishing a consistent leader-board for optimization mod-
eling methods.

To address the challenge of inconsistent evaluations and
create a fair comparison, we adopt a unified setting to assess
all fully open-source optimization modeling methods on our
cleaned benchmarks. Specifically, we employ the cutting-
edge commercial LLM gpt-4o-2024-08-06 as the base model
for all training-free methods. We report accuracy as the
evaluation metric, as it is the most widely accepted measure.

Regarding optimization modeling methods, we strive to
evaluate every fully open-source approach. However, many
methods mentioned in Subsection 3.2 remain closed-source,
including LLMOPT [Jiang et al., 2024], RareMIP [Wang et
al., 2024a], Autoformulation [Astorga et al., 2024], OptLLM
[Zhang et al., 2024a], LLM Routine [Li et al., 2023b],
City-LEO [Jiao et al., 2024], and TTG [JU et al., 2024].
Three other methods, including OptiChat [Chen et al., 2023],
OptiGuide [Li et al., 2023a], and EOR [Zhang et al., 2025],
are interactive and thus not directly comparable to end-to-
end approaches. Additionally, OptiMUS [AhmadiTeshnizi et
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al., 2024] requires a preprocessing step that is unavailable for
most benchmarks, leading us to exclude it. For broader com-
parison, we include standard and chain-of-thought prompting
as baselines.

Takeaway #3: The evaluation results reported in existing
works lack a unified standard. And the open-source
landscape in optimization modeling remains limited.

Table 2 shows the overall results, revealing several key
observations. First, Chain-of-Experts and ORLM are two
competitive methods in optimization modeling. While Chain-
of-Experts works well for simpler tasks, ORLM surpasses
it on more complex datasets such as IndustryOR and Com-
plexLP, indicating that trained models may be more effec-
tive in challenging scenarios. Second, contrary to popular
belief, CoT does not always yield better results than standard
prompting. On certain datasets, it even leads to a noticeable
drop in performance, supporting the idea that CoT should
be applied selectively [Sprague et al., 2024]. Finally, the
performance of CAFA is comparable to CoT, likely as CAFA
can be viewed as a specialized form of CoT prompting.

Takeaway #4: Three key findings: (1) Chain-of-Experts
and ORLM emerge as the most competetive frameworks;
(2) CoT prompting does not always outperform standard
prompting; (3) The performance of CAFA resembles that
of a specialized CoT strategy.

4 Online Portal for Optimization Modeling
We develop a website portal that integrates the resources
of LLM-based optimization modeling and provides great
convenience for researchers to follow the topic. First, we
provide the download links for both original and cleaned
version of benchmark datasets. Second, we collect and
publish the implementation of existing solutions and provide
a leader-board to report their performance on the benchmarks.
Thirdly, we continue to update the latest research papers
on this promising research domain. We believe such an
integrated portal brings significant benefit for the community.

5 Challenges and Future Directions
5.1 Reasoning Model for Optimization Modeling
A prominent trend in recent LLM research is enhancing the
reasoning capabilities of base models. The release of OpenAI
o1 [OpenAI, 2024] demonstrates impressive performance on
complex mathematical tasks. However, these advances have
not yet been transferred to optimization modeling. One key
obstacle is that training a reasoning model heavily relies
on long chain-of-thought data, which is difficult to annotate
in the context of optimization modeling. To bridge this
gap, Deepseek R1 Zero [Guo et al., 2025] proposed a
promising alternative by using pure reinforcement learning
for training, enabling LLMs to develop reasoning capabilities
without requiring supervised chain-of-thought annotations.
This reinforcement learning strategy is also promising for
optimization modeling, where the modeling process can

be formulated as a Markov Decision Process and solver
feedback can be used as reward to train the reasoning model.

5.2 Explainable Modeling Processes
The black-box nature of LLMs, most existing studies treat
optimization modeling as an end-to-end process. However,
the explainability of this process is also crucial for real-
world applications, as it allows experts to effectively debug,
modify, and understand the generated models. Recent work
like Explainable Operations Research [Zhang et al., 2025]
has made progress in this direction by developing methods
to evaluate how modeling decisions impact outcomes. More
research efforts to develop a trustworthy and user-friendly
modeling framework are encouraged.

5.3 Domain Knowledge Injection
The optimization modeling process relies heavily on domain
knowledge [Xiao et al., 2024a]. As demonstrated by a
research [Runnwerth et al., 2020], much of this specialized
knowledge, including conception and empirical insights, can
be stored in a knowledge graph. Incorporating such domain-
specific knowledge into LLMs to aid the modeling process
remains a significant challenge. A recent work [Zhang
et al., 2024b] uses rule mining to construct training data
from knowledge graphs and introduces a learning method to
integrate knowledge graphs with LLMs, offering a promising
pathway for advancing the field of optimization modeling.

5.4 Human-in-the-Loop Modeling
Existing inference approaches have primarily focused on
the modeling capabilities of LLMs and have not explored
human intervention during the inference process. Recent
research indicates that LLMs can proactively query humans
for domain-specific knowledge when needed [Pang et al.,
2024]. These characteristics offer an opportunity to open
up a new paradigm, human-in-the-loop modeling, where
human experts contribute external knowledge, clarifications,
and insights at critical points. To develop such a collaborative
system, we need to overcome the following challenges. First,
effective mechanisms are needed to identify when human
intervention is required, since LLMs themselves lack this
capability. Second, an effective human-in-the-loop frame-
work should ensure that humans can seamlessly integrate
their expertise into the inference process.

6 Conclusion
This survey provides a timely overview of the rapid progress
in applying LLMs to optimization modeling. We present a
thorough taxonomy of existing works across data synthesis,
model fine-tuning, inference approaches, benchmarks, and
evaluation methods, offering a structured understanding of
the technical stack. We also highlight persisting challenges,
particularly in data quality and evaluation protocols, that
hinder reliable performance comparisons. To address these
gaps, we evaluate current open-source methods on a set of
cleaned and standardized benchmarks, revealing several key
insights. Building on these findings and the latest advances,
we propose promising directions to inspire further research in
this emerging field.
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