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Abstract

Electron density (ED), which describes the proba-
bility distribution of electrons in space, is crucial
for accurately understanding the energy and force
distribution in molecular force fields (MFF). Ex-
isting machine learning force fields (MLFF) focus
on mining appropriate physical quantities from the
atom-level conformation to enhance the molecular
geometry representation while ignoring the unique
information from microscopic electrons. In this
work, we propose an efficient Electronic Density
representation framework to enhance molecular
Geometric learning (called EDG), which leverages
images rendered from ED to boost molecular ge-
ometric representations in MLFF. Specifically, we
construct a novel image-based ED representation,
which consists of 2 million 6-view images with
RGB-D channels, and design an ED representa-
tion learning model, called ImageED, to learn ED-
related knowledge from these images. We further
propose an efficient ED-aware teacher and intro-
duce a cross-modal distillation strategy to trans-
fer knowledge from the image-based teacher to the
geometry-based students. Extensive experiments
on QM9 and rMD17 demonstrate that EDG can
be directly integrated into existing geometry-based
models and significantly improves the capabilities
of these models (e.g., SchNet, EGNN, SphereNet,
ViSNet) for geometry representation learning in
MLFF with a maximum average performance in-
crease of 33.7%. Code and appendix are available
at https://github.com/HongxinXiang/EDG

1 Introduction
Machine learning force fields (MLFF) is a computationally
efficient and low-cost method for learning the interactions
between atoms in molecular systems, bringing revolutionary
advances to molecular dynamic simulations (MD) in many
fields such as physics, chemistry and biology, and mate-
rials science [Chmiela et al., 2017; Xiang et al., 2024b;

∗Corresponding author (xzeng@hnu.edu.cn)

Wang et al., 2024b]. Recent MLFF methods use geomet-
ric deep learning that represent atoms in molecular systems
as nodes in a geometric graph and take into account phys-
ical symmetries have been shown to be effective in learn-
ing molecular force fields (MFF) [Liu et al., 2022; Wang
et al., 2024a]. However, previous studies focused on min-
ing physical quantities at the atomic level (such as coordi-
nates, multi-body interactions, etc.) [Batzner et al., 2022;
Liao and Smidt, 2023; Wang et al., 2024a], ignoring infor-
mation at the electronic level.

Electron density (ED) is a core quantum mechanical prop-
erty of the distribution of electrons within a molecule and is
crucial for accurately predicting the quantum chemical prop-
erties of MFF [Sunshine et al., 2023; Skogh et al., 2024]. The
application of ED faces two major challenges:

Challenge 1: High computational complexity of ED. Un-
like the number of atoms in a molecule, which is usually on
the scale of hundreds, the ED relies on a continuous spa-
tial distribution and as the resolution increases, the number
of data points may reach millions or even tens of millions
(See Appendix A for details). As shown in Figure 1(a), there
are two direct ways to represent ED: point cloud [Guo et al.,
2020] and voxel [Gong et al., 2023]. As shown in Figure 1(b),
we empirically show the limitations of point clouds and vox-
els as ED representations in energy prediction in force fields,
efficiency of GPU memory and training (See Appendix B for
details). In particular, point clouds and voxels are directly
related to the resolution of the ED, so the computational effi-
ciency will decrease as the resolution increases. The limita-
tions above motivate us to propose a novel multi-view RGB-
D image (the right subfigure of Figure 1(a)) for accurate and
efficient ED representation [Xiang et al., 2024a], which is in-
dependent of ED resolution and compresses the continuous
ED signal in space into pixels. Compared with point clouds
and voxels, the proposed images improve energy prediction
ability, GPU memory efficiency, and training efficiency by
38.4%, 42.1%, and 4.8%, respectively.

Challenge 2: Expensive ED acquisition. The acquisi-
tion of ED data mainly relies on two types of technolo-
gies: experimental measurements and theoretical compu-
tations. Experimental measurements, such as X-ray crys-
tallography [Nienaber et al., 2000] or neutron diffraction
[Goncharenko and Loubeyre, 2005], require high-precision
instruments, sophisticated experimental setups, substantial
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Figure 1: (a) ED representation methods. (b) RMSE in energy prediction, GPU memory, and training time cost of different ED representations
with the same experimental setting. (c) The proposed EDG framework, which uses multi-view ED images with RGB-D channels to enhance
molecular geometry learning. (d) Average MAE performance on 10 energy prediction datasets of rMD17 by using or not using the EDG.

time and technical expertise, making them resource-intensive.
Theoretical computations, such as density functional theory
(DFT) [Kohn and Sham, 1996], require a lot of computational
time to obtain high-quality ED [Hegde and Bowen, 2017;
Lee and Kim, 2024], which relies on high-performance com-
puting clusters, resulting in significant cost. Given the limita-
tions above and to improve data efficiency, as shown in Fig-
ure 1(c), we transform the ED-enhanced geometry learning
problem into teaching excellent students (geometry) using an
ED-aware teacher (image). Specifically, we first use DFT to
obtain 2 million high-quality ED data and use them to train
an ED representation learning model (called ImageED). Sub-
sequently, we transfer the knowledge in ImageED to an ED-
aware teacher that takes images without ED information as
input, and use an ED-aware teacher to distill excellent ge-
ometry students (called EDG). This scheme allows us to ob-
tain ED data only once and no more ED data is needed at
any other time, which greatly improves the computational ef-
ficiency. As shown in Figure 1(d), student models (SchNet
[Schütt et al., 2017], SphereNet [Liu et al., 2022] and ViSNet
[Wang et al., 2024a]) equipped with EDG achieve significant
performance improvements.

We summarize the main contributions as follows:
• To the best of our knowledge, we are the first to exploit

ED images to enhance molecular geometry learning.
• We propose an efficient multi-view ED images with

RGB-D channels and design an ED representation learn-
ing method, called ImageED, to automatically extract
ED-related features from images.

• We propose an ED-enhanced molecular geometry repre-
sentation learning framework, called EDG, which equips
with ED-aware teacher to improve the performance of a
large number of geometry models.

• We show that our method achieves significantly better
performance on 12 datasets from QM9 and 10 datasets
from rMD17 and can substantially improve the perfor-
mance of existing geometry representation models.

2 Related Work
Molecular Geometry Representation Learning. Geom-
etry deep learning, which studies the interactions between
atoms in molecular systems, is the key to the success of

machine learning force fields (MLFF) [Liu et al., 2022;
Wang et al., 2024a]. Recently, the main approaches have been
to incorporate physical constraints such as roto-translational
invariance of the geometry into the model architecture [Zaidi
et al., 2023; Wang et al., 2024b], making the output fea-
tures of the model invariant to the roto-translation of the
molecule. Equivariant neural network (ENN) [Satorras et al.,
2021] is the most representative one and has been greatly
developed in geometric representation learning. A simple
way to achieve rotational-translational invariance is to con-
struct invariant features based on the geometric conforma-
tion of the molecule, such as inter-atomic distances [Fuchs
et al., 2020], angles [Liu et al., 2022], molecular descrip-
tors [Todeschini and Consonni, 2009], etc. Besides these,
there are many ENNs designed for invariance, such as mod-
els for modeling inter-atomic interactions [Schütt et al., 2017;
Satorras et al., 2021; Liao and Smidt, 2023] and models
for modeling multi-body interactions [Wang et al., 2024b;
Wang et al., 2024a]. Our approach is agnostic to the model
architecture, which can enhance any geometric representation
learning model from a novel electronic perspective.

Electron Density Representation Learning. Existing
electron density (ED) representation methods can be mainly
divided into two categories: point cloud-based and voxel-
based methods. The former considers all density values in
the ED as a collection of points. For example, PointNet [Qi
et al., 2017] is used to classify the symmetry of inorganic
compounds [Kim et al., 2024]. The latter treats each point
in the ED as a voxel. For example, 3D convolutional neural
network (CNN) [Liu et al., 2015] is used for the prediction of
molecular exchange energy [Gong et al., 2023] and discovery
of guests of host molecules [Parrilla-Gutiérrez et al., 2024],
respectively. 3D-UNet [Çiçek et al., 2016] is used to segment
reactive sites in molecules and classify substances [Singh et
al., 2024]. Different from previous methods, we propose a
novel multi-view RGB-D image to represent ED and design
a representation learning method to extract features.

3 Our Method
3.1 Preliminaries
Background. Electron density (ED) is a key bridge to under-
stand the prediction of energy and forces in molecular force
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fields (MFF). ED is not only the core output of quantum me-
chanical calculations, but also provides a solid theoretical ba-
sis for constructing high-precision MFF and understanding
complex interactions between molecules. This demonstrates
the significance of the proposed method to introduce ED into
the learning framework of geometry representation. We pro-
vide more background details in the Appendix C.

Notation and Problem Formulation. The molecular ge-
ometry and the corresponding ground-truth labels with t pre-
diction tasks are {Gi = (Vi, Ei)}ni=1 and {yi}ni=1 ∈ Rk re-
spectively, where V ∈ Rnv

i ×(3+dv
i ) (nv

i , 3, dvi are the num-
ber of atoms, the coordinates of the atoms, and the feature
dimensions of the atoms) and E ∈ Rnv

i ×nv
i ×de

i (dei is the fea-
ture dimensions of bonds). The corresponding multi-view
ED image and structural image are U ∈ RV×4×H×W and
S ∈ RV×3×H×W respectively, where V , H , W represent
the number of views, the height, and the width of images,
respectively. 3 and 4 represent RGB channels and RGB-D
channels, respectively. This paper mainly defines three prob-
lems: (1) Pre-train a masked autoencoder (MAE) [He et al.,
2022] architecture consisting of an ED encoder fEDE and an
ED decoder fEDD to learn useful representations FU ∈ RdU

(dU is the dimension of features) from the ED image U ; (2)
Pre-train an ED-aware teacher fS and ED predictor fEDP so
that it can complete the mapping from structural images S
to structural features FS ∈ RdS

and then to ED-related fea-
tures FS→U ∈ RdU

; (3) Distill a strong geometry student
fG using ED-aware teacher, ED predictor and mapper fM .
Among them, the geometry student fG takes the molecular
geometry as input and extracts the corresponding geometry
features FG ∈ RdG

and the mapper is used to convert the
geometry features into features recognized by ED predictor
FG→S ∈ RdS

for distillation.

3.2 Overview of the Method
Here, we propose the Electron Density-enhnaced molecular
Geometry representation learning framework (called EDG).
The overview of EDG is illustrated in Figure 2, which is di-
vided into 4 main modules: (a) Given 2 million molecular
conformations, necessary DFT data are generated and fur-
ther processed together with the conformations into multi-
view ED images with RGB-D channels (Section 3.3); (b) Im-
ageED receives the 2 million multi-view ED image as input
and utilizes two pre-training tasks to learn ED-related knowl-
edge (Section 3.4); (c) We design an ED-aware teacher, which
is optimized by minimizing the difference between the pre-
dicted ED features from the structural images and the true
ED features from the ImageED on 2 million molecules (Sec-
tion 3.5). (d) The ED-aware teacher is used to distill a strong
geometry student by using ED predictor and mapper (Section
3.6). We summarize the main processed in Appendix D.

3.3 Generation of RGB-D Electron Density Images
As shown in Figure 2(a), we first obtain 2 million molecu-
lar conformations from PCQM4Mv2 [Hu et al., 2021] and
use density functional theory (DFT) with the basis set of
6-31G**/+G** and the exchange-correlation functional of

B3LYP to generate DFT data for these molecular confor-
mations [Sud, 2016]. For each molecule, the DFT data in-
cludes an electrostatic potential (ESP) file and an ED file
stored in the form of a three-dimensional grid. Next, we
describe the main details of ED image generation. The
structural loader uses the command load {conformation
file} in PyMol [DeLano and others, 2002] to load the
structural information from the molecular conformation file.
ED loader uses the commands load {ED file}, ED; load
{ESP file}, ESP; ramp new legend, ESP, [-0.08, 0, 0.08],
[red, white, blue]; isosurface surface, ED, 0.05; set sur-
face color, legend, surface in PyMol to load the ED infor-
mation, which uses a red-white-blue distribution range to
describe the electrostatic potential distribution of ED and
red, white, and blue represent positive, neutral, and neg-
ative regions, respectively. Finally, multi-view joint ren-
der uses commands set transparency, 0.4; turn {axis},
{angle}; png {path}, width={width}, height={height} in
PyMol to render the ED information and structural informa-
tion into multi-view RGB-D ED images U ∈ R6×4×224×224.
Specifically, {axis} and {angle} represent the rotation
angle degrees along axis and we set ({axis}, {angle})
to (x, 0), (x, 180), (x, 90), (x,−90), (y, 90), (y,−90), which
means generating images from 6 different views. {width} =
224 and {height} = 224 represent the width and height of
the rendered image and {path} represents the path where the
image is saved. We describe more details of ED image ren-
dering in Appendix E.

3.4 ED Representation Learning with ImageED
The proposed ED images have two properties: (1) RGB and
D channels use color to represent the distribution of ED and
depth to represent the spatial layout, respectively, which in-
dicates that each pixel has a clear physical meaning; (2)
the distribution of ED is continuous, which means that ED
can be predicted by the context. Therefore, we propose
a novel ED representation learning framework (called Im-
ageED) with mask prediction and restoration prediction tasks
to learn pixel-level local and contextual ED information from
2 million ED images. ImageED is an encoder-decoder archi-
tecture, which is built following the ViT-Base/16 [Dosovit-
skiy et al., 2020] of MAE [He et al., 2022]. For a given batch
(n molecules) of ED images u ∈ Rn×c×V×H×W (where
V, c,H,W = 6, 4, 224, 224), we first use a view-agnostic
patch embed layer with a patch size of np = 16 to transform
u into a pile of multi-view tokens mt.

mti,j = u[:, :, npi : np(i+ 1), npj : np(j + 1)] (1)

We assume nt = H/np = W/np and mt = {mti,j |i, j ∈
{0, 1, ..., nt}} ∈ Rn×V×n2

t×(n2
p×c). Next, we add the posi-

tional embeddings and expand along the view to get tokens
t =∈ Rn×(V×n2

t )×(n2
p×c). We shuffle the order of tokens

and randomly mask 25% of the tokens to obtain the masked
tokens tm ∈ Rn×(0.25×V×n2

t )×(n2
p×c) and unmasked tokens

tu ∈ Rn×(0.75×V×n2
t )×(n2

p×c) respectively. We input the tu

into the ED encoder fEDE to get the encoded tokens:

hu = fEDE(t
u), hu ∈ Rn×(0.75×V×n2

t )×dU (2)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 2: Overview of the proposed EDG framework. (a) Multi-view ED images with RGB-D channels are generated based on 2 million
molecular conformers and DFT data, which contains the structural and ED information of the molecule. (b) ImageED with masked autoen-
coder (MAE) architecture and 2 pretext tasks (LMP and LRP ) is pretrained to extract ED-related features from multi-view ED images in (a).
(c) The ED-aware teacher accepts the structural images as input and learns to transform it into ED features FS→U using ED predictor and ED
encoder in (b). (d) In downstream tasks, the ED-aware teacher and ED predictor from (c) are frozen to enhance the geometry student. Note
that there is no need for explicit involvement of electron density here because the ED teacher has the ability to extract ED-related information.

where dU represents the feature dimension of hu. Afterwards,
we use additional mask tokens ĥm that is initialized by 0 to
the encoded tokens to obtain all encoded tokens h:

h = π(hu ∥ ĥm) + pos ∈ Rn×(V×n2
t )×(n2

p×c) (3)

where π represents arrange them in the order of the images
and pos represents the positional embeddings. The final pre-
dicted masked tokens t̂m and unmasked tokens t̂u can be ob-
tained by input h into the ED Decoder fEDD.

In order to optimize the fEDE and fEDD in ImageED, we
define a mask prediction task LMP :

LMP =
1

n

n∑
i=1

sim(tui , t̂
u
i ) (4)

where sim() represents the Euclidean distance. However, we
find that using only mask prediction tasks will limit the under-
standing of local features. We further introduce the restora-
tion prediction task LRP :

LRP =
1

n

n∑
i=1

sim(tmi , t̂mi ) (5)

Finally, the overall loss function of ImageED is formu-
lated:

LImageED = λMPLMP + λRPLRP (6)

where λMP and λRP is the balance coefficient and we
set them to 1. After pre-training ImageED with 2 million
molecules, we use the fEDE to extract ED features.

3.5 Pretraining of ED-aware Teacher
Since the generation of ED data requires a lot of computing
resources, it is resource-intensive and impractical to calculate

ED data for every downstream task. Therefore, we hope to
use an easily accessible intermediary to replace ED to gener-
ate ED features. We assume that the molecular conformation,
ED data generated by DFT, and ED features are s, x, h, re-
spectively. The acquisition of ED features follows this path:

s
DFT−−→ x

ImageED−−−−−→ h, which shows that when s is known,
x and h can be obtained. Therefore, according to the prob-
ability chain rule, the joint probability distribution p(h, x|s)
can be decomposed into: p(h, x|s) = p(h|x, s) · p(x|s). Ac-
cording to the Markov hypothesis [Markov, 1960], we can
get: p(h|x, s) = p(h|x). In order to simplify p(h, x|s) to a
probability distribution that is independent of x, we further
marginalize x (integrating with respect to x) and get:

p(h|s) =
∫

p(h|x) · p(x|s)dx (7)

Therefore, we can approximate p(h|x) · p(x|s) by di-
rectly learning a p(h|s). Here, we propose an ED-aware
teacher fS and ED predictor fEDP as p(h|s) to learn
the mapping of ED features directly from molecular con-
formations. We choose multi-view structural images as
the input of the fS (See Appendix F for specific rea-
sons). Specifically, structural render uses command tem-
plate turn {axis}, {angle}; png {path} in PyMol to ren-
der molecular structures from 2 million conformations into
multi-view images S . Considering computational efficiency,
we generate 4 views here and ({axis}, {angle}) is set to
(x, 0), (x, 180), (y, 180), (z, 180). fS uses ResNet18 [He et
al., 2016] with a view-wise average pooling and fEDP is a
Multilayer Perceptron (MLP) with Linear Layer→Softplus
Activator→Linear Layer. Given a batch (n molecules) of
structural images s from S and ED images u from U , we
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obtain structural features FS and ED features FS→U :

FS→U = fEDP (FS);FS = fS(s) (8)

Next, we freeze the ED encoder that accepts ED images u
as input and use a token-wise average pooling to convert the
token features output by the ED encoder into ED features FU .
Finally, we take FU as the ground-truth and train the ED-
aware teacher and ED predictor to learn the mapping from
structural features to ED features on 2 million molecules. The
loss function Lalign is defined as:

Lalign = L1(FS→U ,FU ) (9)

where L1 represent L1 distance. With the ED-aware teacher,
the costly ED image can be replaced by a cheaper structural
image, significantly reducing DFT-related costs.

3.6 ED-enhanced Molecular Geometry Learning
In the training stage of downstream tasks, we first convert
the molecular conformations in the dataset into geometric
data and multi-view structural images using structural loader
and structural render. Subsequently, geometry data and im-
ages are input into the geometry student fG and frozen ED-
aware teacher to extract features FG and FS , respectively.
Please note that fG can be any geometry-based model, such
as SchNet [Schütt et al., 2017], EGNN [Satorras et al., 2021],
etc. Next, a mapper fM is used to map the geometry features
into the structural space to obtain fM (FG). Subsequently,
the frozen ED predictor accepts fM (FG) and FS as input
and obtains predicted ED features:

FG→U = fEDP (fM (FG));FS→U = fEDP (FS) (10)

To distill the ED knowledge from the teacher model to the
student model, we define a consistency loss LED:

LED = SL1(FG→U ,FS→U ) (11)

where SL1 represents smooth L1 distance [Girshick, 2015].
In order to obtain task-related labels, we define a task predic-
tor fT , which accepts geometry features FG to output task-
related logits ŷ = fT (FG). The task-related loss function is
defined as:

LTask = L1(ŷ, y) (12)

The final loss of EDG is formulated:

LEDG = LTask + λLED, (13)

where λ is the balanced coefficient. In the inference phase,
the prediction result is obtained by sequentially inputting the
geometry data into the student network fG and the task pre-
dictor fT . Therefore, images are only involved in the training
of the model and are not needed during inference, which fur-
ther improve the efficiency.

4 Experiments and Results
4.1 Experimental Settings
Datasets and evaluation protocol. To pre-train ImageED,
the ED-aware teacher, and the ED predictor, we select the
first 2 millions unlabeled molecular conformations and their

DFT-computed ED data from the EDBench database [Xiang
et al., 2025], generated by Psi4 software [Turney et al., 2012]
with a grid spacing of 0.4. In evaluation stage, we select
12 widely used tasks related to quantum mechanic proper-
ties from QM9 [Ramakrishnan et al., 2014] and 10 common
tasks related to energy/force from revised MD17 (rMD17)
[Christensen and Von Lilienfeld, 2020]. It is worth noting
that for the force prediction, we first predict the molecular
energy and use the gradient of each node position as the
force, that is, force=-torch.autograd.grad(outputs=energy,
inputs=positions) in PyTorch [Paszke et al., 2019]. The
dataset split follows Geom3D [Liu et al., 2024], i.e., using
110K for training, 10K for validation, and 11K for testing in
QM9 and 950 for training, 50 for validation, and 1000 for
testing in rMD17. We use mean absolute error (MAE) as
evaluation metric.

Baselines. To verify the effectiveness of EDG, we select
many geometry-based models with different architectures,
such as SchNet [Schütt et al., 2017], EGNN [Satorras et al.,
2021], Equiformer [Liao and Smidt, 2023], SphereNet [Liu et
al., 2022], ViSNet [Wang et al., 2024a], as geometry students
to verify the generalizability of EDG. Following [Liu et al.,
2022; Wang et al., 2024a; Liu et al., 2024], we ensure that
each baseline is fully trained. For example, SchNet, EGNN,
and SphereNet are trained for 1,000 epochs with a learning
rate of 5e-4; Equiformer is trained for 300 epochs with a
learning rate of 5e-4; and ViSNet is trained for 3,000 epochs
with a learning rate of 0.0002. The batch size of SchNet,
EGNN, SphereNet, and Equiformer is set to 128 in QM9 and
1 in rMD17, the batch size of ViSNet is set to 4 in rMD17.

Implementation details. The encoder and decoder of
ImageED are built based on ViT-Base/16. In pre-training
of ImageED on 2 million ED molecules, we use a learn-
ing rate of 1.5e-4, a batch size of 64, a mask ratio of 0.25,
λMP and λRP of 1 for 20 epochs on 8 GeForce RTX 4090
(See Appendix G for more details). In pre-training of ED-
aware teacher on 2 million molecules, we divide 2% as val-
idation set and the rest as training set. We use a learning
rate of 5e-3 and a batch size of 128 to train the ED-aware
teacher and ED predictor for about 280k steps (See Appendix
H for more details). In distillation stage of EDG, we se-
lect hyper-parameters λ from 1e-4 and 5e-4 to 1.0 with a
10x increasing in steps. Following [Wang et al., 2024a;
Liu et al., 2024], we run the experiments with exactly the
same parameter settings as the baselines and report test scores
corresponding to the best validation performance. The map-
per and task predictor consists of a simple linear layer.

4.2 Main Results
We first evaluate the performance of EDG on the 12 quan-
tum properties from QM9 with 4 baselines (SchNet, EGNN,
Equiformer, SphereNet) and Table 1 shows the main results.
We find baselines equipped with EDG achieve the best per-
formance. We observe that regardless of the architecture,
the baselines after equipping EDG achieve consistent per-
formance improvement with a relative performance increase
ranging from 2.2% to 6.4% in average MAE performance.
Except for the property U in Equiformer, all other perfor-
mance are enhanced.
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Model α ↓ ∇E ↓ EHOMO ↓ ELUMO ↓ µ ↓ Cv ↓ G ↓ H ↓ R2 ↓ U ↓ U0 ↓ ZPVE ↓
α3

0 meV meV meV D cal
mol·K meV meV α2

0 meV meV meV

SchNet 0.07021 50.829 31.952 26.168 0.03013 0.03228 14.678 14.090 0.13455 14.142 13.915 1.714
EDG-SchNet 0.06866 49.778 31.884 25.972 0.02980 0.03162 14.022 13.841 0.12458 13.794 13.826 1.688

∆ ↑2.2% ↑2.1% ↑0.2% ↑0.7% ↑1.1% ↑2.0% ↑4.5% ↑1.8% ↑7.4% ↑2.5% ↑0.6% ↑1.5%

EGNN 0.06474 49.493 29.865 24.696 0.02981 0.03125 11.057 10.596 0.07494 11.013 10.150 1.519
EDG-EGNN 0.06147 46.979 28.319 24.283 0.02655 0.03078 10.708 10.298 0.07225 9.985 10.012 1.498

∆ ↑5.1% ↑5.1% ↑5.2% ↑1.7% ↑10.9% ↑1.5% ↑3.2% ↑2.8% ↑3.6% ↑9.3% ↑1.4% ↑1.4%

Equiformer 0.06762 46.308 26.017 23.681 0.02074 0.02733 18.439 16.453 0.45828 15.339 23.928 1.537
EDG-Equiformer 0.06476 45.813 25.492 23.266 0.01985 0.02642 15.976 14.451 0.43947 15.466 16.517 1.529

∆ ↑4.2% ↑1.1% ↑2.0% ↑1.8% ↑4.3% ↑3.3% ↑13.4% ↑12.2% ↑4.1% ↓0.8% ↑31.0% ↑0.5%

SphereNet 0.04670 40.129 22.007 19.435 0.02689 0.02437 7.875 7.199 0.25821 6.999 6.641 1.253
EDG-SphereNet 0.04592 39.694 21.842 19.014 0.02648 0.02376 7.769 6.283 0.24935 6.502 6.101 1.206

∆ ↑1.7% ↑1.1% ↑0.7% ↑2.2% ↑1.5% ↑2.5% ↑1.3% ↑12.7% ↑3.4% ↑7.1% ↑8.1% ↑3.8%

Table 1: The mean absolute error (MAE) performance of different methods on 12 quantum mechanics prediction tasks in QM9. ∆ represents
the relative improvement percentage calculated by (1− w/EDG

w/oEDG
)× 100.

Model Aspirin ↓ Azobenzene ↓ Benzene ↓ Ethanol ↓ Malona. ↓ Naphth. ↓ Paracetamol ↓ Salicylic ↓ Toluene ↓ Uracil ↓

SchNet 0.73909 0.39678 0.02052 0.12516 0.16142 0.21158 0.37097 0.19078 0.20797 0.07872
EDG-SchNet 0.35525 0.33441 0.01711 0.06061 0.11181 0.07338 0.28303 0.15697 0.08780 0.07433

∆ ↑51.9% ↑15.7% ↑16.6% ↑51.6% ↑30.7% ↑65.3% ↑23.7% ↑17.7% ↑57.8% ↑5.6%

SphereNet 0.18091 0.09794 0.00647 0.03784 0.06005 0.03823 0.10425 0.14119 0.03452 0.08088
EDG-SphereNet 0.13622 0.06788 0.00413 0.03575 0.05659 0.02753 0.09934 0.09569 0.02413 0.03683

∆ ↑24.7% ↑30.7% ↑36.2% ↑5.5% ↑5.8% ↑28.0% ↑4.7% ↑32.2% ↑30.1% ↑54.5%

ViSNet 0.05547 0.02081 0.00627 0.01095 0.01517 0.01313 0.02700 0.01966 0.01089 0.01238
EDG-ViSNet 0.04650 0.01838 0.00616 0.00990 0.01395 0.01178 0.02491 0.01906 0.00998 0.01188

∆ ↑16.2% ↑11.7% ↑1.8% ↑9.6% ↑8.0% ↑10.2% ↑7.8% ↑3.0% ↑8.3% ↑4.0%

Table 2: The MAE performance of different methods on 10 energy ( kcal
mol

) prediction tasks in rMD17. Malona. and Naphth. represents
Malonaldehyde, Naphthalene, respectively. ∆ represents the relative improvement percentage calculated by (1− w/EDG

w/oEDG
)× 100.

In order to verify the effectiveness of EDG in more tasks,
we further evaluate on 10 energy/force prediction tasks from
rMD17 with 3 baselines (SchNet, SphereNet, ViSNet). Ta-
ble 2 and Table 3 show the prediction performance on energy
and force respectively. We find the same conclusion as on the
QM9 benchmark, that is, EDG improves the performance of
all baselines with average MAE performance improvements
ranging from 8.1% to 33.7% on energy and 1.5% to 5.3% on
force. It is worth noting that EDG has a larger improvement
on energy prediction than on force. This is because ED can
capture the global energy distribution, while force, as an en-
ergy gradient, depends on local atomic interactions, making
the improvement brought by ED is not as obvious as energy.
In any case, the performance improvements on energy and
force prove the effectiveness of EDG. In addition, we also vi-
sualize absolute value of the difference between the predicted
energy ypred and the ground-truth ytrue for all trajectories in
the test set by showing the absolute value of the difference be-
tween them in Figure 3, which shows that EDG outperforms
the baselines in energy prediction for almost all trajectories.

4.3 Hyperparameters Analysis
λ in Formula 13 is a parameter used to control the strength
of distilling knowledge from the ED-aware teacher into the
geometry students and a larger value will force the student to
learn more knowledge from the teacher. Figure 4 shows the
line figures of the performance of EGNN and ViSNet with
different LED on QM9 and rMD17, respectively. Overall, we

Figure 3: The visualization of SchNet on Naphthalene task and
SphereNet on Uracil task. The y axis represents the absolute value
of the difference between ypred and ytrue on the test set.

find that EDG can improve the performance of baselines to
varying degrees with LED. For example, on the aspirin task,
the performance gain of EDG fluctuates from 8.2% to 16.2%
with the adjustment of LED. In addition, we also find several
patterns: on the α and U tasks, as LED increases, the perfor-
mance decreases overall; on the ∇E , ELUMO, aspirin, and mal-
onaldehyde tasks, the performance curve changes with LED

in a U-shaped manner. These findings suggest that by tuning
the appropriate LED, EDG can better enhance the baselines.

4.4 Results of ED images on Energy-related Tasks
Here, we describe the advantages of the proposed ED image
on energy-related tasks. We sample 10,000 molecules from 2

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Model Aspirin ↓ Azobenzene ↓ Benzene ↓ Ethanol ↓ Malona. ↓ Naphth. ↓ Paracetamol ↓ Salicylic ↓ Toluene ↓ Uracil ↓

SchNet 1.04245 0.90082 0.18569 0.38519 0.65536 0.39851 0.82544 0.77487 0.48322 0.51399
EDG-SchNet 1.04910 0.91692 0.17113 0.37901 0.64678 0.39509 0.83296 0.74308 0.47790 0.50783

∆ ↓0.6% ↓1.8% ↑7.8% ↑1.6% ↑1.3% ↑0.9% ↓0.9% ↑4.1% ↑1.1% ↑1.2%

SphereNet 0.39134 0.21776 0.02151 0.19432 0.29278 0.11141 0.32265 0.28692 0.10978 0.27702
EDG-SphereNet 0.38598 0.21665 0.02101 0.18741 0.28456 0.11102 0.32023 0.28299 0.10804 0.17179

∆ ↑1.4% ↑0.5% ↑2.3% ↑3.6% ↑2.8% ↑0.3% ↑0.8% ↑1.4% ↑1.6% ↑38.0%

ViSNet 0.15164 0.05729 0.00656 0.05688 0.09275 0.02808 0.10488 0.08348 0.02980 0.05252
EDG-ViSNet 0.14996 0.05691 0.00647 0.05558 0.08992 0.02798 0.10599 0.08107 0.02780 0.05100

∆ ↑1.1% ↑0.7% ↑1.3% ↑2.3% ↑3.0% ↑0.3% ↓1.1% ↑2.9% ↑6.7% ↑2.9%

Table 3: The MAE performance of different methods on 10 force ( kcal
mol·Å ) prediction tasks in rMD17. Malona. and Naphth. represents

Malonaldehyde, Naphthalene, respectively. ∆ represents the relative improvement percentage calculated by (1− w/EDG
w/oEDG

)× 100.

Figure 4: Performance of EDG with different LED . The x axis and y axis represent the value of LED and the corresponding MAE perfor-
mance, respectively. LED = 0 means that EDG is not used.

million DFT data and predict the energy of the molecular sys-
tem given the ED information. We use exactly the same ex-
perimental settings and hyperparameters and randomly split
the dataset into training/validation/test sets with an 8:1:1 ratio
for evaluation. More settings see Appendix B. For each ED
representation, we select the corresponding popular encoder
to extract features, such as point cloud-based PointNet [Qi
et al., 2017], voxel-based ResNet3D [Hara et al., 2018] and
image-based ResNet18 [He et al., 2016]. As shown in Table
4, we find the proposed ED iamge achieves the best perfor-
mance on 6 energy-related tasks with a relative performance
gain ranging from 7.8% to 71.6%, which demonstrates the
effectiveness of image as a representation of ED and that 2D
images are easier to learn compared to 3D representations.

Models E1 E2 E3 E4 E5 E6

Point 275.1 168.6 557.7 244.8 14.5 288.9
Voxel 121.1 313.9 947.8 271.2 7.9 202.0
Image 111.6 47.9 349.8 85.6 4.4 124.5

∆ ↑7.8% ↑71.6% ↑37.3% ↑65.0% ↑44.5% ↑38.4%

Table 4: RMSE (Root Mean Squared Error) performance of differ-
ent ED representations on 6 energy prediction tasks. Point (point
cloud), voxel, and image use PointNet, ResNet3D, and ResNet18
as encoders, respectively. E1-E6 represent DF-RKS Final Energy,
Nuclear Repulsion Energy, One-Electron Energy, Two-Electron En-
ergy, DFT Exchange-Correlation Energy, and Total Energy, respec-
tively. ∆ represents the relative performance gain of the image com-
pared to the best other results.

4.5 Visualization of ImageED
As shown in Figure 5, we find that ImageED can generate ED
images well compared original images, which indicates that

ImageED can learn ED-related knowledge well. In addition,
we find that simply applying the masked prediction task (Im-
ageED w/o LRP ) will limit the understanding of ImageED in
local pixels, which shows the importance of restoration pre-
diction task in ImageED. We show more examples in the Ap-
pendix I.

Figure 5: Several examples of ImageED output visualizations.

5 Conclusion
In this work, we propose a novel ED-enhanced molecular
Geometry representation learning framework (called EDG),
which is the first attempt to exploit ED images to improve
the performance of geometry-based methods. We propose
an efficient ED representation learning, called ImageED, to
extract ED knowledge from images and further transfer the
knowledge in ImageED to an ED-aware teacher to save the
cost of DFT. By exploiting ED-aware teacher, EDG can sig-
nificantly improve the performance of geometry-based meth-
ods without any architectural modifications on a large num-
ber of quantum chemical benchmarks. In addition, we ex-
perimentally show that using ED images can more accurately
predict energy-related prediction tasks while saving memory
and computational costs, enabling direct use of ED images in
broader tasks like drug discovery and materials science.
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