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Abstract

We present a novel Mixed Integer Linear Program
formulation that produces optimal plans for a con-
stellation of remote sensing satellites. The general-
ized formulation is applied to an operational NASA
constellation to improve wildfire danger predic-
tion. The planner generates integrated data collec-
tion and downlink plans for multiple agile satellites
with limited storage capacity, minimum energy re-
quirements, and temporal constraints. Observation
targets and modes are associated with science re-
wards. The planner maximizes the aggregate re-
wards collected for all observations on all satellites.
Our generalized model for integrated data collec-
tion and downlink uses a novel interval-based ab-
straction called Data Cycles, without time-indexed
variables. Data cycles organize the multitude of ob-
servation and downlink opportunities from 1 sec-
ond granularity into sequences of data collection
and downlink intervals. Experiments using large-
scale real-world data yield optimal 24-hr plans for
an eight satellite constellation, which capture 99%
of the ∼23,000 available targets and 99.9% of
available science rewards.

1 Problem Summary and Application
We present a generalized Mixed Integer Linear Program
(MILP) formulation which includes many practical model el-
ements required for producing coordinated plans for a con-
stellation of agile satellites. Each satellite has a set of data
collection and downlink opportunities. The planner chooses
when, where (targets), and how (mode) each satellite will
collect and downlink data to maximize aggregate science re-
wards. The satellites have limited data storage, requiring
downlinks to free up space for more observations. Energy
usage is tracked to ensure a minimum state of charge. The
model enforces sequence and setup time constraints when
two satellites see the same ground station (GS), or when two
GS see the same satellite. It includes multiple observation
modes with setup times to switch between them. Energy and
storage constraints depend on the observation mode or GS
selected. Multi-satellite coordination is achieved by ensuring

Figure 1: USGS Large Fire Probability (WLFP) Forecast for 8/1/20

each target is counted only once in the objective, even if seen
multiple times.

The generalized MILP planner is then applied to a NASA
mission to generate an optimal plan for agile, spaceborne
observation and downlink that will improve the forecast of
wildfire danger in pre-fire conditions. NASA’s currently ac-
tive CYGNSS mission [Ruf et al., 2018] consists of eight
spacecraft, each carrying a Global Navigation Satellite Sys-
tem - Reflectometry (GNSS-R) instrument. The instrument
collects GNSS signals reflected off the Earth’s surface, from
which geophysical properties may be inferred. CYGNSS
sensors usually remain ON in a low volume data collection
mode, where information is compressed on-board (with loss).
CYGNSS was originally designed to track cyclones. Cur-
rent NASA scheduling for CYGNSS does not use automated
planning. Nominally, the mission continually gathers and
downlinks compressed data, with only occasional schedule
changes planned by humans.

NASA has recently been using CYGNSS “off-label” to de-
tect burned areas after a wildfire. For that case, a high vol-
ume data collection mode called RawIF is used where ob-
servations in raw format are downlinked without compres-
sion. Uncompressed data potentially holds information lost
during compression, providing finer resolution images. Each
observation involves collecting multiple signals reflected off
the ground. Compressing the data reduces the number of re-
flected signals collected, and reduces the spatial resolution
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and extent of the image. An open-source Earth Observa-
tion Simulator calculates time windows for observation and
downlink opportunities, and eclipse intervals [Ravindra et al.,
2021]. CYGNSS observations are collected over the contigu-
ous US and GS are in Hawaii, Chile and Australia.

The U.S. Geological Survey (USGS) produces a wildfire
danger probability to estimate wildfire risk based on factors
including weather, vegetation, and fuel moisture. Figure 1
shows the USGS WFPI-based Large Fire Potential (WLFP)
forecast for August 1, 2020 [USGS, 2025]. This heatmap
shows a 1-km grid of observation target locations and de-
fines each target’s science reward. Each of the ∼47,000 grid
points is assigned a WLFP value between 0 and 7, yielding
∼23,000 targets with non-zero rewards. WFPI is the Wild-
land Fire Potential Index, a unit-less number related to vege-
tation flammability. WLFP (figure 1) is derived from WFPI.
They are both USGS terms. Optimal measurements are ex-
pected to improve forecasts using neural network methods
offline [Roy-Singh et al., 2025], [Nag et al., 2024].

2 Related Research
There is extensive research that addresses agile satellite
scheduling for Earth Observation [Liu et al., 2017; Kan-
gaslahti et al., 2024; Lemaitre et al., 2002], but far less on
formulations that guarantee optimality applied to real mis-
sions [Wang et al., 2021]. Near-optimal solutions typically
involve a single satellite [Herrmann and Schaub, 2023; Kucuk
and Yildiz, 2019], or observations only [Chen et al., 2019;
Frank et al., 2016; Levinson et al., 2022; Nag et al., 2018], or
downlinks only [Spangelo et al., 2015], or scheduling them
independently [Cho et al., 2018]. There is less work on
an integrated model for simultaneously planning data col-
lection and downlink, and the few that enforce data storage
constraints use synthetic, randomly generated targets such as
[Xiao et al., 2019]. We present work using large-scale, real-
world data for orbits, target locations, science rewards.

[Cho et al., 2018] provide a good survey of related work.
They propose constructing and solving separate MILP mod-
els for planning observations and downlinks in a 2-step pro-
cess. Step 1: Solve a downlink MILP to assign satellites to
downlink windows. Step 2: Solve a second MILP to assign
observations, given the downlink assignments from Step 1.
They use orbits from historical missions, with up to 700 ran-
domly generated targets for 1 satellite, or 500 for 3 satellites.

[Xiao et al., 2019] present a variation of the “flow shop”
problem where there are two machines: observe and down-
link. They present an interval-based MILP model for multi-
satellite observation and downlink scheduling, where each
task is an observation and downlink pair. They integrate ob-
servations and data downlinks but have no storage limit, and
all targets must be observed. They present experiments with
10 tasks in a four day plan horizon, or 20 tasks in 8 days,
with up to two satellites, and use synthetic data only. Their
objective is to minimize completion time (makespan).

[Spangelo et al., 2015] present a MILP model for down-
links only (no observation planning) and a single satellite.
Their objective is to maximize the total amount of data down-
linked. Different ground stations may have different data and

Figure 2: Planner Inputs and Outputs

energy consumption rates, so it may save energy to skip over
one GS and wait for the next one. They split the plan hori-
zon for each satellite into intervals delimited by passes over
ground stations, similar to our model.

[Levinson et al., 2022] present methods for scheduling ob-
servations for multiple agile satellites which have multiple
instruments (P-band and L-band radar) and can slew to 62
different viewing angles, and target rewards depend on the
instrument type and viewing angle. It involves observation
scheduling only, with no downlinks or storage limits.

[Valicka et al., 2019] solve a stochastic MIP model for
scheduling observations only, but with observation uncer-
tainty, for multiple satellites.

[Monmousseau, 2021] presents a system designed to match
Planet Lab’s heuristic simulated annealing method, and re-
quires solving a sequence of 4 different MILPs: First it opti-
mizes for one objective, then another, until finally maximiz-
ing rewards. It assumes events are continuously rescheduled
(modifying an existing plan), so first it minimizes the number
of plan changes required (minimum perturbation), tracking
which “events” must be rescheduled (turned on/off).

[Lee et al., 2024] maximize observation count rather than
rewards, and do not consider observation modes which have
different energy and data consumption rates. Their evaluation
includes 3 satellites and 5 targets.

3 Planner Model and Methods
Our ground-based, centralized planner produces plans to
maximize the aggregate science rewards of observed targets
for multiple agile satellites. Figure 2 shows the inputs and
outputs. Pre-processing, highlighted in yellow, converts raw
orbital data into a data cycle abstraction used by the Plan-
ner. For improving wildfire forecasts, key inputs include the
WLFP forecast shown in Figure 1, observation and downlink
opportunity times, and eclipse times for each satellite. Key
performance indicators are the total science rewards collected
over all observations, and the number of targets and images
observed (each image covers multiple targets). Each obser-
vation collects one image which covers multiple targets, and
different images may cover the same targets.

Observation Modes: The satellites are capable of switch-
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Figure 3: The Choice File defines each satellite’s choices

ing between multiple observation modes that represent com-
binations of different instruments, footprints, viewing angles,
etc. Some viewing angles may degrade the maximum reward
value which is based on WLFP (Figure 1). The model is
capable of supporting any combination of instruments, an-
gles or other operational parameters because the details for
data collection and downlink rates are calculated during pre-
processing and treated as application-specific input parame-
ters, appearing as constants in the MILP model. Our exper-
iments use observation modes combining two different sen-
sor footprints: Large and Small with a range of viewing an-
gles that require setup time to change. Large images use the
CYGNSS RawIF mode, and consume 1/60 of buffer capac-
ity. Small images cover half the targets covered by Large im-
ages, and consume half the storage (1/120 of capacity). The
Large images correspond to the actual RawIF images used on
CYGNSS, while the small images were introduced for exper-
imental purposes for the generalized model.

Data Storage Model: Our data storage model is based on
the CYGNSS satellites [Ruf et al., 2018], which use First-In-
First-Out (FIFO) buffers, that hold 60 seconds of Large image
(RawIF) data or 120 seconds of Small image data. Observa-
tions take one second to collect, and ∼20 seconds to down-
link. It takes ∼20 downlink minutes to empty a full buffer.

Constraints: The planner enforces these constraints:
1. No data collection allowed when storage is full
2. No downlinks allowed when storage is empty
3. Satellites can downlink to only one GS at a time
4. Each GS can connect with only one satellite at a time
5. Battery charge can never dip below a minimum level
6. Target rewards are counted only once in the objective,

even when observed by multiple satellites
Plan Choices: Figure 3 shows the Choice File, which de-

fines the command choices for one satellite. All choices are
optional, and the satellite may remain idle at anytime. Each
row defines a time-indexed command option for every second
when the satellite may collect or downlink data. There may
be multiple observation or downlink choices at one time, but
only one command can be executed at a time. The first two
rows show a choice between two observation modes, L3 or

Figure 4: Data Cycles for one satellite over 24 hours

S7, at time 21. Mode “L3” means a Large image at viewing
angle 3, covering targets 12, 4, 39, 66, 17, 29. Mode “S7” is
a Small image at angle 7, covering targets 4, 39, 66. Setup
time is required for satellites to change viewing angle, during
which no observations or downlinks can occur. At time 643
a downlink window to a GS in Hawaii begins, with a row for
each second during the window. Hyphens indicate a contigu-
ous sequence of seconds to the same GS. A new downlink
window to Australia-1 begins at time 2020, which overlaps
another downlink window to a second GS (Australia-2) be-
ginning at time 2132. More observation opportunities begin
at time 3585. The large scale of this problem is a challenge. A
24-hour plan for 8 satellites involves ∼92,000 seconds when
there is a binary choice between collecting data or not, or be-
tween downlinking data or not, and there are ∼23,000 poten-
tial observation targets. This 1-second command granularity
is related to the CYGNSS satellite’s speed (∼7km/s).

3.1 Data Cycles
From time-indexed orbital data to intervals: We developed a
novel interval-based abstraction which enables optimal solu-
tions to be found quickly. Instead of decision variables in-
dexed at the 1 second granularity of the choice file (Figure
3), we model temporal intervals called data cycles (Figure 4).
Each data cycle is a sequence of 2 phases: First the obser-
vation phase fills up storage, followed by the downlink phase
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which frees up storage. Cycles are repeated for the duration
of the plan horizon.

Figure 4 shows one satellite’s data cycles for 24 hours. The
first observation phase is from time 4695 through time 5410.
It lasts 716 seconds, with 667 image opportunities, meaning
there are gaps when there are no targets. The downlink phase
lasts from 8278 to 10423 (2146 seconds), including multiple
separated GS overpasses, for a total of 965 seconds of down-
link opportunity. This satellite is assigned image ID’s 1-2782.
These are possible observations, only a subset of which will
be selected in the plan. The satellite may collect images 1-
667 during Cycle 1. Images 668-1369 may be collected dur-
ing Cycle 2. The buffer can fit up to 60 Large or 120 Small
images, or a mix of the two. Each cycle’s plan appears in
the shaded boxes, showing the number of images collected,
storage consumption and production. Some cycles consume
all storage or use all available downlink seconds, and others
don’t. Note that cycle 3 uses only 662 downlink seconds out
of 4548 available, freeing only 55% of storage. In contrast,
100% of the storage is freed in the next two cycles (4 and
5). The last cycle starts with empty storage, fills it with 60
images, then the 24 hour horizon ends.

Pre-processing: The Data Cycles in Figure 4 are extracted
from the Choice File (Figure 3). Algorithm 1 shows pseu-
docode that creates the Data Cycles for each satellite. Each
cycle contains lists of possible observation and downlink
choices. We also define a downlink window, dnlWindow,
which is a contact interval for a given GS. In Algorithm 1,
each row in the choice file is parsed to identify the time,
command and targets. Each possible observation is as-
signed an image ID. Cycles start with the observation phase,
ignoring downlink choices until after data has been collected.
Each observation is appended to the cycle.obs list. If the
command is an observation and there is a prior downlink win-
dow, that marks the end of the prior cycle, and a new cycle is
started. If the command is a downlink and the cycle already
contains observations, then we check if this command contin-
ues the current downlink window. As long as the GS remains
unchanged and time increments by only 1 second, the dura-
tion of dnlWindow is extended. If the next row in the choice
file has a break longer than 1 second or the GS changes, then
a new downlink window is started. All cycles are collected
into satCycles, which is returned as the result.

Data Cycle Properties: Data cycles organize the flat
Choice File into a sequence of knapsack-like problems for
each satellite. Algorithm 1 converts the Choice File into a
sequence of intervals (cycles), each containing a sequence
of sub-intervals for repeatedly filling and unfilling the data
storage. This imposes hierarchy (temporal containment) and
sequence constraints which are not in the flat Choice File.
The start and end of each cycle define the sparse timepoints
where the MILP enforces resource constraints (data and en-
ergy), rather than enforcing on every timepoint listed in the
Choice File.

Data Cycles may be viewed as a novel refillable variant of
the knapsack problem, where each satellite repeatedly fills,
then (partially) empties its data storage knapsack. The knap-
sack problem is not usually iterative, while our satellites may
repeatedly empty and refill the knapsacks. Our variant may

be described as an: iterative, multiple, refillable, and semi-
continuous knapsack. It’s iterative because each satellite fills
up its single knapsack multiple times, and it’s multiple be-
cause there are multiple satellites, each with its own knap-
sack. Continuous means fractions of an item can be added
to a knapsack. Our model is semi-continuous because only
whole images can be added but fractions may be removed.

Figure 4 shows how data cycles help visualize the over-
all high-level problem constraints, making it easy to see the
range and upper bounds on the available observations and
downlink seconds per cycle, and thus the aggregate upper
bounds on the whole 24 hour plan horizon. For example, cy-
cle 1 has 667 image opportunities, while cycle 4 has only
35. Figure 4 also shows how sparsely distributed observation
and downlink events are within the 24-hr horizon. This visu-
alization can help inform future mission design by identify-
ing feasible usage bounds on resources, given the operational
constraints and mission requirements.
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3.2 Generalized MILP Formulation
In this section, we present the generalized MILP formulation
constructed for data cycles.

Input Parameters
S = Set of satellites
Ks = Set of data cycles for satellite s ∈ S
Is,k = Set of images visible by sat s during cycle k
durs,k = total # of seconds in cycle k on sat s, 1 ≤ k ≤ |Ks|
I = Set of image opportunities for all satellites,

i ∈ I is an image id, 1 ≤ i ≤ |I|
Ji = Set of targets covered by image i

J =
|I|⋃
i=1

Ji =Set of all targets covered by all images

Ij = images which cover target j
T = set of observation modes/types (a set of any symbols)
oMi = observation mode for image i, oMi ∈ T
oTi = the observation time for image i
mj = observation modes available for viewing target j
rj,m = reward for observing target j with observation

mode m, ∀j ∈ J, ∀m ∈ mj (used in objective)
sinit = initial storage available (%), default = 100
G = Set of all ground stations (GS)
Wg = Set of time windows when GS g may

downlink data from any satellite
Ds,k = Set of downlink windows between sat s

and any GS during cycle k
Ds,k,g = Set of downlink windows between sat s

and GS g during cycle k,Ds,k,g ⊂ Ds,k

ds,k,g,n ∈ Ds,k,g = the nth downlink window in Ds,k,g

dLs,k,g,n = the Lower Bound (earliest start) of window ds,k,g,n
dUs,k,g,n = the Upper Bound (latest end) of window ds,k,g,n
∆s−i = Storage % consumed by observation mode oMi
∆s+g = Storage % produced / downlink second for GS g

∆e+ = Energy % produced / second (except during eclipse)
∆e− = Energy % consumed every second of the mission
∆eo−i = Extra energy % consumed/sec for obs mode oMi
∆ed−g = Extra energy % consumed/sec of downlink to GS g

einit = initial energy available (%) default = 100
emin = minimum energy (battery state of charge)
eclipses,k = number of eclipse seconds in cycle k on sat s
cG = setup time for GS to change between satellites
cS= setup time for satellite to change between GS
cOi,j= setup time to change obs modes from oMi to oMj

(sensor setup time + slew time to change view angles)

Binary Decision Variables
xi = 1 ⇔ image i is in the plan, ∀i : 1 ≤ i ≤ |I|
yj,m = 1 ⇔ target j is planned to be viewed with observation

mode m ∈ T , ∀j : 1 ≤ j ≤ |J | (used in objective)
zs,k,g,n = 1 ⇔ sat s downlinks to g in window n of Ds,k,g

vg,s1,k1,n1,s2,k2,n2 = 1 ⇔ GS g sees satellites s1 and s2
at the same time: Slots ds1,k1,g,n1 & ds2,k2,g,n2 overlap,
and both slots are in the plan (requiring deconfliction)

wg,s1,k1,n1,s2,k2,n2 = 1 ⇔ vg,s1,k1,n1,s2,k2,n2 = 1 and
downlinking in ds1,k1,g,n1 ends before downlinking in
ds2,k2,g,n2 begins (sequence for satellite deconfliction)

qs,k,g1,n1,g2,n2 = 1 ⇔ Sat s sees GS g1 and g2 at the same
time: Slots ds,k,g1,n1 & ds,k,g2,n2 overlap, and both
slots are in the plan (requiring deconfliction)

us,k,g1,n1,g2,n2 = 1 ⇔ qs,k,g1,n1,g2,n2 = 1 and
downlinking in ds,k,g1,n1 ends before downlinking in
ds,k,g2,n2 begins (sequence for GS deconfliction)

Continuous Decision Variables
sas,k = Storage % available for sat s on cycle k,

0 ≤ sas,k ≤ 100
scs,k = Storage % consumed for sat s on cycle k,

0 ≤ scs,k ≤ 100
sps,k = Storage % produced for sat s on cycle k,

0 ≤ sps,k ≤ 100
eSs,k = Energy % available on sat s at start of cycle k,

after being capped at 100%, emin ≤ eSs,k ≤ 100

eEs,k = Energy % available on sat s at end of cycle k,
0 ≤ eEs,k ≤ 100 + ∆e+durs,k
(solar panel energy production may exceed 100%)

ps,k,g,n = number of downlink seconds planned for ds,k,g,n
0 ≤ ps,k,g,n ≤ dUs,k,g,n − dLs,k,g,n + 1

ts,k,g,n = start time of downlink during ds,k,g,n
0 ≤ ts,k,g,n ≤ dUs,k,g,n

Objective: The objective is to maximize the sum of rewards
(quantified using WLFP forecasts shown in Figure 1) for all
observed targets.

Maximize

|J|∑
j=1

∑
m∈mj

rj,m yj,m (1)

Constraints: ∑
m∈mj

yj,m ≤ 1 ∀j ∈ J (2)

yj,m ≤
∑

i∈Ij ,where oMi =m

xi ∀j ∈ J (3)

sas,1 = sinit ∀s ∈ S (4)

sas,k = sas,k−1−scs,k−1+sps,k−1 ∀s ∈ S, ∀k ∈ Ks (5)

scs,k ≤ sas,k ∀s, k (6)

scs,k =
∑

i∈Is,k

∆s−i xi ∀s ∈ S, ∀k ∈ Ks (7)

sps,k =
∑

∀g∈G,∀n<|Ds,k|

∆s+g ps,k,g,n ∀s, k (8)

sps,k ≤ 100− (sas,k − scs,k) ∀s, k (9)

eSs,1 = einit ∀s ∈ S (10)

eSs,k = min(eEs,k−1, 100) ∀s, k (11)

eEs,k = eSs,k+∆e+ (durs,k−eclipses,k)−(∆e−durs,k)(12)
−
∑

i∈Is,k
∆eo−i xi −

∑
∀g∈G ∆ed−g ps,k,g,n, ∀s, k

zs,g,k,n ≤ ps,k,g,n ∀s, k, g, ∀n ∈ 1, ..., |Ds,k,g| (13)
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ps,g,k,n ≤ M zs,k,g,n ∀s, k, g, ∀n ∈ 1, ..., |Ds,k,g| (14)

ts,k,g,n ≤ M zs,k,g,n ∀s, k, g, ∀n ∈ 1, ..., |Ds,k,g| (15)

dLs,k,g,n − ts,k,g,n ≤ M(1− zs,k,g,n) ∀s, k, g, n (16)

ts,k,g,n+ps,k,g,n−dUs,k,g,n ≤ M(1−zs,k,g,n)∀s, k, g, n (17)

vg,s1,k1,n1,s2,k2,n2 ≤ zs1,k1,g,n1 ∀v variables (18)

vg,s1,k1,n1,s2,k2,n2 ≤ zs2,k2,g,n2 ∀v variables (19)

vg,s1,k1,n1,s2,k2,n2 ≥ zs1,k1,g,n1 + zs2,k2,g,n2 − 1 ∀v (20)

wg,s1,k1,n1,s2,k2,n2 + wg,s2,k2,n2,s1,k1,n1 (21)
= vg,s1,k1,n1,s2,k2,n2

ts1,k1,g,n1 + ps1,k1,g,n1 + cG − ts2,k2,g,n2 (22)
≤ M(1− wg,s1,k1,n1,s2,k2,n2), where s1 ̸= s2

qs,k,g1,n1,g2,n2 ≤ zs,k,g1,n1 ∀q variables (23)

qs,k,g1,n1,g2,n2 ≤ zs,k,g2,n2 ∀q variables (24)

qs,k,g1,n1,g2,n2 ≥ zs,k,g1,n1 + zs,k,g2,n2 − 1 ∀q (25)

us,k,g1,n1,g2,n2 + us,k,g2,n2,g1,n1 = qs,k,g1,n1,g2,n2 (26)

ts,k,g1,n1+ps,k,g1,n1+cS−ts,k,g2,n2 (27)
≤ M(1− us,k,g1,n1,g2,n2), where g1 ̸= g2

xi + xj ≤ 1 (28)

∀ images i, j ∈ Is,k which cannot be scheduled together
due to setup time requirements (see Algorithm 2).

Equation (1) shows the objective, which maximizes the ag-
gregate reward for all observed targets, where the reward de-
pends on the observation mode. Constraints (2) ensure each
target contributes to the objective at most once. This is a max-
imization problem, so optimal solutions select the most re-
warding observation mode m for each target. Constraints (3)
ensure: If target j is observed with mode m, then at least one
image capturing j with mode m must be the plan. Note the
objective is a function of the targets selected, but the storage
and energy constraints are driven by the number of images
selected.

Storage Constraints: Constraints (4) set the initial storage
available to sinit. In our example all satellites start with 100%
storage. Constraints (5) ensure the storage available at the
start of cycle k = (storage available at the start of prior cy-
cle) - (storage consumed on prior cycle) + (storage produced
on prior cycle). Constraints (6) ensure no cycle uses more
storage than is available. Constraints (7) track the storage
consumed by satellite s on cycle k, where storage consumed
per image depends on each image’s observation mode. This
constraint leverages the fact that image ids are contiguous in-
tegers for each satellite (see Algorithm 1). Constraints (8)
calculate storage produced during data cycle k as the sum of
storage produced from all downlinks in cycle k, where the
downlink rate depends on the GS. Constraints (9) ensure the
plan never downlinks when storage is empty.

Energy Constraints: Constraints (10) set the initial energy
level to einit. In our example all satellites start with 100%
energy. Constraints (11) set each cycle’s available energy to
the energy remaining at the end of the prior cycle, unless that
exceeds 100%, in which case it is capped at 100. Constraints

(12) calculate the total energy which would be available at the
end of the cycle, assuming infinite battery capacity, but Con-
straints (11) ensure it never exceeds 100%. Constraints (12)
say: energy available for satellite s the end of data cycle k
= (the energy available at the cycle start) + (energy produced
by solar panels when not in eclipse) - (energy consumed by
nominal operations) - (energy consumed for data collection
which depends on the observation mode m) - (energy con-
sumed downlinking which depends on the GS g). Energy can
never dip below the minimum energy threshold because the
lower bound of the decision variable eSs,k is set to emin.

Downlink constraints: Constraints (13) through (17) track
which downlink windows are used, and ensure downlinks are
scheduled within selected windows. The variable zs,g,k,n in-
dicates satellite s is scheduled to downlink to GS g during the
nth downlink window in cycle k. Constraints (13) and (14)
ensure zs,g,k,n = 1 if and only if downlink time is scheduled in
window ds,k,g,n. Constraints (15) ensure the downlink start
time t is 0 if the downlink window ds,k,g,n is not selected.
Constraints (16) and (17) say: If downlink window ds,k,g,n
is in the plan, then the start time t for downlinking must be
within that window. Conditional constraints (14) through (17)
use Big-M notation where M is a large constant. The Big-M
notation refers to a way to model conditional constraints in
MILP. It is used to “activate/deactivate” constraints based on
binary variables being one or zero. These conditional con-
straints are similar to [Cho et al., 2018], but designed to work
with our unified data collection and downlink model. [Cho
et al., 2018] must commit to imposing a total order on all
overlapping downlink windows, while we only enforce those
constraints when the overlapping time slots are in the plan.

Satellite Conflict Resolution: Constraints (18) through
(22) resolve conflicts when multiple satellites see the same
GS at the same time, by enforcing a sequence so that GS g
is assigned to only one satellite at a time, and includes setup
time for the GS to switch between satellites (cG). Constraints
(18) through (20) ensure indicator variable v = 1 if and only
if overlapping downlink windows n1 and n2 are both in the
plan (using the z indicator variable). Constraints (21) use the
indicator variables w to ensure: if v = 1, then either n1 pre-
cedes n2 or the other way around. Constraints (22) enforce
that sequence constraint only if w indicates it is required.

GS conflict Resolution: Constraints (23) through (27) re-
solve conflicts when a satellite can see multiple GS at the
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Figure 5: Target Reward Histograms (based on WLFP forecasts)

same time, by enforcing a sequence to ensure the satellite is
assigned to only one GS at a time. The temporal separation
includes a setup time for the satellite to switch between GS
(cS). These constraints are very similar to constraints (18)
through (22) described above.

Setup Times for Changing Observation Modes: Con-
straints (28) create mutex constraints between any two
observations that occur too close together for the required
setup time to switch modes. If the setup time to switch
between modes is 5 seconds, then plans cannot include
observations with different observation modes less than 5
seconds apart. Algorithm 2 shows how constraints (28) are
created, leveraging knowledge that image id’s are created in
chronological order and are contiguous within a cycle (see
Algorithm 1). Algorithm 2 works as follows: Loop through
all pairs of observations for satellite s on cycle k. If the
observations use different modes, and the time between them
is less than the required setup time between observations,
cOi,j , then create a mutex constraint to ensure at most one of
the observations is in the plan.

Linearity Assumption: [Spangelo et al., 2015] identify a
linearity assumption shared by our model because both mod-
els check energy and storage constraints at the end of the
same interval. Under some eclipse-related edge-case condi-
tions, it is possible for energy to dip below minimum mid-
cycle and then recover to nominal before the interval ends
(because recharging is prevented during an eclipse). Their
proposed solution incrementally discretizes the interval into
subintervals to constrain energy at finer time scales.

Model abstractions and efficiencies: The model tracks
storage and energy as percentages of capacity available at the
beginning and end of each cycle. Instead of tracking ∼92,000
seconds with time-indexed variables, this model tracks re-
source constraints only at the start and end of ∼49 data cycle
intervals. It does not track specific times or the order images
are collected. Downlink times are modeled only when de-
confliction is required, when multiple satellites see the same
GS, or vice versa. The model doesn’t track when specific im-
ages are downlinked. The planner chooses the optimal num-
ber of downlink seconds, which is not the same as a greedy
downlink policy that always downlinks data when possible.
Figure 4 shows cycle 3 does not downlink all the data, be-

Figure 6: Test results (* = optimal, solver stops before 12-hr limit)

cause that would not improve the optimal objective. Dur-
ing post-processing, each selected observation and downlink
command in the plan is mapped to a specific time-indexed
choice in the choice file (Figure 3). We can trace the down-
linked image IDs to specific ground stations and times be-
cause the data is stored in a FIFO buffer.

4 Evaluation
All experiments were run on a 2023 MacBook Pro, with an
M3 Max chip, 36 GB Memory, using Python 3.8. Our MILP
solver was Gurobi version 11.0.3 [Gurobi, 2025]. Our data
sets and code are available upon request.

We evaluate our system with two data sets. Figure 5
shows the target reward histograms for Experiments A and B.
This shows there are many more low-value targets than high-
value targets. Experiment A is a high fire danger case from
8/1/2020, which was a very active fire season (“A” for “Ac-
tive”). Figure 1 shows the USGS Wildfire Danger Predictions
for that date, which provides the basis for the target rewards
in Experiment A. Experiment B is a lower fire danger case
from 7/15/21. That year was less active and consequently the
target rewards were generally lower in Experiment B. The to-
tal available rewards for Experiment A are ∼30K vs. ∼20K
for Experiment B.

Test Cases: Figure 6 shows 14 tests: Test 1 through 5 use
Experiment A data, and Tests 6 through 14 use Experiment
B data. Three experiment parameters are used: Minimum
reward, MIP gap (Mixed Integer Program gap), and Solve
Time (columns 2-4). Minimum Reward specifies a mini-
mum target reward threshold used to filter out low-reward
targets. Figure 5 shows there are thousands of low-value tar-
gets with rewards less than 0.3 (the largest reward threshold
used in our experiments). Time limit specifies the maximum
amount of solve time allowed before returning the best an-
swer found. All of our tests use a 12 hour time limit, but
the solver terminates early when it finds a solution within
the MIP Gap tolerance which defines an optimal solution.
The MIP gap tolerance specifies a minimum gap tolerance
between the objective and the solver’s best estimate of an
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upper bound for the objective. The MIP gap is defined as:
|upperBound− objective|/|objective|. By default, Gurobi
considers a solution to be optimal when the MIP Gap is less
than 0.0001. It may take many hours to reduce the gap from
0.001 to 0.0001, or it may never get there.

Analysis: Figure 6 summarizes our results, sorted (and
numbered) from highest to lowest objective. The objective is
the column labeled Plan (Objective) and highlighted in yel-
low. Optimal results are indicated by the (*) and highlighted
in blue bold text, and are the only tests which terminate be-
fore the 12-hour limit (see Solve Time). In these cases the
MIP gap tolerance was set to 0.001, except test 13, which
reached an optimal solution in 52 minutes using the default
Gap of 0.0001. The Rewards columns are: the plan rewards
(objective), the total available reward (sum of rewards for all
available targets), and the reward % is the percentage of avail-
able rewards covered in the plan. The Targets columns are:
the number of targets covered in the plan, the number of tar-
gets available, and the % of available targets covered by the
plan. The Images section shows the number of images col-
lected in the plan and total number of available images.

Our key performance metric is Rwd %, highlighted in yel-
low. Rwd% = objective/availableRewards ∗ 100. This
shows more than 99% of available rewards are captured in all
tests, except test 6 which captures 98.8%. All tests also cap-
ture more than 96% of available targets, except test 6, which
captured 92%. The optimal plans include only Large images,
but when the planner is stopped before reaching optimality,
plans do sometimes include Small images.

Plan Quality Trades: Notice in Figure 6 that the objective
is higher for the suboptimal cases (see Test 1 vs. Tests 4
and 5). Recall the objective is the sum of all rewards for
all observed targets. By definition, a solution is optimal if
the solver reaches the specified minimum gap tolerance be-
fore reaching the time limit. These are the tests marked with
(*) and highlighted in blue in Figure 6. The trade is: We
can reach the minimum gap tolerance by removing some tar-
gets, thus reducing the maximum possible objective. Figure 6
shows that in both experiments, the objective increases as the
number of selected targets increase, while the gap decreases
as the number of available targets decreases. For example,
tests 1-3 have higher objectives than the optimal results for
tests 4 and 5. Test 4, with a minimum reward threshold of
0.05 (and MIP Gap tolerance of 0.001) achieved the optimal
score in 1.8 hours, and Test 5 achieved optimality in 28 min-
utes with the default MIP Gap tolerance of 0.0001. Tests 4
and 5 have lower optimal objectives than the suboptimal ob-
jectives of tests 1-3. In the experiment B tests, as solve time
increases, so does the number of observed targets because the
number of targets per image increases.

This shows the trades between solver time, the number of
targets, optimality and objective. Increasing the value thresh-
old helps to reach an optimal solution faster, but reduces the
objective’s upper bound because we are removing some avail-
able targets. In Test 14, with the largest reward threshold
of 0.3, an optimal solution is found in only three minutes.
Mission scientists may regret filtering out low-reward targets.
This raises science questions about if/when to ignore low-
value targets. Note that test 12 timed out after 12-hours with

a minimum reward threshold 0.275, but test 13 found an op-
timal solution in 52 minutes with a minimum reward of 0.28,
which filtered out an extra 107 targets. This shows how sen-
sitive solve times are to the number of available targets.

5 Prior Work
The data cycle abstraction and generalized model presented
above represent the latest evolution of remote sensing plan-
ners for a constellation of satellites. In this section we sum-
marize that prior work to compare results before and after
data cycles. In general, each evolution involved increasing
the number of satellites and increasing the planning horizon.
Data Cycles enabled us to find optimal solutions for the first
time, and with more satellites and a longer plan horizon. The
prior work used the Choice File (figure 3) as planner input (no
data cycles), and created time-indexed binary decision vari-
ables for each timepoint (row) in the Choice File.

Soil Moisture Model Error Reduction: The initial science
problem was to reduce model error associated with soil mois-
ture predictions [Levinson et al., 2021], [Levinson et al.,
2022]. The objective maximized the aggregate error reduc-
tion in the soil moisture model for all observed targets. Each
observation mode was associated with a quantified model er-
ror. The goal was to observe the targets with the highest
model error, using observation modes with the least error.
Observation modes included two sensor types (P-band and L-
band radar) and 62 pointing angles per sensor. Setup time was
required to change instruments and slew time was required to
change angles. The system planned observations only (no
downlinks or storage limits). Problem Size: 3 Satellites, 6
hour plan.

[Levinson et al., 2021] presented Dynamic Constraint Pro-
cessing (DCP) with heuristic search methods for this prob-
lem, and then [Levinson et al., 2022] introduced a MILP for-
mulation to compare the DCP vs. MILP solutions. PDDL
was not considered for this quantitative optimization prob-
lem. Results showed DCP achieved objective scores that were
∼58% of the optimal scores provided by MILP, but the MILP
scaled poorly due to the large number of conflict resolution
constraints required to block mutually exclusive operations.
With a reduced plan horizon of only 2 hours, MILP required
24 hours to find the optimal score (174.7), while DCP found
the best approximate solution (101.2) in 2.5 minutes (58%
of the optimal score). With the full 6 hour plan horizon, the
MILP required 90 million mutex constraints, and failed to
produce any reasonable solution after a 50 hour time limit.

Wildfire Danger Prediction: The present science problem
is improving wildfire danger models. The prior soil moisture
planners (DCP and MILP) were adapted for new science re-
wards, objective function, and satellite operations. The new
objective maximizes the aggregate science reward for whole
constellation by observing targets with the highest wildfire
risk based on the USGS Large Fire Probability Forecast (Fig-
ure 1). For this problem, the DCP and MILP planners were
extended to plan for both observations and downlinks, with
storage limits. Additionally, the search engine used by DCP
for the soil moisture application was replaced with Monte
Carlo Tree Search (MCTS). This resolved scaling problems
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with the prior search engine which maintained all search
nodes in memory, compared to MCTS which maintains far
fewer nodes in memory.

[Levinson et al., 2024] is an unpublished paper (available
online) that explains how the DCP planner was integrated
with the MCTS search engine for this application. Before
data cycles, the percentage of each image downlinked was
tracked at every decision point (every row in the Choice File),
which scaled poorly with MILP. Even for the small problem
of 1 satellite and a 3 hour plan horizon, Gurobi’s MIP Gap
remained 1,907% after 3 days. This is largely due to the 10’s
of millions of constraints required to track the percentage of
each image downlinked at each decision point. Problem Size:
4 satellites, 12 hour plan horizon. There were ∼28k binary
decision variables, timepoints when the planner might choose
to collect or downlink data. The MCTS objective score was
6,131 (20% of the highest score found with data cycles).

[Levinson, 2024] presents a detailed discussion of Propel,
the DCP system which uses MCTS as the search engine be-
hind nondeterministic Python (Python with choice points). It
describes how MCTS works in this context, and includes the
present application as an example. Problem Size: 8 satellites,
24 hour plan, 92,000 binary choice points = 292,000 states in
the search space (before data cycles). The objective score was
12,717 (41% of the highest score found data cycles).

[Roy-Singh et al., 2025] consider two classes of observa-
tion targets, active-fire and pre-fire, with different science re-
ward calculations. See this paper for discussion of the various
neural network methods used to calculate science rewards for
these two different target classes. The objective cannot be
directly compared with the present paper because it includes
both active fire and pre-fire target rewards, while the present
paper includes only pre-fire targets. This work did not use
the generalized model. Experiments involved real-world data
collected by seven CYGNSS satellites over three recent active
fires, and a 24 hour plan horizon.

The present paper builds on the prior work described
above, generalizes the satellite operations model, and intro-
duces the data cycle abstraction. To handle multiple obser-
vation modes, setup and slew times, and conflict resolution
for the wildfire case, we adapted the models originally devel-
oped for the soil moisture case. The data cycle abstraction
reduces the problem size, enabling optimal 24-hour plans for
8 satellites to be generated for the first time. Problem Size: 8
satellites and a 24 hour plan horizon. The highest objective
score is 31,336 (Figure 6, Test 1).

The Data Cycles approach was originally developed for a
very different application: generating flight plans for a drone
to collect image data with limited battery instead of limited
data storage. The drone’s limited 15-minute battery life re-
quired it to return to a charging station repeatedly between
flights. Battery cycles for the drone were the original model
before data cycles, which demonstrates how this refillable re-
source knapsack method applies to different applications.

6 Conclusion
We presented an “orbital to optimal” data pipeline, which
flows from orbital trajectories to optimal solutions. Raw or-

bital projections are converted into the flat Choice File (Fig-
ure 3) which is at 1 second granularity, which is then con-
verted by Algorithm 1 into the Data Cycles abstraction, which
is used as input to the MILP model, which produces optimal
solutions.

Our generalized model applies to tasking most state-of-the
art remote sensing satellite constellations (CYGNSS is only
an example). User-defined observation modes may vary in
data volumes/quality and/or sensor field of view (sensor de-
tails are abstracted away during pre-processing). More gener-
ally, this approach applies to many problems where multiple
agents repeatedly consume and replenish a limited resource
such as data storage or energy (battery charge).

We presented a parameterized and general MILP formula-
tion with many practical elements for remote sensing applica-
tions, including: multiple satellites, integrated data collection
and downlinks, limited storage, observation modes, conflict
resolution and setup times. We demonstrated results using
large-scale real-world data (8 satellites, 24 hour plan hori-
zon, ∼23,000 targets, ∼92,000 seconds when choices must
be made) and an environmental application driven objective
(wildfire probability). We presented a novel interval-based
abstraction for integrated observation and downlink plan-
ning without time-indexed decision variables, and demon-
strated this problem can be solved optimally quickly, produc-
ing plans that collect 99% of available targets and science
rewards. We identified trades between target value threshold
(filtering out low-reward targets), optimality, and objective
score. Optimality may be achieved at the cost of reducing
available science rewards marginally. These trades raise sci-
ence questions about the importance of observing low-value
targets. Additional contributions include making our large,
real-world data sets and code publicly available.
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