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Abstract
Two-view correspondence learning is a key task
in computer vision, which aims to establish reli-
able matching relationships for applications such
as camera pose estimation and 3D reconstruc-
tion. However, existing methods have limitations
in local geometric modeling and cross-stage in-
formation optimization, which make it difficult
to accurately capture the geometric constraints of
matched pairs and thus reduce the robustness of
the model. To address these challenges, we pro-
pose a Multi-Graph Contextual Attention Network
(MGCA-Net), which consists of a Contextual Ge-
ometric Attention (CGA) module and a Cross-
Stage Multi-Graph Consensus (CSMGC) module.
Specifically, CGA dynamically integrates spatial
position and feature information via an adaptive at-
tention mechanism and enhances the capability to
capture both local and global geometric relation-
ships. Meanwhile, CSMGC establishes geometric
consensus via a cross-stage sparse graph network,
ensuring the consistency of geometric information
across different stages. Experimental results on two
representative YFCC100M and SUN3D datasets
show that MGCA-Net significantly outperforms
existing SOTA methods in the outlier rejection and
camera pose estimation tasks. Source code is avail-
able at http://www.linshuyuan.com.

1 Introduction
Two-view correspondence is critical for applications like vi-
sual localization [Chen et al., 2024], SfM [Schonberger and
Frahm, 2016], SLAM [Placed et al., 2023], and 3D recon-
struction [Schmied et al., 2023]. By matching features be-
tween two images, a reliable geometric relationship is estab-
lished, which lays the foundation for estimating camera pose
and enhancing robust localization in complex scenes. How-
ever, factors such as occlusion, illumination variations, and

∗Corresponding Author
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Figure 1: Overall architecture of the proposed MGCA-Net.

descriptor inaccuracies often introduce a significant number
of outliers (i.e., incorrect matches) [Lin et al., 2024b]. These
outliers not only reduce matching precision but also propa-
gate errors into downstream tasks, such as camera pose es-
timation and 3D reconstruction. Consequently, outlier rejec-
tion is a critical step to improve the accuracy and robustness
of two-view correspondence [Brachmann and Rother, 2019].

Traditional outlier rejection methods, such as RANSAC
[Fischler and Bolles, 1981] and their variants [Barath and
Matas, 2018], show high robustness and accuracy when deal-
ing with low outlier ratios. These methods typically rely on
randomly sampling minimal subsets to fit geometric mod-
els and validate their validity based on the number of in-
liers. However, their performance significantly degrades
with increasing outlier ratios, especially in complex geo-
metric scenes or under challenging conditions such as se-
vere illumination and viewpoint changes [Ma et al., 2021;
Lin et al., 2022]. While traditional methods remain competi-
tive in certain tasks, their efficiency and robustness are limited
in high-outlier scenes. Additionally, these methods often de-
pend on user-defined thresholds or specific prior assumptions,
restricting their application in real-world environments.

In contrast, deep learning-based outlier rejection methods
have demonstrated considerable performance improvements.
PointCN [Yi et al., 2018], as a pioneering work, modeled the
outlier rejection task as a binary classification problem. It
utilized multi-layer perceptrons (MLPs) to process unordered
keypoints and effectively capture global information through
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contextual normalization. However, MLPs are inherently
limited in capturing local geometric information.

In addition, most deep learning-based methods [Zhao et
al., 2021] rely on simple convolutional operations or fixed
neighborhood clustering, which fail to fully capture the com-
plex geometric relationships between keypoints. In challeng-
ing scenes such as severe illumination changes or significant
viewpoint variations, these models struggle to align global se-
mantics with local geometric information, making it difficult
to adequately capture and represent the intricate relationships
between them.

To overcome these limitations, solutions based on con-
volutional neural networks (CNNs) and Transformers have
been proposed. For example, ConvMatch [Zhang and Ma,
2023a] combines dense motion regularization with local con-
volutional operations to extract contextual information effec-
tively. VSFormer [Liao et al., 2024] fuses visual and geo-
metric features across modalities to enhance representation,
while PT-Net [Gong et al., 2024] employs a pyramid Trans-
former architecture with sparse attention mechanisms to in-
tegrate multi-scale motion field information. Although these
methods have improved outlier rejection, most focus solely
on processing features from the previous stage while neglect-
ing feature consistency and cross-stage interactions.

To address these challenges, we propose a Multi-Graph
Contextual Attention Network (MGCA-Net) , which effec-
tively integrates spatial features and geometric consensus to
enhance outlier rejection. As illustrated in Fig. 1, MGCA-Net
consists of two core modules: Contextual Geometric Atten-
tion (CGA) module and Cross-Stage Multi-Graph Consensus
(CSMGC) module, designed to address the limitations of ex-
isting methods in local geometric modeling and cross-stage
information optimization. Specifically, CGA consists of a
Context Position Attention (CPA) and a Multi-Branch Feed
Forward Network (MB-FFN). CPA dynamically fuses spa-
tial and contextual information to effectively balance global
semantics and local geometric details, while MB-FFN inte-
grates multi-scale features to enhance feature representation
in complex scenes. Furthermore, CSMGC uses a cross-stage
sparse graph neural network to establish geometric consen-
sus across different stages, enhancing feature interaction and
ensuring geometric consistency throughout the process. The
main contributions of this paper are summarized as follows:

• We propose a novel MGCA-Net that integrates global
and local information with multi-stage feature fusion
and geometric modeling, enhancing robustness and rep-
resentation in high-outlier scenes.

• We propose CGA, which comprises CPA and MB-FFN.
CPA effectively balances global semantics and local ge-
ometry by combining spatial and contextual informa-
tion, while MB-FFN enhances feature representation in
complex scenes by integrating multi-scale features.

• We propose CSMGC, which establishes geometric con-
sistency across stages by incorporating geometric priors
with multi-sparse graph neural networks, significantly
improving robustness in outlier rejection.

By fusing cross-stage information, MGCA-Net can accu-
rately recognize outliers and effectively reject them even in

highly outlier scenes, while dynamically refining correspon-
dence reliability through progressive consensus learning.

2 Related Work
Outlier rejection in two-view correspondence tasks is a key
research topic in computer vision. Various methods have been
proposed to improve correspondence accuracy, which can be
broadly categorized into three main types: traditional meth-
ods, learning-based methods, and attention-based methods.

2.1 Traditional Methods
Traditional methods play a crucial role in two-view corre-
spondence learning, particularly in the outlier rejection and
geometric consistency modeling. These methods often rely
on hypothesis-validation strategies, with RANSAC (Random
Sample Consensus) [Fischler and Bolles, 1981] being the
most classic and widely applied approach. RANSAC itera-
tively samples minimal subsets of data, fits geometric models,
and evaluates the number of inliers to identify the best model.
However, RANSAC is inefficient as it typically requires a
large number of iterations to produce meaningful results. To
address this, USAC (Universal Sample Consensus) [Ragu-
ram et al., 2012] integrates several RANSAC enhancements,
including dynamic sampling, hypothesis test optimization,
and model validation strategies, providing a unified sam-
pling framework. In addition to hypothesis-validation meth-
ods, non-parametric models, such as VFC [Ma et al., 2014],
distinguish inliers from outliers by establishing sparse vec-
tor field models and improve adaptability to complex scenes
through regularization constraints. LPM (Locality Preserving
Matching) [Ma et al., 2019] introduces local consistency con-
straints to efficiently eliminate erroneous matches with linear-
logarithmic complexity. Despite significant advancements in
outlier rejection, traditional methods still face limitations in
handling high outlier ratios and complex geometric scenes.

2.2 Learning-Based Methods
To effectively address the robustness challenges posed by
high outlier ratios and complex geometric scenes, deep learn-
ing approaches have become a primary solution for outlier
rejection tasks. LFGC-Net [Yi et al., 2018] is a pioneer-
ing work that introduces a simple yet effective PointCN-like
structure, reformulating the feature point matching task as an
inlier classification problem. However, the single-stage net-
work architecture adopted by LFGC-Net fails to effectively
leverage local contextual information, resulting in suboptimal
performance in high-outlier scenes.

To overcome these limitations, some methods have intro-
duced iterative networks and pruning strategies to alleviate
class imbalance while capturing geometric information. For
instance, MSA-Net [Zheng et al., 2022] integrates multi-scale
attention mechanisms into a multi-stage network to improve
robustness, and MS2DG-Net [Dai et al., 2022] uses a sparse
semantic dynamic graph to dynamically update matching
features, enhancing the semantic consistency. Additionally,
GCA-Net [Guo et al., 2023] and SGA-Net [Liao et al., 2023]
use graph attention mechanisms to effectively combine local
and global information, improving accuracy and robustness.
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Following this, NCMNet [Liu et al., 2024] further incorpo-
rates a neighborhood consistency mining module, capturing
geometric relationships between local and global neighbor-
hoods via a sparse graph structure, optimizing matching per-
formance in noisy environments.

However, they still rely on local consistency scores and
lack a deep understanding of global geometric information.
Furthermore, during outlier filtering, pruning strategies may
incorrectly eliminate inliers, especially in high-outlier scenes,
which significantly reduces the number of remaining inliers.
To address these challenges, we propose CSMGC, which dy-
namically integrates geometric information across stages and
enhances feature consistency modeling.

2.3 Attention-Based Methods
Attention mechanisms have become a crucial component in
deep learning models, particularly in computer vision tasks,
where they play an essential role in enhancing models’ per-
formance. In the task of two-view correspondence learn-
ing, attention mechanisms are commonly used for feature ex-
traction. For instance, SuperGlue [Sarlin et al., 2020] com-
bines self-attention and cross-attention, where self-attention
focuses on the representation of features in a single image,
while cross-attention compares feature similarities between
different images to improve matching accuracy. LoFTR
[Sun et al., 2021] employs a detector-free strategy, using
attention mechanisms to capture complex geometric infor-
mation and generate high-quality matching results. T-Net
[Zhong et al., 2021] employs a Permutation-Equivariant Con-
text Squeeze-and-Excitation module, dynamically adjusting
feature weights using channel attention to strengthen global
context modeling. However, existing attention-based meth-
ods face limitations in balancing local and global features,
fusing multi-scale information, and handling complex geo-
metric structures, which limits their performance in challeng-
ing scenes. To address these issues, we propose CGA, which
combines position encoding with attention mechanisms to
preserve spatial relationships between features, thereby en-
hancing the capture of local geometric features.

3 Methodology
3.1 Problem Formulation
Given a pair of images I1 and I2 from the same scene, fea-
ture points and descriptors are initially extracted from both
images using existing methods (e.g., SIFT [Lowe, 2004], Su-
perPoint [DeTone et al., 2018]). Then, an initial set of cor-
respondences S = s1, s2, ..., sN ∈ RN×4 is generated using
a nearest-neighbor matching strategy, where N is the num-
ber of initial correspondences. Each correspondence si =
(xi, yi, x

′
i, y

′
i) consists of the coordinates of a keypoint in I1

and its corresponding point in I2. Finally, the network out-
puts logit values and the initial correspondence set S, which
are input into the eight-point algorithm g, to estimate the fun-
damental matrix Ê.

3.2 Contextual Geometric Attention Module
As traditional feature extraction methods have difficulty in
representing both global semantics and local geometric fea-
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Figure 2: Pipeline of CGA.

tures, we propose the CGA Module, which enhances feature
representation by leveraging spatial and contextual informa-
tion. As illustrated in Fig. 2, CGA consists of two key com-
ponents: CPA and MB-FFN.

3.2.1 Context Position Attention
CPA aims to improve the accuracy and robustness of feature
point matching in two-view tasks by fusing global context
and local geometric relationships. To achieve this, CPA in-
corporates a dual-attention mechanism (i.e., content attention
and positional attention) and achieves dynamic integration of
global semantics and local geometric information through the
collaborative functioning of three key components: Global
Context Awareness (GCA), Geometric Semantic Extraction
(GSE), and Geometric Semantic Feature Fusion (GSFF).

1) Global Context Awareness: To model the geometric
relationships among global features, CPA processes the in-
put features F ∈ RN×d through a Multi-Layer Perceptron
(MLP), Batch Normalization (BN), and the non-linear activa-
tion function ReLU, mapping the features into three separate
spaces, query (Q), key (K) and value (V), as follows:

Q = ReLU(BN(MLP(F))),
K = ReLU(BN(MLP(F))),
V = ReLU(BN(MLP(F))).

(1)

The correlation matrix is then calculated as:

AF = Softmax
(
QKT

√
d

)
, (2)

where
√
d is a scaling factor that balances the numerical range

of the attention scores ensuring training stability. The Soft-
max function normalizes the correlation matrix to produce
attention weights, effectively capturing long-range dependen-
cies among feature points.

2) Geometric Semantic Extraction: To address the lim-
itations of existing methods in modeling local geometric re-
lationships, CPA explicitly captures pairwise geometric rela-
tionships through a positional attention mechanism. The in-
put feature point coordinates P1,P2 ∈ RN×2 are mapped
into a high-dimensional space and encoded into geometric
features P via MLP. Subsequently, the geometric features P
are combined with the query features Q to achieve deep fu-
sion of geometric and semantic information, enabling effec-
tive modeling of geometric-semantic relationships between
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feature pairs. Specifically, the calculation for geometry-
enhanced attention is as follows:

P = MLP(P1) + MLP(P2), (3)

AG = Softmax
(
QPT

)
. (4)

This component ensures an explicit and robust encoding of
pairwise geometric relationships while integrating them with
semantic information.

3) Geometric Semantic Feature Fusion: To address the
separation of geometric semantics and global features in dif-
ferent feature spaces, CPA introduces a fusion mechanism.
Specifically, CPA achieves deep integration of geometric fea-
tures and semantic information by combining the geometry-
enhanced attention weights AG and the global context atten-
tion weights AF. The fused output are calculated as follows:

Fout = (AG +AF)V, (5)

where AG represents the geometry-enhanced attention, AF
denotes the global context attention, and V is the value fea-
ture. The fused output Fout integrates geometric and seman-
tic information, encapsulating both the geometric constraints
between feature pairs and the dependencies on global con-
textual information. Based on the above collaboration, CPA
achieves deep fusion of geometric and semantic information
within the feature space, significantly enhancing the represen-
tational capacity and flexibility of MGCA-Net across features
of varying scales.

3.2.2 Multi-Branch Feed Forward Network
Traditional Feedforward Neural Networks (FFNs) can per-
form nonlinear transformations on input features but they
struggle to effectively capture both global and local informa-
tion under complex geometric contexts. To effectively inte-
grate multi-scale feature information and enhance the gener-
alization capability of CPA, we propose MB-FFN. MB-FFN
introduces a multi-branch structure that processes features
in parallel through different branches, fusing them in the fi-
nal stage, fully extracting the semantic information of multi-
scale features. As illustrated in Fig. 2 (b), MB-FFN com-
prises three components: 1) Local Convolutional Branch; 2)
Global Average Pooling Branch; and 3) Max Pooling Branch.
The outputs from these branches are transformed through the
Convolution-BatchNorm-GELU-Convolution (CBGC) mod-
ule and fused using a summation operation. The final output
H is calculated as:

H = CBGC(GAP (LN(Fout)))

+ CBGC(GMP (LN(Fout)))

+ CBGC(LN(Fout)),

(6)

where LN represents Layer Normalization, CBGC =
Conv(GELU(BN(Conv(x)))), and GAP represents
Global Average Pooling, and GMP represents Global
Max Pooling. These features are progressively transformed
through the CBGC module and fused into the output H
via addition. This design effectively captures global and
local features from different perspectives and enhances the
model’s ability to represent multi-scale features in complex
scenes.
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Figure 3: Overall architecture of the proposed CSMGC.

3.3 Cross-Stage Multi-Graph Consensus Module
In order to enhance the local geometric constraints and global
information fusion between stages, we propose the CSMGC
module, which consists of three components: 1) cross-stage
feature extraction, 2) graph consensus construction, and 3)
cross-stage graph consensus aggregation.

1) Cross-stage Feature Extraction: To effectively cap-
ture geometric features and contextual semantic information
from the previous and cross stages, we extract three key fea-
tures Z

(M−1)
1 ,Z

(M−1)
2 ,Z

(M−1)
3 from different modules to

represent the feature distribution of the first stage network.
Among them, Z(M−1)

1 refers to features extracted by the first
CPA module of the previous stage, representing the global
semantic relationship; Z

(M−1)
2 refers to the processing ob-

tained by the second CPA module after PointCN, OANet and
PointCN, representing richer local and global information;
Z

(M−1)
3 refers to the final combination of MLP and resid-

ual information, representing the comprehensive features of
the current stage. In addition, to capture the geometric con-
sistency across stages, we perform feature extraction on the
network outputs across stages Z(1)

3 ,Z
(2)
3 , . . . ,Z

(M−2)
3 , which

can be expressed as:

Z = SE
(
concat

(
Z

(1)
3 ,Z

(2)
3 , . . . ,Z

(M−2)
3

))
, (7)

where Z(1)
3 ,Z

(2)
3 , . . . ,Z

(M−2)
3 represent the feature represen-

tations extracted from stages 1 to M−2 across stages, respec-
tively. These features are concatenated through the concat(·)
operation to form a global representation containing multi-
stage features. Subsequently, the fusion module SE(·) ad-
justs the weights and compresses the concatenated features
to dynamically model the relative importance of the features,
thereby generating the final fused feature Z.

2) Graph Consensus Construction: To capture geo-
metric relationships and enhance the consistency of fea-
tures across stages, for each stage of feature representation
Z,Z

(M−1)
1 ,Z

(M−1)
2 ,Z

(M−1)
3 , we separately construct a k-

nearest neighbor graph Gi = (Vi, Ei) for each feature point
, where the set of nodes Vi = {ci1, ..., cik} denotes the fea-
ture points and their neighborhoods, the set of edges Ei =
{ei1, ..., eik} represents the geometric relationships between
feature points. With this sparse graph structure, the geometric
correlations between feature points can be dynamically cap-
tured, thus providing higher robustness for feature matching
in complex scenes.

Furthermore, to improve the consistency of features across
stages, we perform high-dimensional feature alignment on
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Dataset YFCC100M (%) SUN3D (%)

Method
Known Scene Unknown Scene Known Scene Unknown Scene

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

RANSAC [Fischler and Bolles, 1981] 47.35 52.39 49.47 43.55 50.65 46.83 51.87 56.27 53.98 44.87 48.82 46.76
PointNet++ [Qi et al., 2017] 49.62 86.19 62.98 46.39 84.17 59.81 52.89 86.25 65.57 46.30 82.72 59.37
LFGC-Net [Yi et al., 2018] 54.43 86.88 66.93 52.84 85.68 65.37 53.70 87.03 66.42 46.11 83.92 59.52

DFE-Net [Ranftl and Koltun, 2018] 56.72 87.16 68.72 54.00 85.56 66.21 53.96 87.23 66.68 46.18 84.01 59.60
ACNe-Net [Sun et al., 2020] 60.02 88.99 71.69 55.62 85.47 67.39 54.11 88.46 67.15 46.16 84.01 59.58

OANet [Zhang et al., 2019] 61.14 88.16 69.73 57.90 85.07 66.53 54.43 88.08 63.72 46.50 83.83 56.32
T-Net [Zhong et al., 2021] 61.18 89.94 70.47 57.18 87.01 66.73 55.01 88.36 64.18 46.50 83.98 56.33

PESA-Net [Zhong et al., 2022] 61.43 89.63 72.90 58.02 87.01 69.62 55.08 88.56 67.92 47.29 84.81 60.72
MSA-Net [Zheng et al., 2022] 59.27 90.28 68.92 56.49 88.60 66.46 56.09 87.57 64.71 48.64 83.81 57.89
MS²DG-Net [Dai et al., 2022] 64.24 89.31 72.49 60.38 86.71 68.96 55.58 89.01 64.63 47.42 84.50 57.12

U-Match [Li et al., 2023] 63.29 92.12 72.56 61.02 90.64 70.59 55.29 89.35 64.53 47.69 85.6 57.53
PGFNet [Liu et al., 2023] 59.21 90.22 68.77 56.38 88.15 66.20 55.80 87.80 64.68 48.37 84.03 57.89

GCA-Net [Guo et al., 2023] 63.82 91.36 72.87 60.44 88.92 69.74 55.00 89.08 64.21 46.88 85.14 56.79
ConvMatch [Zhang and Ma, 2023a] 63.14 91.2 72.21 60.22 89.48 69.65 55.79 89.23 64.89 48.13 85.55 57.87

ConvMatch +[Zhang and Ma, 2023b] 62.75 92.05 72.11 59.41 90.12 69.13 55.51 89.30 64.80 47.60 85.51 57.53
NCM-Net [Liu et al., 2024] 77.92 81.41 79.25 76.83 78.61 77.45 66.15 74.59 69.38 60.92 68.94 64.04
PT-Net [Gong et al., 2024] 65.69 90.61 74.14 62.14 89.22 71.16 55.41 89.17 64.66 47.45 85.52 57.39

DeMatch [Zhang et al., 2024] 61.33 92.77 71.19 58.74 91.02 68.91 56.00 88.90 65.10 48.27 85.24 58.07
BCLNet [Miao et al., 2024] 78.36 82.23 79.87 77.90 80.07 78.73 66.20 74.12 69.19 61.14 68.33 63.92
MSGSA [Lin et al., 2024a] 63.29 91.37 72.40 60.03 89.34 69.53 55.92 88.56 65.08 47.99 84.53 57.81

CGR-Net [Yang et al., 2024] 78.31 82.34 79.90 77.22 79.61 78.14 66.46 74.46 69.51 61.24 68.85 64.18
MGCA-Net 84.84 84.13 83.83 83.62 81.07 81.82 74.91 74.29 74.31 70.03 69.86 69.63

Table 1: Quantitative comparison results of the outlier removal task on the YFCC100M and SUN3D datasets are presented as Precision (%),
Recall (%) and F-score (%), with the optimal and suboptimal indicators highlighted in bold and underlined, respectively.

the sparse graphs G,G(M−1)
1 ,G(M−1)

2 ,G(M−1)
3 generated at

each stage. Specifically, it is completed through the deep con-
catenation operation of node features V and edge features E ,
as follows:

Gf = concat([G,G(M−1)
1 ,G(M−1)

2 ,G(M−1)
3 ]), (8)

where concat(·) represents the concatenation operation,
which is used to combine the graph features of different
stages into a unified representation space.

Finally, the generated fusion graph Gf not only integrates
the multi-scale information of features at each stage, but also
strengthens the global geometric consistency between nodes
and edges through joint representation.

3) Cross-stage Graph Consensus Aggregation: The
cross-stage graph consensus aggregation strategy enhances
the global geometric consistency and suppresses the interfer-
ence of redundant information on subsequent tasks by dy-
namically weighting and aggregating the feature graphs of
each stage at multiple levels.

First, for the multi-stage information in the consensus fea-
ture graph Gf, we introduce MLP to perform the feature align-
ment, which aligns the cross-stage feature information and
unifies it into a shared feature space, as follows:

cf = MLP (Gf) , (9)

where cf is the fused feature graph after MLP processing.
Then, to aggregate features with geometric consensus rela-
tionships of interior points, we employ Annular Convolution
(AC) to preserve the relationships between nodes in parallel.
Annular Convolution divides k neighbors into k/p annular
regions based on their affinity to the anchor point and aggre-
gates the contextual information of each annular region using
a 1 × p convolution kernel to maintain the relative relation-
ships between neighbors as follows:

ẽin = XWne
i
j + bn, (n− 1)p ≤ j ≤ np, (10)

where ẽin denotes the aggregated features of the n-th annu-
lar region, Wn and bn are learnable parameters, and eij is the
neighbor information of the i-th feature point. Finally, we
process the aggregated features by MLP. The strategy ensures
that the ring convolutionally aggregated features can fully ex-
press local geometric and global semantic information.

3.4 Loss Function

In the two-view correspondence task, we aim to classify in-
liers and outliers while estimating the camera pose via funda-
mental matrix regression. To optimize both tasks simultane-
ously, we design a hybrid loss function that combines classi-
fication and regression objectives, as follows:

Loss = lc(W,L) + γle(Ê, E), (11)

where lc(W,L) represents the classification loss, which is
used to distinguish inliers and outliers; γ is the weight hy-
perparameter used to balance the classification loss and re-
gression loss, which is set to 0.5, and le(Ê, E) represents the
fundamental matrix regression loss, as follows:

le(Ê, E) =
(pT Êp′)2

∥Ep∥2[1] + ∥Ep∥2[2] + ∥Ep′∥2[1] + ∥Ep′∥2[2]
,

(12)
where Ê and E represent the estimated and true fundamental
matrices respectively; p and p′ are the corresponding feature
point coordinates in the two images; the numerator (pT Êp′)2

represents the squared geometric error of the feature point
coordinates under the estimated fundamental matrix; ∥ · ∥[i]
represents the sum of the squares of the elements at the i-th
position in the vector, which ensures the normalization and
regularization of the geometric errors at different scales.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

4 Experiments
4.1 Implementation Details
The number of initial correspondences N for MGCA-Net is
set to 2000, with a network dimension of 128. In addition,
the number of input neighbors k of each stage of CSMGC
is set to 3, and the number of clusters in the Order-Aware
block is set to 500. The training process follows the training
strategies from previous benchmarks [Zhang et al., 2019] and
CGR-Net [Yang et al., 2024], and it is trained for a total of
500k iterations on Ubuntu 18.04 with an NVIDIA GTX 3090.

4.2 Datasets and Evaluation Metrics
To evaluate the proposed MGCA-Net, we use representative
outdoor and indoor datasets for training and testing.

Outdoor Dataset: The YFCC100M dataset [Thomee et
al., 2016] contains 99.2 million images and 0.8 million videos
with rich metadata. We select 72 outdoor scene sequences,
with 68 used for training, validation, and testing, and 4 as
unknown scenes for generalization evaluation.

Indoor Dataset: The SUN3D dataset [Xiao et al., 2013]
consists of 254 RGB-D video scenes. We use 239 for training,
validation, and testing, and 15 for evaluating generalization.

Outlier Rejection: To evaluate the effectiveness of the
proposed MGCA-Net in the outlier rejection task, we used
three common metrics: Precision (P), Recall (R), and F-score
(F), which reflect the effectiveness of MGCA-Net in outlier
identification and removal.

Camera Pose Estimation: For camera pose estimation
task, we assess the performance of MGCA-Net using Mean
Average Precision (mAP) and Area Under the Curve (AUC)
at 5◦ and 20◦ thresholds.

4.3 Outlier Rejection
To evaluate the effectiveness of MGCA-Net, we compare
it with 21 representative methods, including traditional ap-
proaches such as RANSAC [Fischler and Bolles, 1981];
MLP-based deep learning methods such as PointNet++ [Qi
et al., 2017], LFGC-Net [Yi et al., 2018], OANet [Zhang
et al., 2019], NCM-Net [Liu et al., 2024], and CGR-
Net [Yang et al., 2024]; and CNN-based methods such as
ConvMatch+ [Zhang and Ma, 2023b], PT-Net [Gong et al.,
2024], and DeMatch [Zhang et al., 2024]. Experimental
results for RANSAC [Fischler and Bolles, 1981], Point-
Net++ [Qi et al., 2017], LFGC-Net [Yi et al., 2018], DFE-
Net [Ranftl and Koltun, 2018], and ACNe-Net [Sun et al.,
2020] are cited from T-Net [Zhong et al., 2021], while other
results are obtained using publicly available code under con-
sistent experimental settings for fair comparison.

As reported in Table 1, MGCA-Net outperforms other
competing methods on both the YFCC and SUN3D datasets,
demonstrating its significant advantage in the two-view out-
lier removal task. For the YFCC100M dataset, in known
scenes, MGCA-Net’s P and F scores reach 84.84% and
83.83%, respectively, which are 6.48% and 3.93% higher
than those of the second-ranked BCLNet. In unknown scenes,
MGCA-Net’s P and F scores are respectively 5.72% and
3.09% higher than those of BCLNet. For the SUN3D dataset,
in known scenes, MGCA-Net’s P and F scores are 8.45% and

(a) BCLNet (b) MSGSA (c) ConvMatch (d) PT-Net (e) MGCA-Net
Figure 4: Qualitative results of outlier removal. The first and second
rows show outdoor scenes from YFCC100M, while the third and
fourth rows depict indoor scenes from SUN3D. False matches are
marked in red and correct matches are marked in green.

4.8% higher than those of the second-ranked CGR-Net, while
in unknown scenes, they achieve improvements of 8.79% and
5.45%. Experimental results demonstrate that MGCA-Net
achieves higher accuracy and robustness than existing meth-
ods across different scenes.

Although MGCA-Net achieves high Precision and F-score,
its Recall is slightly lower than DeMatch and ConvMatch in
some cases, mainly due to different logit threshold settings.
Lower thresholds improve Recall but reduce Precision and
F-score. As illustrated in Fig. 4, MGCA-Net yields fewer in-
correct matches and superior overall matching in both indoor
and outdoor scenes, highlighting its robustness and accuracy.

4.4 Camera Pose Estimation
To assess the performance of MGCA-Net in camera pose es-
timation, we compared MGCA-Net with 16 representative
methods, including traditional approaches such as RANSAC
[Fischler and Bolles, 1981]; MLP-based deep learning meth-
ods such as PointNet++ [Qi et al., 2017], LFGC-Net [Yi et
al., 2018], DFE-Net [Ranftl and Koltun, 2018], and ACNe-
Net [Sun et al., 2020]; and CNN-based methods. The results
for RANSAC, PointNet++, LFGC-Net, DFE-Net, and ACNe-
Net are cited from T-Net [Zhong et al., 2021].

As reported in Table 2, MGCA-Net achieves substan-
tial gains over the second-best methods on YFCC100M
and SUN3D, covering both indoor and outdoor scenes.
On YFCC100M, MGCA-Net outperforms traditional meth-
ods [Fischler and Bolles, 1981] in mAP@5° and mAP@20°
by 59.44% and 64.73% for known scenes, and by 68.05%
and 66.52% for unknown scenes. On SUN3D, the improve-
ments reach 28.63% and 43.84% (known), and 22.64% and
40.31% (unknown). Compared with SOTA deep learning ap-
proaches such as MSGSA [Lin et al., 2024a], BCLNet [Miao
et al., 2024], and DeMatch [Zhang et al., 2024], MGCA-
Net achieves higher mAP@5°, mAP@20°, AUC@5°, and
AUC@20° by 11.31%, 7.36%, 8.31%, and 7.72% in known
YFCC100M scenes, and by 9.25%, 4.66%, 7.4%, and 4.92%
in unknown scenes; for SUN3D, the gains are 4.57%, 3.63%,
2.84%, and 3.43% (known), and 2.03%, 1.7%, 1.23%, and
1.6% (unknown), respectively.

The above experimental results show that MGCA-Net per-
forms well in different datasets and scenes, especially in
complex scenes. This is due to the fact that MGCA-Net
effectively combines the feature representations of content
and location through CGA, which in turn improves the fea-
ture extraction capability for local geometric consistency and
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Dataset YFCC100M (%) SUN3D (%)

Method
Known Scene Unknown Scene Known Scene Unknown Scene

5° 20° 5° 20° 5° 20° 5° 20°

RANSAC [Fischler and Bolles, 1981] 5.74 / - 16.67 / - 9.05 / - 22.71 / - 4.43 / - 15.38 / - 2.85 / - 11.23 / -
PointNet++ [Qi et al., 2017] 11.88 / - 32.86 / - 15.98 / - 44.82 / - 8.78 / - 31.02 / - 7.22 / - 29.77 / -
LFGC-Net [Yi et al., 2018] 14.51 / - 35.82 / - 23.71 / - 50.57 / - 11.93 / - 36.03 / - 9.73 / - 33.09 / -

DFE-Net [Ranftl and Koltun, 2018] 19.27 / - 42.14 / - 30.55 / - 59.15 / - 14.18 / - 39.14 / - 12.13 / - 26.26 / -
ACNe-Net [Sun et al., 2020] 29.63 / - 52.71 / - 34.00 / - 62.98 / - 19.08 / - 46.32 / - 14.27 / - 39.29 / -

OANet [Zhang et al., 2019] 33.75 / 14.49 57.13 / 48.04 40.80 / 17.00 69.26 / 58.61 21.54 / 8.04 48.91 / 40.14 16.37 / 6.09 41.82 / 34.08
T-Net [Zhong et al., 2021] 41.46 / 18.20 64.14 / 54.48 48.40 / 20.70 73.92 / 62.94 23.63 / 9.03 51.04 / 42.08 18.04 / 6.62 43.65 / 35.66

PESA-Net [Zhong et al., 2022] 37.15 / 16.09 59.76 / 50.32 45.03 / 19.73 71.95 / 61.23 22.67 / 9.07 50.02 / 42.46 18.00 / 7.26 44.10 / 37.47
MSA-Net [Zheng et al., 2022] 36.04 / 15.69 58.81 / 49.68 48.70 / 20.95 73.07 / 62.31 19.58 / 7.24 47.03 / 38.54 16.77 / 6.07 42.10 / 34.32
MS²DG-Net [Dai et al., 2022] 36.46 / 15.36 61.94 / 52.18 46.88 / 18.84 74.84 / 63.27 22.57 / 8.51 50.89 / 41.81 17.19 / 6.24 43.27 / 35.22

U-Match [Li et al., 2023] 46.22 / 21.73 67.67 / 57.90 60.15 / 29.59 79.69 / 69.03 26.45 / 10.20 53.56 / 44.38 22.41 / 8.39 48.65 / 40.07
PGFNet [Liu et al., 2023] 33.54 / 14.17 56.73 / 47.57 46.70 / 20.48 72.26 / 61.62 22.63 / 8.64 49.26 / 40.55 19.02 / 7.14 44.70 / 36.61

GCA-Net [Guo et al., 2023] 44.32 / 19.93 67.24 / 57.16 55.70 / 24.90 79.58 / 68.21 22.57 / 8.61 50.39 / 41.49 18.53 / 6.85 44.27 / 36.08
ConvMatch [Zhang and Ma, 2023a] 43.25 / 20.02 65.61 / 55.81 55.45 / 26.69 77.53 / 66.87 27.45 / 10.84 54.65 / 45.35 22.52 / 8.68 48.64 / 40.09

ConvMatch+ [Zhang and Ma, 2023b] 45.79 / 21.19 67.69 / 57.72 58.07 / 27.79 78.88 / 68.00 27.22 / 10.81 54.97 / 45.70 22.67 / 8.62 49.13 / 40.51
NCM-Net [Liu et al., 2024] 50.24 / 25.02 71.27 / 61.31 62.65 / 32.40 82.30 / 71.82 24.99 / 9.96 51.87 / 42.88 20.41 / 7.92 46.42 / 38.16
PT-Net [Gong et al., 2024] 49.16 / 20.23 71.07 / 56.23 61.62 / 27.06 81.21 / 67.45 27.23 / 10.67 54.38 / 45.11 22.88 / 8.59 48.52 / 39.85

DeMatch [Zhang et al., 2024] 47.56 / 22.51 69.14 / 59.17 60.00 / 30.01 80.02 / 69.45 28.49 / 11.34 55.59 / 46.24 23.46 / 9.20 49.84 / 41.20
BCLNet [Miao et al., 2024] 53.21 / 27.48 73.48 / 63.63 67.85 / 37.22 84.57 / 74.44 24.32 / 9.64 51.24 / 42.37 20.06 / 7.72 45.83 / 37.62
MSGSA [Lin et al., 2024a] 53.87 / 21.99 74.04 / 58.26 63.78 / 28.23 82.23 / 68.31 25.28 / 10.43 52.29 / 44.99 20.41 / 7.81 46.12 / 39.00

CGR-Net [Yang et al., 2024] 53.56 / 26.45 73.98 / 62.97 66.47 / 35.01 84.14 / 73.17 26.48 / 10.58 53.41 / 44.28 21.69 / 8.51 47.94 / 39.53
MGCA-Net 65.18 / 35.79 81.40 / 71.35 77.10 / 44.62 89.23 / 79.36 33.06 / 14.18 59.22 / 49.67 25.49 / 10.43 51.54 / 42.80

Table 2: Quantitative comparison results of the relative pose estimation task on the YFCC100M and SUN3D datasets are presented in the
form of mAP AUC at 5° and 20°, with the best and second-best results highlighted in bold and underlined, respectively.

global contextual information. Secondly, based on CSMGC,
MGCA-Net is able to integrate multi-scale geometric features
across stages and construct cross-stage geometric consensus
relations through multiple different sparse graphs.

4.5 Ablation Experiments
MGCA-Net consists of two main modules: CGA, which
serves as the core for contextual and geometric feature ex-
traction, and CSMGC, which enhances cross-stage geometric
consistency. To evaluate their effectiveness, we conducted ab-
lation experiments on unknown scenes from YFCC100M, as
shown in Table 3. The results demonstrate that each module
incrementally improves performance, each component con-
tributes to the network performance as follows:

Baseline: When only the basic module is used for feature
extraction, mAP@5° and mAP@20° are 56.70% and 79.33%,
respectively, highlighting the limitations without contextual
and geometric consistency information.

Iter: After adding the multi-stage iterative structure,
mAP5° and mAP20° reach 58.20% and 80.46%, respectively,
demonstrating that iterative optimization improves feature ex-
traction, though performance remains limited without effec-
tive use of intermediate information.

CGA: After adding CGA, the network performance is fur-
ther improved, and mAP5° and mAP20° reach 66.57% and
84.58%, respectively, which shows that the fusion of con-
text features and graph coordinate features contributes sig-
nificantly to the model performance.

Iter + CGA: After combining the iterative network and
CGA module, mAP5° and mAP20° reach 69.88% and
86.39% respectively, which reflects the importance of the col-
laboration between them.

Iter + CSMGC: After combining the iterative network and
CSMGC, mAP5° and mAP20° reach 73.70% and 88.26% re-
spectively, which verifies the importance of cross-stage fea-

Baseline Iter CGA CSMGC mAP5° (%) mAP20° (%)

✓ 56.70 79.33
✓ ✓ 58.20 80.46
✓ ✓ 66.57 84.58
✓ ✓ ✓ 69.88 86.39
✓ ✓ ✓ 73.70 88.26
✓ ✓ ✓ ✓ 77.10 89.23

Table 3: Ablation study on unknown scenes with different modules.

ture fusion and geometric consistency modeling.
Full Model: With CGA, CSMGC, and multi-stage iter-

ation, mAP@5° and mAP@20° reach 77.10% and 89.23%,
significantly outperforming other settings. These results con-
firm that combining CGA and CSMGC with multi-stage
structure fully unlocks MGCA-Net’s potential for geometric
feature representation and matching.

5 Conclusion
In this paper, we propose MGCA-Net, a simple yet effective
framework for two-view geometric correspondence learning
that captures deep geometric relationships by integrating con-
textual and positional information. MGCA-Net comprises the
CGA and CSMGC modules, which jointly enhance feature
representation and establish geometric consensus across dif-
ferent stages. Experimental results on the YFCC100M and
SUN3D datasets demonstrate that MGCA-Net achieves ro-
bust performance in both indoor and outdoor scenes, show-
ing stable outlier rejection and significant improvements in
camera pose estimation. Compared to traditional and state-
of-the-art deep learning methods, MGCA-Net exhibits supe-
rior adaptability in terms of matching accuracy and robust-
ness, particularly in complex scenarios. In future work, we
will explore extending MGCA-Net to unsupervised or self-
supervised learning frameworks to reduce reliance on labeled
data and enhance its ability to generalize in different domains.
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lone, and José A Castellanos. A survey on active simulta-
neous localization and mapping: State of the art and new
frontiers. IEEE Transactions on Robotics, 39(3):1686–
1705, 2023.

[Qi et al., 2017] Charles Ruizhongtai Qi, Li Yi, Hao Su, and
Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Proceedings of
the Advances in Neural Information Processing Systems,
pages 5099–5108, 2017.

[Raguram et al., 2012] Rahul Raguram, Ondrej Chum, Marc
Pollefeys, Jiri Matas, and Jan-Michael Frahm. Usac: A
universal framework for random sample consensus. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, pages 2022–2038, 2012.

[Ranftl and Koltun, 2018] René Ranftl and Vladlen Koltun.
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