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Abstract

Most jailbreak methods for large language mod-
els (LLMs) focus on superficially improving at-
tack success through manually defined rules. How-
ever, they fail to uncover the underlying mech-
anisms within target LLMs that explain why an
attack succeeds or fails. In this paper, we pro-
pose investigating the phenomenon of jailbreaks
and defenses for LLMs from the perspective of
attention distributions within the models. A pre-
liminary experiment reveals that the success of
a jailbreak is closely linked to the LLM’s atten-
tion on sensitive words. Inspired by this interest-
ing finding, we propose incorporating critical sig-
nals derived from internal attention distributions
within LLMs, namely Attention Intensity on Sen-
sitive Words and Attention Dispersion Entropy, to
guide both attacks and defenses. Drawing inspira-
tion from the concept of “Feint and Attack”, we in-
troduce an attention-guided jailbreak model, ABA,
which redirects the model’s attention to benign con-
texts, and an attention-based defense model, ABD,
designed to detect attacks by analyzing internal at-
tention entropy. Experimental results demonstrate
the superiority of our proposal when compared to
SOTA baselines.

1 Introduction

LLMs have garnered considerable attention owing to their
exceptional performance across diverse tasks [Touvron et
al., 2023]. As the deployment of LLMs becomes more
widespread, security concerns have been escalated, particu-
larly in safety-critical and decision-making environments. A
pivotal concern resides in the susceptibility of LLMs under
jailbreak attacks, wherein adversarial prompts are meticu-
lously crafted to compel the model to produce content that
violates usage policies [Shen er al, 2024]. Existing re-
search on jailbreak methodologies primarily focuses on the
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Figure 1: The attention distribution of different prompts.

development of sophisticated attack prompts, including role-
playing [Jin er al., 20241, code injection [Ding et al., 2024],
and distraction techniques [Xiao er al., 2024].

The cornerstone of most jailbreak strategies lies in embed-
ding harmful queries within meticulously crafted legitimate
contexts. Despite significant advancements in recent meth-
ods, there exists a notable paucity of investigations into the
underlying mechanisms that enable such prompts to circum-
vent safety constraints within LLMs. An intuitive explanation
suggests that such prompts generate semantically safe and be-
nign scenarios. However, this reasoning is overly simplistic
and idealistic, stemming from superficial perceptions that fail
to consider the complex internal interactions within LLMs,
which form a more grounded and realistic basis for under-
standing their behavior. Moreover, current attack prompts
are often deigned based on heuristic assumptions, resulting
in unreliable indicators of attack efficacy. Thus, this paper
aims to investigate the internal states of LLMs in response
to jailbreak attacks and uncover the underlying correlations
between these internal states and the success of such attacks.
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Recent studies have explored the underlying mechanisms
of jailbreak attacks by analyzing activations and hidden layer
states [Ball et al., 2024]. However, these investigations suffer
from two significant limitations. First, the signals employed,
such as activations and hidden layer states, often obscure vari-
ables that are difficult for humans to interpret, leading to a
lack of transparent explanations. Second, these signals are
contingent on variable components that differ across various
LLMs [Lin ef al., 2024; Li et al., 2025]. For example, the
numerical scale of hidden layer states can vary significantly
across different LLMs, thereby limiting the generalizability
of the findings [Qian er al., 2024].

To gain deeper insights into the success of jailbreak attacks,
we propose to elucidate the underlying mechanisms from the
perspective of attention mechanisms. The attention schema
is foundational to most LLMs and is recognized for its robust
generalization capabilities [Vaswani et al., 2017]. Moreover,
attention mechanisms have been extensively utilized as an
explanatory framework for deep learning models, providing
advanced interpretability [Zhang et al., 2024d]. Drawing on
these considerations, we pose a novel and significant research
question: Does the success of jailbreaks correlate with their
influence on attention distributions within LLMs?

To gain preliminary insights, we examine the distributions
of attention weights associated with various input prompts,
as depicted in Figure 1. The attention weights represent the
average attention scores on different words from all layers of
the Llama2-7B-chat model. Figure 1(a) presents the atten-
tion distributions for harmful versus harmless inputs, demon-
strating that the model’s attention is predominantly focused
on sensitive words (e.g., nouns) in harmful queries. In Fig-
ure 1(b), a failed attack is shown, where attention remains
concentrated on sensitive terms such as “make” and “bomb.”
In contrast, Figure 1(c) illustrates a successful attack, where
the model’s attention is redirected from harmful words to be-
nign phrases like “Enhance the Python code,” enabling the
model to disregard the underlying malicious intent. This anal-
ysis highlights a key finding: the success of a jailbreak may
be attributed to its capacity to distract LLMs from focusing
on sensitive words. Additional preliminary experiments that
support our findings are detailed in Section 3.

Preliminary experiments indicate potential correlations be-
tween attention distributions and the efficacy of jailbreak at-
tacks on LLMs. However, formally characterizing these cor-
relations and effectively leveraging them to enhance both at-
tack and defense strategies presents two key challenges. First,
the development of appropriate metrics to accurately quantify
attention diversion in the context of jailbreak attacks remains
an open issue. Second, most existing strategies are based
on heuristic assumptions, complicating the incorporation of
attention-based numerical signals as design guidance.

In this paper, we propose a novel attention-aware frame-
work aimed at enhancing both the jailbreak attack and de-
fense by investigating the intricate relationship between at-
tention distribution and the success rate of jailbreak attacks.
The proposed metrics for attention distributions are designed
to capture both local and global informative signals, offer-
ing a comprehensive perspective. Drawing inspiration from
the strategic concept of “Feint and Attack” in the renowned

Chinese military treatise The Thirty-Six Stratagems, we intro-
duce a novel Attention-Based Jailbreak Attack model (ABA).
The “Feint” is represented by a benign task, designed to dis-
tract attention from sensitive terms, while the core “Attack”
involves an inner harmful task intended to provoke undesir-
able responses. This dual-pronged strategy leverages posi-
tional and semantic guidance to divert focus from harmful
content, thereby increasing the likelihood of generating ma-
licious outputs when the benign task is executed. To coun-
teract such attacks, we propose the Attention-Based Defense
(ABD), which exploits the statistical regularity inherent in the
dynamics of attention distributions. Our proposal is exten-
sively evaluated on popular datasets, demonstrating superior
performance compared to existing SOTA baselines. Our main
contributions are summarized as follows:

* To the best of our knowledge, we are the first to compre-
hensively unveil the intrinsic correlations between atten-
tion distributions within LLMs and the effectiveness of
jailbreak attacks.

* We propose a novel attack paradigm, ABA, aimed at
guiding LLMs to focus on hierarchically nested benign
tasks, for which the necessary conditions are derived
from a mathematical perspective.

* We propose an attention-based defense model, ABD,
which incorporates a security judgment function to cali-
brate the distorted attention distributions, thereby facili-
tating the detection of jailbreak prompts.

» Experimental results across both attack and defense
tasks underscore the superiority of our proposal.

2 Problem Definition

Let the target LLM be characterized by L layers and H
attention heads. The origin input is defined as * =
{w1,wa, ..., wp}, where w; represents the i-th token in the
prompt, and M indicates the number of tokens in . The
output of the target LLM is y = {y1, y2,...,yn}, where y;
is the j-th token in the response, and N denotes the output
length. During the generation process, the LLM assigns at-
tention weights to input tokens at each decoding step. Let
o 1., denote the normalized attention weight from the h-
th attention head in the [-th layer to token w; at time ¢. By
modifying the structure of the origin input z, an attacker can
manipulate the attention weights o ;  ; to influence the de-
coding process, thereby steering the generated output y to-
wards harmful content. To circumvent the safety mecha-
nisms of LLMs, jailbreak attacks seek to construct adver-
sarial prompts 2 that maximize the probability of generating
harmful outputs y,. Following prior work [Ding et al., 2024,
Xu et al., 2024], the objective of a jailbreak attack is:

ngX p(yh | f)7 s.t. C(j)v (1)

where C(Z) represents the set of constraints on the prompt .
These constraints are designed to ensure that £ remains unde-
tected as potentially harmful. For instance, C'(Z) may restrict
the inclusion of explicitly harmful keywords or enforce se-
mantic alignment with benign inputs [Li et al., 2024b].
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Llama2-7B Llama2-13B Average
ASW| ASRT ASR-GT|ASW/ ASRT ASR-GT|ASW| ASRT ASR-G1
PAIR 0.0096 0.28 0.12 |0.0092 0.31 0.15 |0.0094 0.29 0.14
TAP 0.0089 0.30 0.23 |0.0091 0.35 0.29 |0.0090 0.33  0.26
Deeplnception [0.0087 0.69 0.28 ]0.0085 0.63  0.27 |0.0086 0.66 0.27
ReNeLLM |0.0070 0.71  0.43 [0.0072 0.69 0.67 |0.0071 0.70  0.55
BaitAttack  0.0053 0.72  0.65 |0.0048 0.88 0.86 |0.0053 0.80 0.76

Jailbreak Model

Table 1: Preliminary study on the relations between Attn_SensWords
(ASW) scores and the attack performance (ASR and ASR-G).

To achieve the attack objective, the jailbreak prompt p is
crafted to manipulate the distribution of attention weights
a1 1, during decoding. Let f(ay; p,;) denote a transforma-
tion function applied to the attention weights, which encapsu-
lates the manipulation imposed by the attacker. For instance,
f(a 1.h,:) can correspond to the amplification or suppression
of specific attention values, depending on the position of to-
kens or their semantic relevance. The manipulation is for-
mally expressed as:

M
Ein Zf(at,l,h,i) €gq, 2
i=1

where G defines the feasible region that constrains the atten-
tion distribution to align with the attacker’s goal. Through
this mechanism, the attacker induces harmful outputs y
while preserving a benign prompt surface.

3 Preliminary Experiment Analysis

In this section, we present preliminary experiments aimed at
uncovering the correlations between attention patterns within
LLMs and the success of jailbreak attacks. Prior research
has indicated that certain words, particularly sensitive terms,

are more likely to activate the safety mechanisms of LLMs
by influencing the attention distribution [Ding ef al., 2024;
Yan erf al., 2023]. Such sensitive words, which include spe-
cific verbs and nouns (e.g., “make” and “bomb”), are often
key factors contributing to the generation of potentially harm-
ful outputs. To explore this relationship further, we intro-
duce a novel metric, Attention Intensity on Sensitive Words
(Attn_SensWords), designed to quantify the attention allo-
cated by LLMs to such sensitive terms. This metric serves as
the foundation for analyzing the correlation between the at-
tention weights assigned to sensitive words within a prompt
and the success rate of jailbreak attacks.

Given the original query, denoted as x, and the modified
jailbreak prompt, denoted as Z. Let S represents the set of in-
dices corresponding to sensitive verbs and nouns in z. The
metric Attn_SensWords computes the normalized attention
weights for sensitive words across all layers [ and heads h
at each time step ¢ within the LLMs:

Z Z Q4 1 his 3)

NS ieS t,l,h

1
Attn_SensWords = ——
Zs

where Zseys represents the normalization factor, accounting
for the total number of time steps, layers, heads, and tokens.

To investigate the relationship between Attn_SensWords
scores and the effectiveness of jailbreak attacks, we perform a
preliminary analysis, as summarized in Table 1. The Llama2
series models, specifically Llama2-7B and Llama2-13B, are
chosen as the target LLMs. The verbs and nouns are viewed
as the sensitive words. In line with prior research [Chao et al.,
2024], we utilize the AdvBench [Zou et al., 2023] dataset,
which includes 520 malicious prompts. We employ sev-
eral representative jailbreak attack methods including PAIR
[Chao et al., 2024], TAP [Mehrotra ef al., 2024], Deepln-
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ception [Li et al., 2024a], ReNeLLM [Ding et al., 2024], and
BaitAttack [Pu et al., 2024]. Two key metrics, Attack Success
Rate (ASR) and GPT-40-based ASR (ASR-G), are adopted to
assess the efficacy of these attack methods [Pu et al., 2024].
Table 1 illustrates the correlation between Attn_SensWords
(ASW) scores and attack performance metrics (ASR and
ASR-G). BaitAttack achieves the highest ASR (0.80) and
ASR-G (0.76), while simultaneously yielding the lowest
ASW (0.0053). Generally, smaller ASW scores are associ-
ated with higher ASR and ASR-G scores, indicating that at-
tack models can divert the attention of LLMs from sensitive
words are more likely to successfully jailbreak the models.

4 Methodology

4.1 Attention-Based Jailbreak Model (ABA)

Given the original malicious query x, the framework of ABA
is designed to iteratively refine and optimize the input prompt
under the guidance of attention distributions within the tar-
get LLMs. ABS starts with Attention Analysis, where the
attention weights of words in = from the target LLMs are
calculated and analyzed. Guided by these attention weights,
the Intention Disguiser via Attention-Driven Task Nesting
generates multiple semantically rephrased scenarios to dis-
guise the query. These generated prompts are evaluated and
selected based on their effectiveness in optimizing the pro-
posed metrics: Attn_SensWords and increasing Attn_Entropy.
Finally, under the Multi-round Generation Paradigm, the
refined prompts are further input into the target LLM to en-
hance the effectiveness of the jailbreak attack.

Attention Analysis. For a given input query z =
{w1,wa, ..., wp}, where w; represents the i-th word in the
input sequence, an attention weight o, is assigned to each
word w;. This attention weight is computed by aggregating
its attention scores across all layers and heads of the target
LLM. The attention weights of the words can be expressed
asaset Ay, = {(w1 : ), (W2 : Quy)y e vy (WAL Quyyy ) e
In each iteration of the optimization process, these attention
weights are recalculated to reflect the dynamic importance of
each word in the context of the task. The computed atten-
tion weights serve as the foundation for calculating two key
metrics: Attn_SensWords and Attn_Entropy.

From the preliminary analysis presented in Section 3,
Attn_SensWords has been shown to capture the relationship
between attention weights and the success of jailbreak at-
tacks. However, Attn_SensWords is primarily focused on lo-
cal attention, specifically sensitive words, while the attention
mechanisms of LLMs are also influenced by the broader con-
text of input [Li ef al., 2017, Wang et al., 2022]. To address
this limitation, we propose a novel metric, Attention Disper-
sion Entropy (Attn_Entropy), designed to quantify the distri-
bution of attention weights across all input tokens in LLMs.

To compute Attn_Entropy, we treat the normalized atten-
tion weight assigned to each token as a probability distribu-
tion for the calculation of entropy. Entropy is then computed
for each layer and attention head, with the final Attn_Entropy
determined by averaging the entropy values across time steps,
layers, and attention heads. Let o 5 ; represent the normal-
ized attention weight for the ¢-th token in the input sequence,

where h denotes the attention head, [ denotes the layer, and
t denotes the time step. This weight, oy 4, can be in-
terpreted as the probability assigned to the i-th token. The
Attn_Entropy is then computed as follows:

1
E ot hilogog ng,  (4)
Ent 40 h

Attn_Entropy = —

where Zg, is the normalization factor, which adjusts for the
total number of time steps, layers, heads, and tokens involved.
Attn_Entropy intuitively quantifies the degree of contextu-
alization in the construction of the model’s upper-level em-
beddings [Attanasio et al., 2022]. A higher entropy value in-
dicates the consideration of a broader context, while a lower
entropy value suggests that the model focuses on a more lim-
ited subset of tokens, focusing on a narrower context to gener-
ate the embedding. Consequently, the objective of ABA is to
minimize Attn_SensWords and maximize Attn_Entropy. This
approach encourages the attention mechanism of LLMs to be
more widely distributed across the input prompt, rather than
predominantly concentrating on sensitive words.

Intention Disguiser via Attention-Driven Task Nesting.
Intention disguiser is further proposed to hide malicious in-
tentions. A popular strategy involves encoding such harm-
ful queries into a singular benign scenario or task, such as
“novel writing”. However, disguisers based on a single-task
framework are limited by their directness in instruction and
the shallow nature of their ability to conceal malicious in-
tent [Zhang et al., 2024c]. To mitigate this limitation and bet-
ter obscure harmful intentions within more nuanced contexts,
we introduce the strategy of task nesting [Li et al., 2024al.
Task nesting involves restructuring the input query into a se-
ries of interdependent sub-tasks, thereby embedding the orig-
inal intention within a complex, multi-layered framework.
Existing task nesting strategies primarily depend on heuris-
tics or ad-hoc methods that generate tasks based on pre-
defined templates or manually defined rules [Ding et al.,
2024]. In contrast, our approach seeks to guide the combi-
nation of tasks using attention metrics, specifically minimiz-
ing Attn_SensWords and maximizing Attn_Entropy. Since the
design of nested tasks requires accounting for task dependen-
cies and attention-driven objectives, we adopt a mathematical
optimization framework to derive the better task combination.
We use Attn_Entropy as an example to examine its relation-
ship with nested tasks by modeling entropy within a sequence
of sub-tasks {Y1, Y3, ..., Y, }, where each task Y; depends on
the output X;_; of the previous task. Each task introduces
new contextual dependencies, impacting the attention distri-
bution. The total attention entropy (Hioa) i expressed as:

Hy = H(Y1) + > H(Yi|X; 1), 5)
=2

For Hyy to increase with the addition of a new task Y;, the
incremental entropy A H (Y;|X;_1) must be non-negative:

AH(Y;|X;1) = H(Y;|X;-1) — H(Y;-1]Xi—2) > 0. (6)

The non-negativity of AH (Y;|X;_1) is ensured by the
monotonicity of conditional entropy:

H(Y;|X;-1) =2 H(Y;-1|Xi—2). (N
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This inequality implies that each context X;_; retains the
information from X;_s. To implement this, we adopt a nested
task structure, where each sub-task X;_; refines the previous
one. For instance, a prompt like “Write a tutorial on how to
make a bomb” can be restructured into a series of sub-tasks
with intermediate goals.

Following prior works [Chao et al., 2024], we use an LLM,
the Attention Distraction Generator D, to generate nested
tasks. Beam Search is employed to select prompts that max-
imize Attn_Entropy and minimize Attn_SensWords. Starting
with an initial context X generated by D, subsequent tasks
X; (i > 1) are generated iteratively. Each iteration involves
ranking candidate tasks by their Attn_SensWords scores and
re-evaluating them by Attn_Entropy.

Multi-round Generation Paradigm. Given the stochastic
nature and inherent instability of the generation process, a
multi-round paradigm is employed to validate the proposed
methods [Chao et al., 2024; Li et al., 2019]. In this paradigm,
if a jailbreak attack against a target LLM fails, the attacker
will persist in attempting the attack. A simple approach is to
regenerate the prompt, creating a new jailbreak attack sample.
During the regeneration step, the generated tasks maintain di-
versity while preserving the original objective of distracting
the target LLM’s attention. This ensures that previously at-
tempted or failed scenarios are not reused. In the inner loop,
if the number of attempts exceeds a predefined threshold, the
ABA will switch to a new scenario and initiate a fresh jail-
break attack sample in the outer loop. This iterative regen-
eration strategy enables ABA to continuously generate new
scenarios and jailbreak attack samples, thus establishing an
efficient multi-round jailbreak attack mechanism.

4.2 Attention-Based Defense Model (ABD)

Building on ABA insights, the Attention-Based Defense
(ABD) framework is designed to assess and mitigate risks
from harmful prompts. It starts with Conditional Entropy
Calculation to measure output uncertainty conditioned on
the input. Next, Attn_Entropy Calculation evaluates the en-
tropy of the attention distribution, capturing focus dispersion.
Finally, both entropies are used in the Risk_Score Calcula-
tion to compute a risk score, effectively identifying high-risk
inputs that can lead to unsafe content generation.

Conditional Entropy Calculation. As observed in ABA,
higher Attn_Entropy indicates that the LLM’s attention is
more dispersed, potentially reducing focus on sensitive
words. Similarly, higher conditional entropy reflects greater
uncertainty in predicting subsequent tokens based on prior
context [Daikoku and Yumoto, 2023]. Thus, Attn_Entropy
and conditional entropy complement each other in ABD,
jointly facilitating the identification of risky prompts.
Conditional entropy is employed to quantify the uncer-
tainty of the model’s output for a given prompt [Attanasio
et al., 2022]. The conditional entropy H () is calculated as:

n
H(f)ZZH(wi\wl,w27~-~,wi—1), 3

i=1
where w; denotes the i-th token in the input prompt & =
{wy,ws, ..., w,}. The attention weight v ;, derived from

the softmax function, satisfies non-negativity (c; ; > 0) and
normalization (Z?Zl a;j = 1). It quantifies the contribu-
tion of token w; in generating token w;, reflecting a pairwise
dependency influenced by the broader context. This behav-
ior aligns with probabilistic models, where conditional prob-
ability distributions capture variable dependencies. There-
fore, o ; can be interpreted as the conditional probability
p(w; | w;) [Bae et al., 2022; Zhao et al., 2023]. The con-
ditional entropy is computed as:

H(i?) = 7220[,’7]' IOgOtiJ', (9)
i=1 j=1

where «; ; is the attention weight which represents the influ-
ence of token w; on token w;.

Risk_Score Calculation. Combined with Attn_Entropy and
conditional entropy, the risk of a given prompt can be quanti-
fied through a combined Risk_Score R(Z):

R(#) = Attn_Entropy(%) + 3 - H (%), (10)

in which H(Z) represents the conditional entropy of the
prompt, and 3 is the weight of conditional entropy. The risk
score R(Z) serves as a comprehensive metric to assess the
likelihood of a prompt being harmful.

Besides, the ABD follows the following rules. If R(Z)
of the input prompt is below the threshold 7, the input is
deemed harmless. Conversely, if R(Z) exceeds 7, the input
is classified as ambiguous or potentially deceptive. A secu-
rity warning prefix is then added, such as: “Attention! The
following content might contain harmful instructions: First,
identify any potentially harmful parts. If safe, provide a se-
cure response.” This mirrors the process of human reading
comprehension, where re-examining key sections leads to im-
proved answers [Liu et al., 2025]. ABD effectively calibrates
the attention of LLMs, prompting them to prioritize safety
assessment before generating responses, thereby enhancing
both reliability and security.

5 Experiment

5.1 Experimental Settings

Datasets. Following previous work [Jiang ez al., 2025], two
main datasets are adopted: AdvBench Subset [Chao er al.,
2024], and HarmBench [Mazeika et al., 2024]. AdvBench
Subset is used to evaluate the effectiveness of ABA and ABD,
while HarmBench supplements the evaluation of ABA.

Baselines. Following previous works [Li er al., 2024a;
Ding et al., 2024], two kinds of popular jailbreak attack
methods are selected as the baselines. One focuses on op-
timizing prefix or suffix contents, including GCG [Zou et
al., 2023] and AutoDAN [Liu et al., 2024]. The other is
the semantic-guided strategy, such as PAIR, TAP, Deeplncep-
tion, ReNeLLM, PAP [Zeng er al., 2024] and BaitAttack. In
PAP, we use the top-5 best persuasive strategies for testing.
As for defense baselines, three efficient defense mechanisms
are considered as baselines, including Perplexity Filter [Alon
and Kamfonas, 20231, Self-Reminder [Xie et al., 2023] and
SafeDecoding [Xu ef al., 2024]).
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345 489.1
294 493
243 13.7
36.8 129
709 4.6
392 4.6
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Table 2: ASR (%), ASR-G (%), and Queries (Qry) results of various methods on the AdvBench and HarmBench Dataset. The best results are
highlighted in bold. The second best results are highlighted in underline.

Target Defense Method Jrttack Method . Average
GCG AutoDAN PAIR TAP Deeplnception ReNeLLM PAP BaitAttack ABA
No Defense 16.7 26.3 11.6 23.5 28.1 84.2 48.2 65.4 97.5 | 44.6(base)
Perplexity Filter | 0.0 26.3 11.6 235 28.1 84.2 48.2 65.4 97.5 | 42.8(-1.8)
Llama2-7B Self-Reminder 0.0 0.0 48 54 4.3 3.6 2.5 4.8 5.0 | 3.4(-41.2)
SafeDecoding 0.0 0.0 2.3 2.4 1.8 2.1 1.5 2.8 4.7 | 2.0(-42.6)
ABD(Ours) 0.0 0.0 1.8 1.6 2.0 1.9 1.3 2.4 4.0 | 1.7(-42.9)
No Defense 14.2 23.8 153 29.6 26.8 63.8 50.3 86.4 94.3 | 45.0(base)
Perplexity Filter | 0.0 23.8 153 29.6 26.8 63.8 50.3 86.4 94.3 | 43.4(-1.6)
Llama2-13B  Self-Reminder 0.0 0.0 47 52 4.1 3.3 2.2 4.3 4.8 | 3.2(-41.8)
SafeDecoding 0.0 0.0 2.3 24 1.8 2.1 14 2.8 47 | 1.9(-43.1)
ABD(Ours) 0.0 0.0 20 22 1.7 1.9 1.3 2.5 4.3 | 1.8(-43.2)
No Defense 16.9 22.1 186 263 25.3 56.8 27.8 91.2 92.8 | 42.0(base)
Perplexity Filter | 0.0 22.1 186 263 25.3 56.8 27.8 91.2 92.8 | 40.1(-1.9)
Llama3-8B Self-Reminder 0.0 0.0 20 23 1.4 1.4 1.1 1.7 3.2 | 1.4(-40.6)
SafeDecoding 0.0 0.0 1.5 1.4 1.2 1.4 1.2 1.5 2.8 | 1.2(-40.8)
ABD(Ours) 0.0 0.0 1.2 13 1.2 1.1 1.1 1.2 1.8 | 1.0(-41.0)

Table 3: The ASR-G (%) results of different LLMs under various defense methods. The best results are highlighted in bold.

Target LLMs. To assess the effectiveness of ABA, a range
of representative LLMs is selected as targets, including three
open-source models: the Llama-2-chat series (including 7B
and 13B) and Llama-3-8B, and two closed-source models:
GPT-4 and Claude-3-haiku.

Evaluation Metrics. Three metrics have been proposed to
evaluate jailbreak attack methods, such as ASR, ASR-G and
Queries [Pu et al., 2024]. ASR and ASR-G measure the ef-
fectiveness of various jailbreak attack strategies by predefined
rules matching and GPT-40 judgment [Zhang et al., 2024b;
Zhang et al., 2024al. While “Queries” assesses efficiency by
reflecting the average number of successful jailbreak attempts
between the attack and target models.

5.2 Main Results

Performance of Attack Success Rate. The ASR and ASR-
G of various jailbreak attack methods are presented in Ta-

ble 2. From the Table 2, it is evident that our proposed ABA
achieves the highest ASR and ASR-G across both datasets
(AdvBench and HarmBench) and on all evaluated open-
source and closed-source LLMs. Specifically, the average
ASR-G of ABA exceeds 94%, while the maximum ASR-G
of other existing methods remains below 84.2%. The superior
performance of ABA can be attributed to its attention-based
optimization, where nested tasks are carefully designed to
minimize the attention weights on sensitive words while max-
imizing Attn_Entropy. Additionally, the refined prompts gen-
erated through ABA consistently preserve the original mali-
cious intent, leading to high ASR-G scores and effective jail-
break performance. Table 2 also compares attack efficiency
in terms of query count. ABA achieves the second-best ef-
ficiency, slightly lagging behind BaitAttack due to its multi-
layer task nesting, which effectively conceals malicious intent
and minimizes focus on sensitive words, achieving better at-
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LLMs. ABD-defensed prompts.

Figure 3: Analysis of attention-based metrics in different conditions.

Target LLMs Llama2-7B Llama2-13B Llama3-8B GPT-4 Claude-3
ABA 97.5 94.3 92.8 91.5 97.6
+ w/o intention disguiser 0.0 0.0 0.0 0.0 0.0
+ w/o multi-round 439 46.5 41.2 56.1 59.3

Table 4: Ablation study on the intention disguiser via attention-
driven task nesting and multi-round paradigm.

tack performance. In contrast, BaitAttack uses a single task
nesting layer, reducing query count.

Performance on Attention Distraction. Figure 3(a) illus-
trates the Attn_SensWords (%) achieved by different jailbreak
attack methods across various LLMs. As shown in Fig-
ure 3(a), ABA achieves the lowest Attn_SensWords across all
target LLMs. This indicates that ABA effectively reduces the
attention weights on sensitive words within the prompt. By
iteratively modifying the prompt’s structure, ABA diminishes
the attention on sensitive words and redistributes attention to
less critical areas of the input. As a result, ABA effectively
minimizes the model’s focus on sensitive tokens, thereby im-
proving its ability to bypass safety mechanisms.

Performance on the Defense Strategy. Table 3 presents
the ASR-G of various defense strategies against different
attack methods under open-source LLMs. ABD consis-
tently achieves the lowest ASR-G across all scenarios, which
demonstrates its effectiveness in mitigating jailbreak attacks.
The superior performance of ABD can be attributed to its
attention-based defense mechanism, which leverages the in-
ternal attention distributions to identify high-risk prompts.

5.3 Ablation Study

Intention Disguiser via Attention-Driven Task Nesting.
Table 4 presents the results of models with and without inten-
tion disguiser. The results demonstrate a significant increase
in ASR-G when intention disguiser is omitted. This is due
to ABA utilizes the attention distraction generator to misdi-
rect the LLM’s internal focus toward harmless behaviors and
away from detecting harmful content. This highlights the in-
dispensable role of intention disguiser in ABA.

Multi-round Paradigm. Table 4 also gives the impact of
the multi-round paradigm in ABA. Compared with the inten-
tion disguiser, the multi-round strategy is proved to be rela-
tively less critical. This is to say, the intention disguiser is in-
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(a) The trend of ASR-G (%) with (b) The trend of ASR-G (%) with
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Figure 4: The results of the hyperparameter analysis.

dispensable for the whole effectiveness of the attack strategy.
This reinforces the conclusion that the intention disguiser is
indispensable for the overall effectiveness of the attack strat-
egy, while the multi-round paradigm serves as an auxiliary
tool to improve success rates in more complex scenarios.

5.4 Hyper-parameter Sensitivity Analysis

Weight Selection. In ABD, grid search method is used to
obtain the optimal weight for LLM. Figure 4(a) illustrates the
variation of ASR-G (%) with changing the weight 3. (5 is the
weight of condition entropy. The red line is the origin ASR-
G of ABA on Llama2-7B-chat. The blue line is the ASR-G
under ABD. The value of 5 is increased from O to 10. As
shown in Figure 4(a), ASR always remains to be around 4%
with the S ranging from 0 to 10. The blue line shows that the
ASR-G of ABA under ABD is insensitive to the value of (.

Effectiveness of Nested Layer Number. Figure 4(b) illus-
trates the variation of ASR-G (%) with changing the num-
ber of nested layers in jailbreak prompt. The target model
is Llama2-7B, and the number of nested layers is increased
from 1 to 10. As shown in Figure 4(b), as the number of
nested layers increases from 1 to 3, the ASR-G (%) exhibits
a sharp rise, indicating that a moderate level of nesting en-
hances the effectiveness of the jailbreak attack by crafting
more contextually rich and effective prompts. Beyond 3
nested layers, the ASR-G (%) plateaus and eventually begins
to decline as the number of nested layers increases further.
Excessive layers may introduce noise and redundancy, which
raises entropy and obscures the attack signal.

6 Conclusion

This paper investigates the underlying security mechanisms
of LLMs from the perspective of attention weight distribu-
tion. We propose two novel strategies: Attention-Based At-
tack (ABA) and Attention-Based Defense (ABD). ABA ex-
ploits attention-driven task nesting to disguise the malicious
intention to bypass the safeguards of LLMs, while ABD
leverages attention entropy-based metrics to detect and coun-
teract such attacks. Evaluations on popular datasets affirm the
effectiveness of ABA in achieving higher attack success rates
and ABD in significantly enhancing the robustness of LLMs
against various jailbreak attacks.
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