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Abstract
Abnormal brain functional network is an effective
biomarker for brain disease diagnosis. Most ex-
isting methods focus on mining discriminative in-
formation from whole-brain connectivity patterns.
However, multi-level collaboration is the foun-
dation of efficient brain function, in addition to
the whole-brain network, there are multiple sub-
networks that can quickly integrate and process
specific cognitive functions, forming the modu-
lar community structure of the brain. To address
this gap, we propose a novel method, community-
aware graph Transformer (CAGT), that integrates
the community information of sub-networks and
the topological information of brain graph into the
Transformer architecture for better brain disorder
identification. CAGT enhances information ex-
change within and between functional communi-
ties through dual-scale feature fusion, capturing in-
teractive information across various scales. Addi-
tionally, it incorporates prior knowledge to design
brain region positional encoding and guide the self-
attention, thereby enhancing the spatial awareness
of the Transformer and aligning it with the brain’s
natural information transfer process. Experimen-
tal results indicate that our proposed method sig-
nificantly improves performance on both large and
small datasets, and can reliably capture the interac-
tions between sub-networks, demonstrating its gen-
eralization and interpretability.

1 Introduction
Neurological disorders, including autism spectrum disorder
(ASD), Parkinson’s disease (PD), and major depressive disor-
der (MDD), impact the quality of life for hundreds of millions
of people worldwide [Marx et al., 2023; Lord et al., 2020].
These diseases typically involve complex neurobehavioral
manifestations and neurobiological mechanisms, making ac-
curate diagnosis a significant challenge [Li et al., 2021b].
Traditional diagnostic methods primarily rely on behavioral
assessments and clinical observations, which are subjective

∗Corresponding author

(b) Multi-level Collaboration
: Information interaction : Brain regions : Community

comparison

ROI-level
Interaction

(a) Whole-brain Level Interaction

Community-level
Interaction

Figure 1: (a) Traditional information transmission model based
on brain region-level interaction. (b) The more natural and re-
alistic multi-level collaboration model, enabling ROI-level and
community-level information interaction.

and prone to misdiagnosis [Fusar-Poli et al., 2022]. In re-
cent years, resting-state functional magnetic resonance imag-
ing (rs-fMRI) has demonstrated tremendous research and di-
agnostic potential, it can reveal functional connections among
brain regions of interest (ROIs) by assessing changes in blood
oxygenation level dependent (BOLD) signals [Luo et al.,
2024; Liu et al., 2024a]. By analyzing rs-fMRI data, re-
searchers can identify abnormal patterns in brain functional
network, which are crucial for early diagnosis and formula-
tion of treatment strategies [Kong et al., 2024].

Besides the whole-brain functional network, brain func-
tion depends on collaborative interactions among various re-
gions that are organized into distinct functional communi-
ties, namely sub-networks. Within each community, the re-
gions are tightly interconnected and work together to perform
specific cognitive and physiological tasks [Van Den Heuvel
and Pol, 2010]. For example, the default mode network
(DMN) is associated with self-reflection and internal thought,
and the dorsal attention network (DAN) is critical for atten-
tion regulation. However, traditional deep learning meth-
ods for brain network analysis often fail to incorporate these
community-specific associations. As illustrated in Figure 1,
traditional methods rely on the brain region-level interaction
model, which mainly focus on modeling direct interactions
between pairs of ROIs, overlooking the intricate relationships
between functional communities. In contrast, a more natu-
ral and biologically reasonable model is multi-level collab-
oration that not only considers information transmission at
the ROI-level but also accounts for information interaction at
the community-level, facilitating functional activities through
intra- and inter-community interactions [Sporns and Betzel,
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2016]. To address this issue, we propose to effectively ag-
gregate information within and between communities, inte-
grating ROI-level and community-level interactions. This
approach captures the functional representation of brain re-
gions by encompassing interactive information across local
and global scales, extracting richer spatial representation, and
improving model performance.

To further enhance the representation of complex brain
graph data, recent studies suggest utilizing Graph Trans-
former, which provide a more flexible mechanism for captur-
ing long-range dependencies compared to traditional graph
neural network (GNN) [Kong et al., 2024; Yu et al., 2024].
However, existing approaches still face limitations. Previ-
ous Transformer-based studies often treat brain region nodes
as sequentially arranged nodes without appropriate posi-
tional encoding, hindering the model’s ability to accurately
perceive the spatial structure of the brain network. Addi-
tionally, existing methods utilize the shortest path or adja-
cency matrix to help the attention mechanism capture struc-
tural information in graphs. However, they fail to fully ex-
ploit the available spatial structural prior knowledge, such as
spatial distance and community information, despite exten-
sive evidence demonstrating their significant impact on brain
information transfer processes [Sporns and Betzel, 2016;
Bassett and Bullmore, 2017]. To address these issues, we in-
corporate prior knowledge to optimize the Transformer archi-
tecture. Specifically, we design a novel positional encoding
suitable for brain networks by combining Montreal Neuro-
logical Institute (MNI) coordinates with graph random walk
strategies, effectively enhancing the model’s spatial aware-
ness. Furthermore, by integrating spatial distance and com-
munity structure information, the attention mechanism aligns
more closely with the natural information transfer processes
of the brain. This approach not only enhances the model’s
performance but also improves its biological interpretability.

In summary, we propose the community-aware graph
Transformer (CAGT) method that effectively leverages prior
knowledge of brain network to provide a novel deep learn-
ing architecture for neurological disease diagnosis. The main
contributions are as follows.

• We design a dual-scale spatial feature fusion module that
utilizes community structure to extract richer spatial rep-
resentations from local to global scales.

• We design a prior guided graph Transformer that utilizes
prior knowledge of community structure and topological
information to construct positional encodings and atten-
tion weights, enhancing the spatial awareness of Trans-
former

• We identify key biomarkers for disease diagnosis, in-
cluding connections between functional communities,
this indicates that our method enhances diagnostic per-
formance while preserving interpretability.

2 Related Work
2.1 Local Information Processing Methods
The local information processing methods aggregate infor-
mation through neighboring brain regions, in which GNN is

a typical representative. Cui et al. proposed the brain graph
neural network benchmark (BrainGB), which supports the
combination of different node characteristics, message pass-
ing mechanisms, and pooling strategies, it is to standardize
the brain network analysis process and provide a modular im-
plementation framework [Cui et al., 2023]. Zhang et al. pro-
posed BrainUSL, an unsupervised graph structure learning
method that leverages graph generation, topology-aware en-
coding, and multi-view contrastive regularization to automat-
ically learn discriminative network structures [Zhang et al.,
2023]. Cui et al. proposed IBGNN, an interpretable frame-
work that integrates an edge weight-aware message passing
mechanism and learns a globally shared edge mask to identify
brain regions and key connections associated with specific
diseases [Cui et al., 2022]. Zheng et al. leverage the infor-
mation bottleneck principle to construct disease-relevant sub-
graphs and evaluate their effectiveness of information reten-
tion by computing mutual information, improving diagnostic
accuracy for psychiatric disorders and providing interpretable
biomarkers [Zheng et al., 2024]. However, these methods
overlook critical community information in the brain and do
not break through the inherent limitations of GNN models.
Because GNN is a local information processing method, due
to its limited receptive field, long-range interaction between
ROIs is achieved through increasing the number of layers, but
multiple layers can lead to over smoothing.

2.2 Global Information Processing Methods
The global information processing methods can directly an-
alyze the information interaction between any two brain
regions, in which Transformer is a typical representative.
Transformer uses self-attention mechanism to obtain global
dependencies, enabling modeling of complex long-range in-
teractions. Recent studies focus on improving the atten-
tion mechanism to better capture the intricate relationships in
brain networks. For instances, Peng et al. enhanced feature
discriminability by removing smaller singular value compo-
nents from the attention matrix and applying geometric con-
straints, effectively learning discriminative graph representa-
tions of ROIs [Peng et al., 2024]. Cai et al. aimed to pre-
dict functional connections from structural connections, re-
fining the attention mechanism to better model the relation-
ship between brain structure and function [Cai et al., 2023].
Similarly, Kong et al. utilized graph topological information
to guide the attention mechanism and extracted rich spatio-
temporal information at multiple scales of brain networks
[Kong et al., 2024]. However, these methods lack suitable
positional encodings, which are proven to effectively enhance
the spatial perception capabilities of Transformer in brain net-
work analysis. To address this issue, Qu et al. introduced the
gated graph Transformer (GGT), designing learnable struc-
tural positional encodings to optimize the learning of graph
structural information, thereby enhancing cognitive ability
prediction. [Qu et al., 2024]. Yu et al. designed a posi-
tional encoding based on random walk strategies, allowing
the model to better understand long-range dependencies in
brain networks [Yu et al., 2024]. However, these methods still
do not incorporate community and spatial prior knowledge,
which limits their effectiveness in enhancing the model’s un-
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Figure 2: The overall framework of the proposed CAGT method. (a) Brain Graph Construction module is to rearrange the rows and columns
of the functional connectivity matrix and sparsifies the functional connectivity matrix to construct a whole-brain topology and multiple
community subgraphs. (b) Dual-Scale Spatial Feature Fusion module is to gather information at both the node scale and the community
scale, thus obtaining a more comprehensive representation of brain regions. (c) Prior Guided Graph Transformer module is to realize brain
disorder identification using the designed positional encoding and attention mechanism that are aligned with brain function.

derstanding of spatial relationships and information transmis-
sion mechanisms among ROIs.

3 Method
The overall framework of the proposed CAGT is presented
in Figure 2. Firstly, the brain graph of each subject is con-
structed and partitioned into multiple community subgraphs.
Then, a dual-scale spatial feature fusion module is designed
to obtain representations of brain regions, which contain
information exchange within and between community sub-
graphs. Finally, a prior guided graph Transformer is designed
to realize brain disorder identification based on global infor-
mation processing approach, in particular, the positional en-
coding is generated using a random walk strategy combined
with MNI coordinates, the attention weights incorporate spa-
tial distances and community structure information.

3.1 Brain Graph Construction
The brain is divided into N ROIs with a brain atlas, then
the fMRI data of each subject can be represented as a ma-
trix with the dimension of N × T , where N is the number of
ROIs and T is the number of time points. By computing the
Pearson correlation between each pair of ROIs, a symmetric
functional connectivity (FC) matrix Xp ∈ RN×N is obtained,
each row is the feature vector corresponding to a specific ROI.
Xp records the whole-brain connectivity network of ROIs.

To detect the community structure in the brain network,
we adopt the approach described in [Zhu et al., 2022] to re-
arrange the rows and columns of Xp. As shown in Figure 2
(a), the N ROIs are grouped into the C community modules,
and the ROIs belonging to the same community are arranged
together. This produces a rearranged FC matrix X ∈ RN×N

and a community index Cidx that records the starting posi-
tions of each community module in the matrix. This rear-
rangement only changes the order of ROIs in the FC ma-
trix, preserving the original connectivity information for each
ROI. By retaining the top-k strongest functional connections
for each ROI, we refine X to construct the topology of brain
graph. This sparsification process extracts the most signifi-
cant functional connections and eliminates redundant infor-
mation.

As a result, we construct a brain graph G(V,E), where
the adjacency matrix is denoted as A ∈ RN×N , and the
node features are represented by X ∈ RN×N . This brain
graph can be partitioned into C community subgraphs using
the community index Cidx. For the c-th community subgraph
Gc(Vc, Ec), the adjacency matrix Ac and the node features
Xc are defined as follows:

Ac = A[Cidx(c− 1) : Cidx(c),Cidx(c− 1) : Cidx(c)], (1)

Xc = X[Cidx(c− 1) : Cidx(c), :], (2)
where Ac ∈ RNc×Nc , Xc ∈ RNc×N , Nc is the number of
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nodes in the c-th community. The total number of nodes in
all communities satisfies the equation N = N1 +N2 +N3 +
· · · + NC . By partitioning the brain graph into C commu-
nity subgraphs, it can facilitate the extraction of both intra-
community and inter-community aggregate information for
further analysis.

3.2 Dual-Scale Spatial Feature Fusion
To capture information exchange within and between com-
munities under the multi-level collaboration model, we ex-
tract features at both the node scale and the community
scale, and further integrate these two levels to achieve a com-
prehensive local-to-global spatial representation of the brain
network.

Local Information Extraction Within Communities
For each community subgraph, we employ the Graph Isomor-
phism Network with Edge Features (GINE) [Hu et al., 2019]
to aggregate local information. The message-passing process
is defined as:

x′
v = MLP

(1 + ϵ) · xv +
∑

u∈N (v)

ReLU (xu + eu,v)

 ,

(3)
where MLP(·) represents a multi-layer perceptron, ϵ is a
learnable parameter, N (v) denotes the set of neighbors of
node v, and eu,v is the edge feature between nodes u and
v. Therefore, the community-internal information is updated
as follows:

Hc = ReLU (GINE (Xc,Ac)) ∈ RNc×d, (4)

where Xc ∈ RNc×d and Hc ∈ RNc×d represent the initial
and updated node feature within the community, respectively,
and Ac is the adjacency matrix of the community subgraphs.
Using convolution operations on each subgraph, it can effec-
tively capture the features and relationships of ROIs within
the community. The local feature maps are then concatenated
as:

Hl = concat (H1,H2, · · · ,HC) ∈ RN×d. (5)
This process better reflects the functional connectivity among
ROIs within each community.

Global Information Extraction Among Communities
To further extract global information, we perform a pooling
operation on the internal features Hc of each community to
obtain the community representation, the global feature map
based on communities is obtained by concatenating them:

Xm = concat (P (H1), P (H2), . . . , P (HC)) ∈ RC×d, (6)

where P (·) denotes a combination of average pooling and
max pooling, retaining essential features while smoothing
the feature map. Next, we construct a connectivity matrix
M ∈ RC×C based on the number of edges between commu-
nities, the element M(i, j) represents the number of func-
tional connections between the i-th and j-th communities,
and it is calculated as follows:

M(i, j) =
∑
u∈Vi

∑
v∈Vj

Auv, (7)

where Vi and Vj denote the node sets of the i-th and j-th
communities, respectively. By normalizing M, we obtain the
adjacency matrix of the global community graph:

Am = norm(M) ∈ RC×C . (8)

This results in a community-level graph Gm(Vm,Em),
where each node represents a community, and the edge
weights reflect the strength of the functional connections
between communities. Stronger connections correspond to
larger edge weights. On the community-level graph, we also
employ GINE to aggregate inter-community information, ef-
fectively capturing features and relationships between com-
munities:

Hg = ReLU (GINE (Xm,Am)) ∈ RC×d. (9)

Fusion of Local-to-Global Information
Inspired by the concept of residual connections, we integrate
the local and global information with original feature X to
obtain the final brain region feature map:

Xlg = X+ lin (concat (Hl, expand(Hg))) , (10)

where the lin(·) represents a linear layer and operation
expand(·) replicates Hg back to the pre-pooling dimensions
based on the community indices:

H′
g[Cidx(c− 1) : Cidx(c), :] = repeat(Hg[c, :]), (11)

and repeat(·) denotes a matrix replication operation.

3.3 Positional Encoding for Brain Networks
For non-Euclidean brain graph data, traditional sinusoidal po-
sitional encodings cannot effectively express the spatial rela-
tionships among ROIs. To better adapt to the unique charac-
teristics of brain functional networks, we combine Random
Walk Positional Encoding (RWPE) [Dwivedi et al., 2021]
with MNI coordinates to create a unique positional encod-
ing specifically tailored for brain functional networks. It can
capture the centrality and importance of brain region nodes
and their intricate spatial and topological relationships, sig-
nificantly enhancing the Transformer’s spatial awareness ca-
pabilities. Specifically, RWPE utilizes a random walk dif-
fusion strategy. The probability of node i returning to itself
after S steps of random walks is calculated as:

PS
i =

(
(D−1A)S

)
ii
, (12)

where D is the degree matrix, and A is the adjacency matrix
of the graph. Based on this probability, the positional encod-
ing after S steps of random walks is computed as:

RWPE(S) =


P 1
1 P 2

1 · · · P k
1

P 1
2 P 2

2 · · · P k
2

...
...

. . .
...

P 1
n P 2

n · · · P k
n

 . (13)

It reflects the degree centrality of ROIs and global structure
information of the brain graph.

The MNI coordinates directly provide the three-
dimensional spatial location of ROIs. By incorporating
these coordinates into the positional encoding, the model is
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better to comprehend the relative positions of ROIs in three-
dimensional space. Specifically, suppose the coordinate of
the i-th ROI is pi = [xi, yi, zi], the brain’s spatial coordinate
matrix PMNI is:

PMNI =
[
p⊤
1 , p

⊤
2 , . . . ,p

⊤
N

]⊤ ∈ RN×3. (14)
Then, the final positional encoding can be defined as:

PE =
[
RWPE(S) ∥ norm(PMNI)

]
∈ RN×(S+3), (15)

where norm(·) normalizes the MNI coordinates, and ∥ de-
notes matrix concatenation. The positional encoding is added
to the model input as follows:

X̃ = Xlg + lin(PE), (16)
where lin(·) maps the PE to a d-dimensional space. The final
input X̃ ∈ RN×d integrates the local-to-global features Xlg
with the positional encoding, allowing the model to capture
both spatial and graph structural information.

3.4 Prior-Guided Multi-head Attention
The attention mechanism in Transformer updates brain re-
gion information based on feature similarity between ROIs.
However, neuroscience research reveals that brain informa-
tion transmission is much more complex. It is strongly in-
fluenced by spatial distance and community structure, where
physically adjacent regions tend to exhibit stronger func-
tional connections and more frequent information exchanges.
Moreover, connections within the same brain community are
typically tighter, allowing efficient information transmission
through functional synergy [Sporns and Betzel, 2016; Betzel
and Bassett, 2017; Bassett and Bullmore, 2017]. Building on
these findings, we integrate these prior knowledge into the
multi-head self-attention mechanism, enabling the model to
more accurately simulate brain information transfer process,
enhancing interpretability and predictive accuracy.

Spatial Distance Weighting
The distance matrix D is computed using the Euclidean dis-
tance between nodes based on their MNI coordinates:

Dij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, (17)

where (xi, yi, zi) and (xj , yj , zj) denote the MNI coordinates
of brain region nodes vi and vj , respectively. Subsequently,
the distance weight matrix Dw is derived using a Gaussian
kernel function:

Dw(i, j) = e−
Dij

2

2α2 , (18)
where the exponential decay function increase the weight of
short-distance connections, and α is a learnable parameter
that is initially set to 1.

Community-based Weighting
We further design a community weight matrix that assigns
higher weights to information transfer within the same com-
munity. For nodes within the same community, we set a learn-
able weight θc (initialized to 1) to form the community weight
matrix Cw, the matrix is defined as follows:

Cw(i, j) =

{
θc, if vi, vj ∈ Gc(Vc, Ec),

0, otherwise.
(19)

Prior-Guided Attention Weight Matrix
By combining the distance weight matrix Dw and the com-
munity weight matrix Cw, we construct a prior-guided atten-
tion weight matrix that better reflects the brain’s information
transmission processes and activity mechanisms:

Ql,h,Kl,h,Vl,h = X̃l−1,h
(
Wl,h

Q ,Wl,h
K ,Wl,h

V

)
, (20)

X̃l,h = σ

(
Ql,h(Kl,h)T√

dl,h
+ λ1Dw + λ2Cw

)
Vl,h, (21)

Fl =

(∥∥∥∥H
h=1

X̃l,h

)
Wl

O, (22)

where F0 = X̃, ∥ represents the concatenation operator,
H is the number of attention heads, l is the layer index,
and Wl

O,W
l,h
Q ,Wl,h

K ,Wl,h
V are learnable model parameters.

dl,h is the dimensionality of the query and key projections, σ
represents softmax operator and λ1, λ2 are both learnable pa-
rameters initialized to 0.2 (via grid search). Ultimately, after
L layers of the Transformer framework that integrates com-
munity spatial structure information, we can obtain feature
map FL ∈ RN×d.

The final readout step involves aggregating global-level
node embeddings to obtain an advanced representation of the
brain graph. We employ the OCRead layer [Kan et al., 2022]
to aggregate the learned node embeddings. The OCRead
model begins by mapping the node data to a hidden space us-
ing an encoder. Then it computes standard orthogonal clus-
tering centers E ∈ RK×N and employs a soft assignment
mechanism to allocate nodes to these centers. The graph-level
embedding ZG is calculated using the formula ZG = S ·FL,
where S ∈ RK×N is the learnable assignment matrix gener-
ated by OCRead. This process effectively captures the intri-
cate patterns of brain activity. Finally, the graph-level embed-
ding ZG undergoes dimension reduction and flattening before
being fed into a multi-layer perceptron to produce accurate
classification predictions. The entire process is optimized us-
ing supervised learning with cross-entropy loss.

4 Experiments and Results
4.1 Materials
We extensively evaluate the proposed method on three
datasets, namely ABIDE I for autism [Craddock et al., 2013],
REST-MDD for major depressive disorder [Yan et al., 2019]
and Taowu and Neurocon for Parkinson’s disease [Badea et
al., 2017], where ABIDE I and REST-meta-MDD are large
datasets with thousands of subjects, TaoWu and Neurocon is
a relatively small dataset with about a hundred subjects.

ABIDE I is an open-source ASD diseases database com-
prising data from 17 international sites, available at https:
//fcon 1000.projects.nitrc.org/indi/abide. The Preprocessed
Connectomes Project (PCP) has preprocessed the fMRI data
for each subject, resulting in rs-fMRI data for 1,035 subjects,
including 505 ASD patients and 530 normal controls (NC).

REST-MDD is a publicly available MDD diseases
database comprising 25 study cohorts, accessible at http:
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Type Model ABIDE I REST-MDD Taowu & Neurocon
ACC(%) ↑ SEN(%) ↑ SPE(%) ↑ ACC(%) ↑ SEN(%) ↑ SPE(%) ↑ ACC(%) ↑ SEN(%) ↑ SPE(%) ↑

GNN
Based

GINE 63.04±2.90 65.93±8.41 64.82±9.81 60.97±3.89 61.62±7.81 63.18±3.89 67.82±12.46 67.62±10.81 69.82±19.46
BrainGNN 65.12±3.11 62.87±13.82 65.07±14.51 65.79±5.01 64.35±9.81 34.25±15.21 72.08±15.27 69.50±18.50 74.99±13.57

IBGNN 66.28±4.49 65.66±13.63 66.98±9.40 62.10±2.80 69.05±10.00 54.07±14.21 78.06±16.34 86.00±24.27 62.50±22.97
BrainUSL 70.72±4.09 71.09±12.98 68.94±11.53 65.00±1.34 71.49±8.41 56.59±10.08 76.07±14.34 83.04±16.25 63.50±21.07
BrainIB 67.34±2.63 70.94±8.36 63.57±7.60 62.73±2.42 68.41±3.71 56.16±6.35 73.47±18.90 81.00±20.22 65.00±20.62

Graph
Transformer

Based

vanillaTF 64.20±3.35 66.40±6.97 62.47±10.06 61.73±1.25 64.22±3.17 52.10±7.35 63.47±15.90 77.00±15.32 57.00±13.21
BrainNetTF 69.22±3.15 68.69±5.68 65.13±4.41 65.33±2.18 67.77±5.89 62.54±4.55 71.11±15.74 85.64±16.37 48.50±28.39

Com-BrainTF 68.93±4.45 69.78±6.99 66.11±4.75 65.42±2.04 67.59±4.14 63.21±4.22 64.99±20.15 76.21±22.14 48.50±25.36
ALTER 71.29±3.76 72.23±6.21 66.10±8.09 66.93±2.39 71.70±4.79 61.32±3.77 76.33±9.82 83.07±15.67 59.66±23.28

GBT 70.06±4.96 73.08±7.73 66.86±7.73 67.04±2.33 70.25±6.27 64.88±6.10 68.61±20.24 84.14±17.89 45.16±26.80
Contrasformer 67.30±3.83 69.66±13.57 65.09±17.09 63.30±2.91 63.95±4.70 50.90±3.92 70.21±16.04 74.14±15.86 52.61±23.11

GraphGPS 65.30±2.63 60.61±6.57 64.12±7.32 61.09±1.32 65.56±2.08 53.45±3.62 64.17±14.76 69.32±12.67 59.61±18.22

Ours CAGT 74.01±3.33 77.83±8.63 69.60±9.55 68.23±2.05 71.57±6.29 64.11±7.81 86.52±11.83 95.5±9.06 74.16±25.67

Table 1: Performance comparison across datasets and models. Metrics include Accuracy (ACC), Sensitivity (SEN), and Specificity (SPE).
Bold indacates the best results and underlining signifies second outcomes.

Datasets DE PE PA ACC(%) ↑ AUC(%) ↑ SEN(%) ↑ SPE(%) ↑

ABIDE I

✓ 67.42±2.56 71.32±3.64 73.78±2.14 60.95±5.67
✓ 69.37±2.11 73.12±2.81 72.32±4.19 63.18±6.89

✓ ✓ 71.18±1.26 74.56±1.69 72.68±3.89 66.14±8.21
✓ ✓ 72.47±3.56 75.67±1.81 76.25±6.33 67.12±3.32
✓ ✓ ✓ 74.01±3.33 77.80±2.96 77.83±8.63 69.60±9.55

REST-MDD

✓ 64.21±1.35 67.21±3.61 66.75±6.87 61.23±7.33
✓ 65.25±3.01 67.25±2.56 68.12±2.01 60.96±7.32

✓ ✓ 65.77±2.64 68.42±3.67 69.24±5.61 62.18±4.99
✓ ✓ 67.16±3.89 70.62±1.71 69.23±4.56 63.14±6.78
✓ ✓ ✓ 68.23±2.05 71.01±2.66 71.57±6.27 64.11±7.81

Taowu &
Neurocon

✓ 73.44±13.80 77.64±16.22 82.26±12.63 65.62±23.24
✓ 70.45±9.71 72.56±13.86 85.69±11.89 62.45±13.89

✓ ✓ 73.45±10.45 76.23±9.87 87.64±8.97 64.63±15.98
✓ ✓ 83.26±9.89 83.10±14.37 89.27±10.50 73.56±21.63
✓ ✓ ✓ 86.52±11.83 84.08±16.82 95.50±9.06 74.16±25.67

Table 2: Ablation experiments of different components on three dis-
ease classification tasks. Bold indacates the best results.

//rfmri.org/REST-meta-MDD. The data were preprocessed
using the Data Processing Assistant for Resting-State fMRI
(DPARSF) toolbox [Yan et al., 2016]. Following the official
recommendation to exclude overlapping data from site S4,
the refined dataset consists of 2,380 rs-fMRI scans, including
1,276 MDD patients and 1,104 NC.

TaoWu and Neurocon datasets are among the earliest im-
age datasets available for Parkinson’s research. We followed
the preprocessing steps outlined in [Liu et al., 2024b] using
the DPARSF toolbox. The TaoWu dataset ultimately includes
39 subjects, with 20 PD patients and 19 NC. The Neurocon
dataset includes 43 subjects, with 27 PD patients and 16 NC.

For each subject, the entire brain is parcellated into 200 re-
gions using the CC200 atlas [Craddock et al., 2012]. These
regions are further clustered into eight sub-networks based
on the previous research [Yeo et al., 2011; Lawrence et al.,
2021], namely Cerebellum and Subcortical Structures (CB &
SC), Visual Network (VN), Somatomotor Network (SMN),
DAN, Ventral Attention Network (VAN), Limbic Network
(LN), Frontoparietal Network (FPN), and DMN.

4.2 Experimental Setting
We evaluate the model’s performance using ten-fold cross-
validation. The entire network is trained end-to-end with the
Adam optimizer. Key parameters included a batch size of
64, a total of 70 epochs, an initial learning rate of 1 × 10−4,
and a weight decay of 1 × 10−6. The top-k connections
for each node are retained as edges, with their values fixed
at 30. The RWPE dimension S is set to 30. The Trans-
former architecture is configured with 2 layers and 8 heads. A
dropout rate of 0.2 is applied to the GINE, Transformer, and
the final fully connected classification layer. All codes are
implemented using the PyTorch and PyG libraries. Experi-
ments are conducted on a Windows server equipped with an
Intel® Core™ i7-10700 CPU (2.90 GHz), a GeForce GTX
3080 Ti GPU and 32 GB of RAM. The code is available at
https://github.com/null-cks/CAGT.

4.3 Comparison with Existing Methods
We compare our CAGT model with two types of models:
1) GNN-based models, including GINE [Hu et al., 2019] ,
BrainGNN [Li et al., 2021a] , IBGNN [Cui et al., 2022]
, BrainUSL [Zhang et al., 2023], and BrainIB [Zheng et
al., 2024]; 2) Transformer-based models designed for graph
data, including vanilla-Transformer (vanillaTF), BrainNet-
Transformer (BrainNetTF) [Kan et al., 2022], Com-BrainTF
[Bannadabhavi et al., 2023], ALTER [Yu et al., 2024], GBT
[Peng et al., 2024], Contrasformer [Xu et al., 2024] and
GraphGPS [Rampášek et al., 2022]. For these models, we
used the open-source code from the original papers. We mod-
ified only the validation method to ten-fold cross-validation
to align with our experimental setup, while maintaining the
original model architectures.

Table 1 presents the results of three classification tasks
in three public datasets, using accuracy (ACC), sensitivity
(SEN), and specificity (SPE) as primary metrics. As can
be seen, Graph Transformer-based methods generally out-
perform GNN-based methods on large datasets like ABIDE
I and REST-MDD, but struggle with small datasets such as
Tawowu and Neurocon due to their higher parameter count,
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Figure 3: (a) Inter-community relationships of ASD calculated based on the attention matrix. (b) Visualizing key functional connections by
retaining the top thirty attention values. (c) Top ten discriminative brain regions on ABIDE I in ASD diagnosis.

which increases the risk of overfitting. Large datasets such as
REST-MDD exhibit more consistent data distributions across
folds, leading to smaller standard deviations, while small
datasets such as Taowu and Neurocon show greater variabil-
ity. Notably, our CAGT model consistently achieves supe-
rior performance in all tasks, with accuracy improvements
of 2.72% for ASD, 1.19% for MDD, and 8.46% for PD.
This demonstrates the advantage of our approach in effec-
tively extracting comprehensive representations of brain con-
nectomes by leveraging sub-network community characteris-
tics and brain spatial topological information.

4.4 Ablation Studies
To evaluate the effectiveness of the CAGT model’s compo-
nents, we conduct ablation studies across three tasks, focus-
ing on the dual-scale spatial feature fusion module (DF), po-
sitional encoding (PE), and prior-guided multi-head atten-
tion (PA). The results are summarized in Table 2. The DF
module enhances spatial representation by fusing local fea-
tures of sub-networks with global features of the whole brain,
achieving performance improvements of 2.92%, 2.96%, and
13.07% across the three tasks. This demonstrates the effec-
tiveness of leveraging community-related information. The
PA module further strengthens long-range interactions be-
tween brain regions and incorporates prior knowledge of
brain information transmission mechanisms, contributing sig-
nificantly to performance gains of 5.87%, 3.38%, and 9.7%
in the respective tasks. Additionally, the inclusion of PE im-
proves the model’s spatial awareness of the brain network,
increasing accuracy by 1.54%, 1.07%, and 3.26%. These re-
sults confirm the positive impact of each component on the
model’s diagnostic capabilities.

4.5 Biomarker Detection
CAGT can also detect key functional communities and brain
regions associated with brain disorder diagnosis. Taking
ABIDE I as an example, we separately compute the average
attention scores Sasd and Snc for correctly classified ASD
patients and NC subjects obtained in our model. Then, the

inter-community relationships is quantified by averaging the
attention scores among their corresponding ROIs, this results
in two inter-community connectivity matrix S̄asd ∈ R8×8

and S̄nc ∈ R8×8. By comparing S̄asd and S̄nc, we can detect
abnormal connectivity patterns in ASD patients. Specifically,
the DMN shows the highest attention weight and demon-
strates stronger connectivity with both VAN and DAN in
ASD group, aligning with findings reported in [Padmanab-
han et al., 2017]. Conversely, the SMN exhibits weaker
connectivity with other sub-networks in ASD group, reflect-
ing its impact on sensory and motor processing due to di-
minished connectivity [Marco et al., 2011; Mostofsky and
Ewen, 2011]. The inter-community relationships of ASD
is shown in Figure 3(a), visualizing the distinctive connec-
tivity patterns. Furthermore, Figure 3(b) and 3(c) present
the top thirty most significant functional connections and the
top ten critical brain regions, identified by sparsifying the
attention score matrix Sasd. Key brain regions including
the frontal gyrus, precentral gyrus, putamen and insula are
known to play crucial roles in sensory, motor, and cogni-
tive processing. These results align with the existing neu-
roscience literature [Sussman et al., 2015; Plitt et al., 2015;
Sapey-Triomphe et al., 2023].

5 Conclusion
In this work, we propose a novel framework that integrates
sub-network community information and brain graph topol-
ogy into the Transformer architecture to enhance brain disor-
der identification. The dual-scale spatial feature fusion mod-
ule effectively combines local community-level features with
global whole-brain features, enhances the model’s ability
to capture hierarchical brain interactions. The prior-guided
graph Transformer incorporates brain-specific positional en-
coding and adds prior knowledge of brain information trans-
mission mechanisms to the Transformer, aligning with brain
biological characteristics and improving model interpretabil-
ity. Our method not only achieves superior performance
compared to existing methods but also reliably identifies key
biomarkers associated with neurological disorders.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was supported in part by the Natural Science Re-
search Project of Anhui Educational Committee under Grant
2023AH050081; in part by the Collaborative Innovation
Project of Key Laboratory of Philosophy and Social Sciences
in Anhui Province under Grant HZ2302; in part by the Scien-
tific Research Project of Colleges and Universities in Anhui
Province under Grant 2024AH040115; and in part by the An-
hui Province Science and Technology Innovation and Tack-
ling Key Problems Project under Grant 202423k09020041.

References
[Badea et al., 2017] Liviu Badea, Mihaela Onu, Tao Wu,

Adina Roceanu, and Ovidiu Bajenaru. Exploring the
reproducibility of functional connectivity alterations in
parkinson’s disease. PLoS One, 12(11):e0188196, 2017.

[Bannadabhavi et al., 2023] Anushree Bannadabhavi, Soo-
jin Lee, Wenlong Deng, Rex Ying, and Xiaoxiao Li.
Community-aware transformer for autism prediction in
fmri connectome. In International Conference on Med-
ical Image Computing and Computer-Assisted Interven-
tion, pages 287–297. Springer, 2023.

[Bassett and Bullmore, 2017] Danielle S Bassett and Ed-
ward T Bullmore. Small-world brain networks revisited.
The Neuroscientist, 23(5):499–516, 2017.

[Betzel and Bassett, 2017] Richard F Betzel and Danielle S
Bassett. Multi-scale brain networks. Neuroimage, 160:73–
83, 2017.

[Cai et al., 2023] Hongjie Cai, Yue Gao, and Manhua Liu.
Graph transformer geometric learning of brain networks
using multimodal mr images for brain age estimation.
IEEE Transactions on Medical Imaging, 42(2):456–466,
2023.

[Craddock et al., 2012] R Cameron Craddock, G Andrew
James, Paul E Holtzheimer III, Xiaoping P Hu, and He-
len S Mayberg. A whole brain fmri atlas generated via spa-
tially constrained spectral clustering. Human brain map-
ping, 33(8):1914–1928, 2012.

[Craddock et al., 2013] Cameron Craddock, Yassine Ben-
hajali, Carlton Chu, Francois Chouinard, Alan Evans,
András Jakab, Budhachandra Singh Khundrakpam,
John David Lewis, Qingyang Li, Michael Milham, et al.
The neuro bureau preprocessing initiative: open sharing of
preprocessed neuroimaging data and derivatives. Frontiers
in Neuroinformatics, 7(27):5, 2013.

[Cui et al., 2022] Hejie Cui, Wei Dai, Yanqiao Zhu, Xiaox-
iao Li, Lifang He, and Carl Yang. Interpretable graph neu-
ral networks for connectome-based brain disorder analy-
sis. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 375–
385. Springer, 2022.

[Cui et al., 2023] Hejie Cui, Wei Dai, Yanqiao Zhu, Xuan
Kan, Antonio Aodong Chen Gu, Joshua Lukemire, Liang
Zhan, Lifang He, Ying Guo, and Carl Yang. Braingb:

A benchmark for brain network analysis with graph neu-
ral networks. IEEE Transactions on Medical Imaging,
42(2):493–506, 2023.

[Dwivedi et al., 2021] Vijay Prakash Dwivedi, Anh Tuan
Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bres-
son. Graph neural networks with learnable struc-
tural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

[Fusar-Poli et al., 2022] Laura Fusar-Poli, Natascia
Brondino, Pierluigi Politi, and Eugenio Aguglia. Missed
diagnoses and misdiagnoses of adults with autism spec-
trum disorder. European archives of psychiatry and
clinical neuroscience, 272(2):187–198, 2022.

[Hu et al., 2019] Weihua Hu, Bowen Liu, Joseph Gomes,
Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural net-
works. arXiv preprint arXiv:1905.12265, 2019.

[Kan et al., 2022] Xuan Kan, Wei Dai, Hejie Cui, Zilong
Zhang, Ying Guo, and Carl Yang. Brain network trans-
former. Advances in Neural Information Processing Sys-
tems, 35:25586–25599, 2022.

[Kong et al., 2024] Youyong Kong, Xiaotong Zhang, Wen-
han Wang, Yue Zhou, Yueying Li, and Yonggui Yuan.
Multi-scale spatial-temporal attention networks for func-
tional connectome classification. IEEE Transactions on
Medical Imaging, pages 1–1, 2024.

[Lawrence et al., 2021] Ross M Lawrence, Eric W Bridge-
ford, Patrick E Myers, Ganesh C Arvapalli, Sandhya C
Ramachandran, Derek A Pisner, Paige F Frank, Alli-
son D Lemmer, Aki Nikolaidis, and Joshua T Vogelstein.
Standardizing human brain parcellations. Scientific data,
8(1):78, 2021.

[Li et al., 2021a] Xiaoxiao Li, Yuan Zhou, Nicha Dvornek,
Muhan Zhang, Siyuan Gao, Juntang Zhuang, Dustin
Scheinost, Lawrence H Staib, Pamela Ventola, and
James S Duncan. Braingnn: Interpretable brain graph neu-
ral network for fmri analysis. Medical Image Analysis,
74:102233, 2021.

[Li et al., 2021b] Yang Li, Jingyu Liu, Yiqiao Jiang, Yu Liu,
and Baiying Lei. Virtual adversarial training-based deep
feature aggregation network from dynamic effective con-
nectivity for mci identification. IEEE transactions on med-
ical imaging, 41(1):237–251, 2021.

[Liu et al., 2024a] Jinduo Liu, Feipeng Wang, and Junzhong
Ji. Concept-level causal explanation method for brain
function network classification. In Proceedings of the
Thirty-Third International Joint Conference on Artificial
Intelligence, IJCAI-24, pages 3087–3096, 8 2024.

[Liu et al., 2024b] Mengjun Liu, Huifeng Zhang, Mianxin
Liu, Dongdong Chen, Zixu Zhuang, Xin Wang, Lichi
Zhang, Daihui Peng, and Qian Wang. Randomizing hu-
man brain function representation for brain disease diag-
nosis. IEEE Transactions on Medical Imaging, 2024.

[Lord et al., 2020] Catherine Lord, Traolach S Brugha, Tony
Charman, James Cusack, Guillaume Dumas, Thomas Fra-
zier, Emily JH Jones, Rebecca M Jones, Andrew Pickles,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Matthew W State, et al. Autism spectrum disorder. Nature
reviews Disease primers, 6(1):1–23, 2020.

[Luo et al., 2024] Xuexiong Luo, Jia Wu, Jian Yang, Shan
Xue, Amin Beheshti, Quan Z. Sheng, David McAlpine,
Paul Sowman, Alexis Giral, and Philip S. Yu. Graph
neural networks for brain graph learning: A survey. In
Proceedings of the Thirty-Third International Joint Con-
ference on Artificial Intelligence, IJCAI-24, pages 8170–
8178, 8 2024.

[Marco et al., 2011] Elysa J Marco, Leighton BN Hinkley,
Susanna S Hill, and Srikantan S Nagarajan. Sensory pro-
cessing in autism: a review of neurophysiologic findings.
Pediatric research, 69(8):48–54, 2011.

[Marx et al., 2023] Wolfgang Marx, Brenda WJH Penninx,
Marco Solmi, Toshi A Furukawa, Joseph Firth, Andre F
Carvalho, and Michael Berk. Major depressive disorder.
Nature Reviews Disease Primers, 9(1):44, 2023.

[Mostofsky and Ewen, 2011] Stewart H Mostofsky and
Joshua B Ewen. Altered connectivity and action model
formation in autism is autism. The Neuroscientist,
17(4):437–448, 2011.

[Padmanabhan et al., 2017] Aarthi Padmanabhan, Charles J
Lynch, Marie Schaer, and Vinod Menon. The default mode
network in autism. Biological Psychiatry: Cognitive Neu-
roscience and Neuroimaging, 2(6):476–486, 2017.

[Peng et al., 2024] Zhihao Peng, Zhibin He, Yu Jiang,
Pengyu Wang, and Yixuan Yuan. Gbt: Geometric-oriented
brain transformer for autism diagnosis. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 142–152. Springer, 2024.

[Plitt et al., 2015] Mark Plitt, Kelly Anne Barnes, and Alex
Martin. Functional connectivity classification of autism
identifies highly predictive brain features but falls short of
biomarker standards. NeuroImage: Clinical, 7:359–366,
2015.

[Qu et al., 2024] Gang Qu, Anton Orlichenko, Junqi Wang,
Gemeng Zhang, Li Xiao, Kun Zhang, Tony W. Wilson, Ju-
lia M. Stephen, Vince D. Calhoun, and Yu-Ping Wang. In-
terpretable cognitive ability prediction: A comprehensive
gated graph transformer framework for analyzing func-
tional brain networks. IEEE Transactions on Medical
Imaging, 43(4):1568–1578, 2024.
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