Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Constrained Sequential Inference in Machine Learning
Using Constraint Programming

Virasone Manibod?, David Saikali', Gilles Pesant'

IDepartment of Computer and Software Engineering, Polytechnique Montréal, Montreal, Canada
2GIRO, Montreal, Canada
virasonemanibod @hotmail.com, {david.saikali, gilles.pesant} @polymtl.ca

Abstract

Sequence models in machine learning often strug-
gle to exhibit long-term structure. We consider
this problem at inference time in the context of en-
forcing constraints that are not necessarily featured
in the dataset on which the generative model was
trained. The difficulty lies in imposing previously-
unseen structure while staying close to the training
dataset. It is particularly hard for long-term struc-
ture, which requires balancing foresight over many
yet-to-be generated tokens and the immediacy of
next-token predictions from the sequence model.
We address this problem by introducing our neu-
rosymbolic framework GeAI-BLAnC. The learned
probabilities of the sequence model are mixed in
with the marginal probabilities computed from a
constraint programming / belief propagation frame-
work applied to a constraint programming model
expressing the desired structure. The next predicted
token is then selected from the resulting proba-
bility distribution. Experiments in the context of
molecule and music generation show that we can
achieve the structure imposed post-training without
straying too much from the structure of the dataset
learned during training.

1 Introduction

Sequence models in machine learning often struggle to ex-
hibit long-term structure, stemming in part from the token-
by-token nature of the prediction process used to generate a
sequence. This problem can arise both during training, where
such global structure must be learned, and during inference
(generation), where the gradually-outputted sequence must
be guided toward that structure, each with its own challenges.
In this paper we consider the latter.

Imposing structure at inference time is sometimes useful
in combination with a training phase that may have learned
the structure only partially, in order to fine-tune the sequence
being generated, especially if that structure is mandatory
[Deutsch et al., 2019; Lee er al., 2019]. Tt is equally rele-
vant when we wish to impose constraints that are not featured
in the dataset on which the sequence model was trained, ei-
ther to avoid the expense of retraining a large model or to

o Xt1, Xt , Xt#1... — Xin

X1.t-1 m max, sample,

X1=X1 ... Xt-1=Xt1
Em] oracle(Xt ,Em:) ! H D]
C(X1,...Xn)

Figure 1: Our neurosymbolic architecture for constrained sequence
generation. At each token generation step, the application of BP on
the CP model modifies the trained neural model’s output probability
distribution. The next token is selected using that new distribution.

offer a flexible interactive system (e.g. computer-aided mu-
sic composition). The difficulty in such a context is to impose
that structure while staying close to the dataset the model was
trained on. Indeed, one important aspect of controllability is
to keep a satisfying quality of the generated sequence while
respecting the constraints [Young ef al., 2022]. Tt is particu-
larly hard for long-term structure, which requires balancing
foresight over many yet-to-be generated tokens and the im-
mediacy of next-token predictions from the sequence model.

We address this problem in the following way (see Fig. 1).
To enable the introduction of post-training combinatorial
structure in sequences outputted by a trained machine learn-
ing model, we first express that structure as a constraint pro-
gramming (CP) model. Indeed, it offers the advantage of be-
ing declarative and modular, both desirable features in an in-
teractive setting where one tries adding and combining con-
straints. Stating such a model on a representation of the se-
quence to be generated ensures that the added constraints will
be satisfied. However, the resulting sequence will not nec-
essarily be representative of its training dataset. Hence at
each token-generation step we feed the probability distribu-
tion from which a token should be selected to a CP solver
equipped to handle such probabilities on domain values. We
then perform belief propagation (BP) on the CP model in or-
der to produce a distribution taking into account the desired

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

structure. Finally, the next token is selected from that new
probability distribution. To achieve the balancing act some-
times necessary to smoothly handle long-term structure, we
also provide the ability to progressively adjust the impact of
the learned distribution on the belief propagation process as
the sequence is generated.

The originality of our contribution, beyond the fact that
few works have used CP for generative Al, lies in the CP-BP
framework being used to guide a trained neural network dur-
ing the inference phase. We introduce the oracle constraint
that acts as a bridge between the two parts and propose the
novel ability to apply a weight to messages from constraints
in order to handle long-term constraints more smoothly.

The next section provides some background. Section 3
presents related work on adding structure to machine learn-
ing models. Our framework GeAI-BLAnC integrating con-
straint programming in a sequence generation model is de-
tailed in Section 4. Sections 5 and 6 describe and discuss our
experiments in the domain of molecule and music generation
respectively. Finally Section 7 provides concluding remarks.

2 Background

2.1 Generative Neural Models

One can hardly overstate the surge in accomplishments and
in public interest for generative Al, where huge neural mod-
els are trained with vast amounts of data in order to respond
to prompts by generating realistic text, images, music, com-
puter code, or other structured output. In this paper we con-
sider sequential data such as text. We briefly present some of
the most relevant machine learning architectures and mecha-
nisms to learn from sequential data.

The Recurrent Neural Network (RNN) [Hochreiter and
Schmidhuber, 1997] is a type of neural network for sequen-
tial data. It can be trained to predict the next element of a
sequence based on the previous input’s information. Thus,
once trained, it can be used to generate new sequences, to-
ken by token. A RNN is able to predict what’s following due
to its hidden state which functions as a memory for the pre-
vious inputs. Therefore, at each index of the sequence, the
current input and the hidden state are used to predict the next
element. The Long Short-Term Memory (LSTM) [Hochreiter
and Schmidhuber, 1997] was created to overcome the vanish-
ing or exploding gradient problem from the RNN. The LSTM
is able to learn better long-term dependencies with its cell
state which can decide what information from the past to keep
or forget. The self-attention mechanism [Parikh et al., 2016;
Vaswani et al., 2017] is another way to add long-term de-
pendencies in neural networks. It consists of analyzing the
relationship between the elements within a same sequence.
Therefore, during an autoregressive generation, the model
can determine which previously generated tokens should the
current token pay more attention to.

A Transformer [Vaswani et al., 2017] is a deep learning
architecture used in natural language processing (NLP). It is
made up of a stack of encoders and a stack of decoders. The
encoder layers feed their output to the next encoder in the
stack, the final encoder then passes it to the decoders’ multi-
headed cross-attention. Each encoder layer contains a self-

attention mechanism as well as a feed-forward layer, while
the decoders contain a masked multi-headed attention layer, a
feed-forward layer as well as the previously mentioned multi-
headed cross-attention layer.

2.2 Constraint Programming

Constraint Programming (CP) [Rossi er al, 2006] is
a paradigm used to solve constraint satisfaction prob-
lems (CSP). A CSP is a tuple (X,D,C) where X =
{X1,...,X,} is afinite set of variables, D = {d1,...,dn}
is a finite set of values and C' = {c1,..., ¢} is a finite set
of constraints, i.e. relations over a subset of variables from
X. To each variable X; we associate a domain D(X;) C D
from which it takes its value, which can be seen as a unary
constraint. The goal of a CP solver is to find an assign-
ment (or multiple ones) for each variable from their respec-
tive domain such that every constraint in the CSP is satis-
fied. It typically proceeds by backtracking search interleaving
branching and constraint propagation, a form of message-
passing between constraints where each filters out inconsis-
tent domain values (i.e. which cannot satisfy that constraint).
For example let X = {X;, X2, X3}, D(X1) = {0,1,2},
D(X,)=D(X3)={1,2,3} and consider the following con-
straints: C' = {alldifferent(Xy, Xo, X3), Xo+ X3 =
5, X1+ X3 > 2}. The second constraint filters out inconsis-
tent value 1 from the domain of X5 and X3 and propagates
that information to the first one which in turn filters out 2 for
X. This CSP admits three solutions (X, X2, X3): (0, 2, 3),
1,2,3),(1,3,2).

The CP-BP framework [Pesant, 2019] augments CP with
the ability to perform belief propagation (BP) on the model.
BP is a message-passing algorithm to perform inference on
graphical models [Pearl, 1982]. In the context of CP, it ap-
proximates the marginal probabilities of being part of a fea-
sible solution for each variable-value pair. In the previous
example, value 1 for variable X; is present in two out of
three solutions. Thus, that variable-value assignment has a
true marginal probability 2/3 of being part of a feasible solu-
tion. These marginals not only tell us whether a value for a
variable is possible (e.g., that value 2 is inconsistent for X;),
they also tell us how likely they are to lead to feasible solu-
tions. Computing marginals corresponds to weighted count-
ing. Despite being intractable in general, for many constraints
we can compute them efficiently and for the others we rely on
approximations.

3 Related Work

We focus our discussion on constrained sequential inference
involving generative NN, particularly if they involve con-
straint programming as well. Broader presentations of neu-
rosymbolic Al, e.g. about structure learning, may be found in
recent surveys such as [Marra et al., 2024; Yu et al., 2023].
Some works carry out post-training adjustments to the NN
according to constraints. [Lattner ef al., 2018] use a convo-
lutional restricted Boltzmann machine as a generative model
and constraints are enforced as differentiable cost functions
that are minimized during the sampling process to resem-
ble the structure of a reference musical piece. [Lee et al.,

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

2019] use gradient-based inference to continue adjusting the
model’s parameters toward the satisfaction of the constraints
during inference. [Dragone et al., 2021] introduce a con-
strained structured predictor expressed in a CP language that
acts as a final layer to a NN and which is trainable to finetune
the predictions but also enforces the constraints during infer-
ence. [Young er al., 2022] use bias-tuning [Zaken et al., 2021]
to steer the output of the Music Transformer [Huang er al.,
2018], making it more likely to produce a sequence with the
desired constraints. [Jaques er al., 2017] use reinforcement
learning to finetune an RNN to take into account domain-
specific rules while staying close to the original RNN. Rules
are manually encoded into the reward signal. [Lafleur er al.,
2022; Yin et al., 2024] improve the latter by more generically
expressing arbitrary constraints in the CP-BP framework and
by automatically deriving a reward signal.

Other works use the trained NN as is. For a very con-
strained text generation task related to vision screening, [Bon-
larron et al., 2023] encode all valid texts in a multi-valued
decision diagram and then use an LLM to evaluate their qual-
ity a posteriori. [Bonlarron and Régin, 2024] alternatively
defines a new constraint on n-grams for CP-driven sequence
generation that filters based on n-gram perplexity scores com-
puted a priori by an LLM. In a CP-driven generation, [Régin
et al., 2024] builds a CSP incrementally by adding sequence
variables on the fly and limiting their domain to an LLM’s
short list of candidate tokens, queried at each step. [Deutsch
et al., 2019] express commonly-used constraints in NLP as
automata. At each step, the automata filter out the inconsis-
tent token values and renormalize the NN’s output probability
distribution accordingly.

Our method is closest in spirit to the latter. We too mod-
ify the output probability distribution by removing inconsis-
tent values but, more importantly, we potentially change these
probabilities relative to each other to also reflect the marginal
probabilities computed from the constraints of our CP model,
and thus guide the generation toward values more likely to
satisfy the constraints. Using CP also offers a variety of con-
straints, including automata [Pesant, 2004], and inconsistent
values are removed at each step through constraint propaga-
tion instead of checking the full completion of the partial se-
quence with the automata.

4 Our Framework

‘We describe our framework GeAI-BLAnC (Generative Al us-
ing BeLief-Augmented Constraints) to add given combina-
torial structure to the output sequence of a generative NN
[Manibod, 2022]. We use the MiniCPBP solver [Pesant,
2019] implementing the CP-BP framework which, in addition
to standard constraint programming support, offers marginal
probabilities for the model variables, which is critical to guide
our sequence generation.

The sequence of tokens to be generated can be represented
in a CP model as a sequence of variables X1,..., X, each
having a domain corresponding to the possible token values.
As shown in Figure 1, at each step during the generation
phase, CP is used to modify the distribution for the current x;
token obtained from the NN’s softmax layer. That probabil-

ity distribution only takes into account the structure learned
from the dataset. Through BP the CP model will modify
that distribution to obtain a new one that will also take into
consideration the satisfaction of the constraints. The next to-
ken z; is then selected using that new distribution, for ex-
ample by sampling from it or by choosing one of its modes.
Standard constraint propagation on the CP model would fil-
ter the domain of the corresponding variable X; according
to the constraints, possibly removing (token) values that can-
not satisfy them. Belief propagation subsumes this: it will
assign zero probability to such inconsistent values but more
generally computes marginal probabilities for each value in
the domain of X;.

We now detail the components of the CP model. The to-
kens generated so far, x1, ..., x;_1, are used to set the corre-
sponding variables X1,..., X;_1 in order to take them into
account in the model. The NN’s learned probabilities for each
candidate token value at current step ¢ are also given to the CP
model through a unary constraint that is added to the model:
we introduce the oracle(X,p) constraint with X a finite-
domain variable and p a fixed probability mass function over
the domain of X. In our case the variable is X;, representing
the token at step t, and p is the NN’s probabilities for the cur-
rent token x;. Uncharacteristically, this constraint does not
enforce a relation but only associates a probability to each do-
main value. Its sole purpose is to contribute messages to vari-
able X; during BP in the same way as the other constraints
in the CP model. Finally the arbitrary structure we wish to
impose on the output sequence is represented as constraint
C(Xy,...,X,). Without the oracle constraint, the result-
ing marginals would only take into account the satisfaction of
C(X1,...,X,) and not what was learned from the dataset.
Therefore, the oracle constraint is our way of integrating
the NN’s knowledge into the process of CP-BP.

In order to balance such an integration, we also introduce
the ability to associate a weight to each constraint. This
weight affects the marginals sent by constraints during BP
(and not the filtering nor the hardness of the constraint).
Given a positive weight w (the default value being 1) each
marginal px (v) for a value v in the domain of variable X is
raised to the power of that weight and normalized, yielding
new marginal (px (v))"/ >_ e p(x)(Px(d))". As aresult, a
weight w > 1 accentuates the disparities between marginals
while 0 < w < 1 lessens them and makes them more uni-
form. We will use such a weight on the oracle constraint
in order to control its importance on the resulting distribution.

5 Application to Molecule Generation

We first demonstrate and evaluate our framework in the do-
main of chemistry. We aim to show through our experiments
that our approach more consistently generates sequences ex-
hibiting the desired structure while still reflecting what the
NN has learned from the training corpus. GPT2-Zinc480M-
87M is a transformer model trained to generate molecules in
the standard string representation SMILES [Weininger, 1988]
(Fig. 2 gives an example). Valid strings can be described by
a context-free grammar. The syntax is quite restrictive and
difficult to learn by a NN: using this transformer to gener-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

PN
OH

Figure 2: “C[C@H]1C(O)C(N(C(N)C)C(C)C)C(C)C(C)CI(C)”, a
molecule of weight 256.3 Da and PPL=1.8487 generated by GeAl-
BLANC.

ate 40-token molecules, which is the length we report on in
our experiments, only yielded a 73% validity rate. In contrast
we achieve 100% by adding to this transformer a CP model
through our framework.

For the CP part of our architecture, we represent the gen-
erated molecules as a sequence of n = 40 variables, each
having a domain corresponding to the SMILES alphabet (45
values). Note that such a sequence length is long enough to
represent most molecules in our dataset, including many in
pharmaceutical use.

5.1 Experimental Set-Up

The GPT model, GPT2-ZINC480M-87M' (henceforth re-
ferred to simply as GPT), has 87M parameters and was
trained on 480M molecules from the ZINC database?. During
generation we kept the model’s default configuration with the
following exceptions: we limited the generation to one new
token at a time as per Fig. 1, we set the model’s tempera-
ture to 1.5 which gives more varied results as reported by the
model’s authors, we decreased the maximum length of the
molecule to fit our target length, and we disabled the early
stopping parameter. For the CP part we use MiniCPBP? with
the default parameter values. The initial input is the start-
of-sequence token. We attempted to generate 100 molecules.
Our experiments were run using an 8-core processor with a
core speed of 4.20 GHz and 64GB of RAM. All our code and
data are available*.

5.2 Evaluation Metric

To evaluate our molecule’s quality, we use perplexity [Jelinek
et al., 2005], a common metric in NLP:

1 n
PPL(x1,...,z,) =exp | —— log p(x¢|x1,..., Te—1
() (@ 2 oga())
The higher the perplexity, the less likely it would be gen-
erated by the neural model and the more surprising it is
with respect to the training set. Note that given the im-
posed constraints, the CP model may disagree with the prob-
ability distribution it receives from GPT, modify it, and
therefore receive a higher perplexity value for the chosen
token. We also consider perplexity for individual tokens,
1/p(z¢|x1, ..., 24—1), in order to track its behaviour across
the whole sequence.

'https://huggingface.co/entropy/gpt2_zinc_87m
Zhttps://zinc.docking.org/
3https://github.com/PesantGilles/MiniCPBP
*https://github.com/cravethedave/MiniCPBP/tree/ijcai-2025

method success(%) T PPL| time(s)]
GPT 7 5.30 1.2
CPBP (backtrack) 100 1236.71 125.4
CPBP (no backtrack) 59 503.48 62.4
GPT+CP 18 13.50 25.2
GPT+CPBP (w = 1) 92 8.35 67.2
GPT+CPBP w = 0.5 82 17.30 70.8
GPT+CPBPw = 1.5 72 8.14 63.6

Table 1: Success rate, average perplexity, and average runtime over
100 attempts to generate weight-constrained 40-token molecules.

5.3 Molecular-Weight Constraint

While obtaining valid SMILES molecules is interesting in it-
self, generation usually targets some properties, e.g. molecu-
lar weight. To constrain our sequence generation, we choose
to impose a weight between 200 and 275 Da, only achieved
by a small fraction of possible 40-token molecules.

Formally we define a CSP (X,D,C) with X =
{)(17 ©. ,X40}, D(XZ) = {C, N, O, @, (7 9 .}, the set of
variables representing each of the 40 tokens to generate. Con-
straints are

200 < 10 wlX;] < 275

grammar((X1, Xo, ..., X40), GsmiLES)

where w is a table of weights indexed by token values and
GsMILEs is a context-free grammar for SMILES strings. The
first is our molecular-weight constraint, and we add the sec-
ond to help enforce the validity of the generated SMILES se-
quences: indeed as mentioned before, GPT on its own had a
73% validity rate when generating 40-token molecules.

To this CP model we add at step t an oracle(Xy, p) con-
straint and we set X7, ..., X;_1 to their generated value.

Table 1 reports the results of our experiments, comparing
several approaches for constrained sequential inference: the
transformer on its own, generating individual tokens in se-
quence (GPT); MiniCPBP on its own, generating individual
tokens in sequence, sampling its value from the marginal dis-
tribution, both with and without backtracking (CPBP); our
architecture without belief propagation (GPT+CP); our full
architecture GeAI-BLAnC with different weights applied to
the oracle constraint (GPT+CPBP).

Success rate. As expected, the molecules generated by
GPT mostly do not satisfy the constraint (or are simply in-
valid) and CPBP with backtrack search ultimately generates
a satisfying molecule every time. Greedy CPBP (i.e. with-
out backtracking) achieves a much better success rate than
GPT but may still fail to complete a sequence. GPT+CP
shows that using CP simply to filter out inconsistent values
(i.e. what [Deutsch et al., 2019] would achieve) performs
barely better than GPT. Among all non-backtracking meth-
ods, GPT+CPBP performs better by far for all three values of
w with the default value achieving the best results (92%).

Perplexity. Despite its moderate to high success rate
CPBP on its own tends to generate unrealistic molecules,
as indicated by very high perplexity scores. GPT+CP and
GPT+CPBP achieve fairly low PPL (see GPT’s as reference),

https://huggingface.co/entropy/gpt2_zinc_87m
https://zinc.docking.org/
https://github.com/PesantGilles/MiniCPBP

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

cpbp bagglz 7r 10
cpbp_no_back || -
%thrcg | 5
gpt+cpbp_0.
pt+cpbp~1.0 I
gpt+cpbp~1.5
5 10 15 20 25 30 35

Figure 3: Average perplexity indexed by token (darker is higher).

with GPT+CPBP (aka GeAI-BLANnC) offering an excellent
combination of high success rate and low perplexity score.
The impact of weight w on perplexity is consistent with its ef-
fect on the distribution from the NN: lessening its importance
makes the PPL rise and inversely. Figure 3 tracks PPL of indi-
vidual tokens across the sequence: it confirms PPL rankings
between methods without showing any clear imbalance with
respect to token position, which in contrast we shall witness
in Section 6.

Computation time. Using CP and BP comes at a compu-
tational price: whereas GPT alone may generate a molecule
in about one second, adding CP slows it down to about half a
minute and adding BP as well pushes it to about one minute.

6 Application to Melody Generation

We next demonstrate and evaluate our framework in the do-
main of music. Our experiments again measure how close
to the dataset the generated sequences are but focus on the
smooth enforcement of long-term structure. The Chord-
conditioned Melody Transformer (CMT) [Choi et al., 2021]
is a neural model that generates a melody based on a given
chord progression c1,...,c,. It is made up of a chord en-
coder (CE), a rhythm decoder (RD) and a pitch decoder (PD).
CMT generates a rhythm sequence 71, . . . , 7, and then a pitch
sequence p1,...,p, in two separate steps, each token be-
ing sampled from the distribution (for pitch, sampling is re-
stricted to the top five values). Note that all sequences are
time-indexed, the step unit being a 16th note, and they span 8
bars son = 8 x 16 = 128.

For the CP part of our architecture, we represent the rhythm
and the pitch sequences as two sets of variables, each having
a domain corresponding to the possible token values: onset,
rest, and hold for rhythm, and 48 MIDI pitches plus rest and
hold for pitch. Note that if the rhythm token at time step ¢ is
hold then the pitch sequence token at the same time step must
also be hold (likewise for the rest token). We build one CP
model for the rhythm and one for the pitch to be able to con-
strain both aspects of the melody. The overall system thus has
two components in sequence, each following the architecture
of Fig. 1, the first one (rhythm) taking the chord sequence as
additional input to its NN and the second one (pitch) taking
both the chord and rhythm sequences as additional input.

6.1 Experimental Set-Up

We used the publicly-available code of CMT> with the same
preprocessing and hyperparameters as [Choi ef al., 2021] and
of MiniCPBP with the default parameter values. We ran all
our experiments using 8 CPU cores, 48,000 M memory and
a GPU type v100 with 32 GiB memory. The dataset used for

>https://github.com/ckycky3/CMT-pytorch

the experiments is the EWLD [Simonetta et al., 2018] con-
taining more than 5,000 lead sheets in many musical styles,
but mainly Jazz, Pop and Rock. All songs were transposed
to C major or A minor. Because CMT is limited to 8-bar
melodies, the lead sheets were cut up into 8-bar segments.
After preprocessing, instances were split into training and test
datasets of respective size 23,800 and 3,150. We generated
3,150 melodies, each primed with the first four ground-truth
tokens of a test set melody and the corresponding chord se-
quence. All our code and data are available®.

6.2 Evaluation Metrics

Even though evaluating music remains a challenge because it
can be highly subjective, some objective metrics have been
proposed in the literature to evaluate automated music gener-
ation. The MGEval framework [Yang and Lerch, 2020] com-
pares several pitch and rhythm features between the test and
generated datasets and expresses their similarity as a value
between 0 and 1, the latter corresponding to perfect similar-
ity. We report on a few that are representative of those most
affected here: note count (NC), pitch range (PR), and pitch
interval (PI). In order to be consistent with the other metrics,
we use 1 minus the original metric so that closer to 0 is better.

We also introduce two metrics specific to rhythm. For the
first one we compute the distribution of rhythm patterns of a
bar, separately in the test and generated datasets. The Jensen-
Shannon divergence (JSD) [Lin, 1991], ranging between 0
and 1, is then calculated between these distributions and we
denote it RPD for Rhythm Pattern Divergence. For the second
one, considering together bars containing the same number of
notes, the normalized placement distribution of onset tokens
in a bar is computed for the test and generated datasets. The
average JSD is then calculated between every pair of distri-
butions containing the same number of notes, denoted OTPD
for Onset Tokens Placement Divergence. This metric differs
from the previous one as it focuses on the placement of notes
instead of the specific rhythm patterns.

One last metric specific to pitch, the chord tone ratio
(CTR) [Choi et al., 2021] is also used. Their intuition be-
hind this metric is that a harmonious melody would contain
notes that appear in the triad of the chords (e.g. {C, E,G}
for a C major chord). Therefore the CTR computes the ratio
of notes found in the triad of the chord that is playing when
the note of the melody is playing. In other words, it tells us
how harmonious a melody is given its chord progression. We
report the difference between the average CTR in the test and
generated datasets.

6.3 Distinct-Number-of-Notes-per-Bar Constraint

Our first experiment imposes on melodies to have a different
number of notes played in each bar. It is a restriction that only
affects the rhythm. To study the effects of long-term structure
on a variable number of bars, it is applied to the first span
of four to eight bars. Note that only 19% of our test dataset
satisfy such a constraint when applied on the first group of
four bars and less than 0.2% on eight bars, which is indicative
of how little success CMT would have on its own.

®https://github.com/Manibod/CMT_CPBP

https://github.com/ckycky3/CMT-pytorch
https://github.com/Manibod/CMT_CPBP

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

nb bars spanned 4 5 6 7 8

RPD| 0.203 0.254 0.297 0.334 0.367
OTPD] 0.019 0.022 0.026 0.029 0.032
NCJ 0.081 0.108 0.136 0.194 0.267
RPD| 0.213 0.271 0.321 0.369 0.403
OTPD] 0.018 0.019 0.022 0.025 0.028
NCJ 0.091 0.126 0.182 0.248 0.323

Table 2: Rhythm metrics of CMT for the Distinct-Number-of-Notes-
per-Bar Constraint (top: unweighted oracle, bottom: geometri-
cally decaying weight). The smaller the value the better.

Formally we have CSP (X U O,D,C) with X =
{X1,..., X128}, D(X;) = {rest, hold,onset}, the set of
variables representing each of the 128 rhythm tokens to gen-
erate, O = {O1,...,04},D(0;) = {0, ..., 16}, the number
of occurrences of the onset token in each of the b constrained
bars. Constraints C' are

among({ X((i—1).16)+1,- - - » Xi-16},0nset, O;) 1 <i <b

alldifferent(Oy,...,0)

To this we add at step t an oracle(Xy,p) constraint and we
set X1,..., X¢_1 to their generated value.

The melodies we generate with GeAI-BLANC satisfy the
constraint by design, but do they resemble the training cor-
pus? The top half of Table 2 shows the rhythm metrics about
the effect of adding the Distinct-Number-of-Notes-per-Bar
Constraint to the generation of the melodies. Overall the gen-
erated rhythms are less and less similar to those in the test
dataset as the constraint’s span increases and the melody thus
becomes more restricted. This is expected since, as previ-
ously noted, sequences satisfying that constraint are scarce
in the music corpus. But the generated sequences are not
overly dissimilar. To put things into perspective, we also ex-
perimented with generating them solely with CP: it yielded a
RPD of 0.99. This highlights the advantage of our proposed
neurosymbolic architecture.

Procrastination Problem. An interesting result is shown in
Figure 4. The heat maps show, among the top 10 bar rhythm
patterns being the i bar when the constraint is applied to
groups of b bars, how often the onsetr token was found at a
given time step in a bar. A noticeable issue, compared to
what one observes in the test dataset, is that a lot of the on-
set tokens are found toward the end of a bar, especially in the
last few bars of the constraint’s span. This is indicated by the
darker region at the bottom right of each heat map. This prob-
lem is more prominent as the constraint’s span increases. It
seems the overall model generates the melodies based mostly
on CMT’s probabilities until the last moment when it has no
other choice but to select an onset token to satisfy the con-
straint. It is as if the constraints are not pressing enough ex-
cept at the end. We call this the procrastination problem. A
more realistic or uniform onset token placement is desired:
indeed in the test dataset only 4% of bars end with an onset
token whereas in the generated dataset, it ranges from 27%
to 43% when the constraint is applied to 4 up to 8 bars. We
show next how we address this problem.

Constraint applied on groups of 6 bars
] [l | |

- [|
. _Top 10 bar rhythms in test dataset : = u
C ~
o : : PR . . <l
01234567 8 9101112131415
N E B 1
-l HH RE]
012345678 9101112131415
8
Constraint applied on groups of 7 bars
Constraint applied on groups of 4 bars ﬂ,. L |
~H O
- E E§E ®E § - 6
oy | | |
N 0 -
<] -l L 4
0i234567somunnuns M o |

~H O | HONE

012345678 9101112131415

Constraint applied on groups.of 8 bars

Constraint applied on groups of 5 bars:7= = o
A H H N A =
=
5]
@] | S | | |
o " mesc@ E E EBEE
0123 456 7 8 9101112131415 '\7.
Time step index i-.

012345678 9101112131415
Time step index

Figure 4: Top 10 bar rhythm patterns being the 7™ bar when the
Distinct-Number-of-Notes-per-Bar Constraint is applied to groups
of b bars presented as heat maps of onset tokens at each time step of
a bar (unweighted oracle).

Decreasing Weight of the oracle Constraint. Our solu-
tion to mitigate the procrastination problem is to give more
impact to the satisfaction of the constraints relative to CMT’s
marginals by decaying the weight of the oracle constraint
throughout the generation (initial attempts to use a fixed
weight did not solve our problem). The intuition to decay the
oracle weight is to gradually accentuate the pressure of the
constraints. When lowering the oracle weight, it becomes
more difficult for the CMT model to encourage a certain to-
ken value because their marginals will be brought closer to-
gether. After some initial experiments, we concluded that a
geometric decay r¥, with ratio r chosen so that the weight
reaches about 0.7 once half the sequence has been generated
(r = 0.9943) and k representing the index of the token in the
span, could lead to making the constraints more pressing and
having a more uniform onset token placement.

Figure 5 shows that the procrastination problem has been
greatly mitigated judging from the disappearance of the dark
regions. The number of bars ending with an onset token in
the generated dataset is reduced, now ranging from 23% to
32%. The bottom half of Table 2 shows some metrics de-
creasing (OTPD) and others increasing (RPD, NC) but no
major change. Therefore this offers a reasonable balance be-
tween overall similarity with the test dataset and uniformity
in how that similarity is spread over the whole sequence, all
this while satisfying the constraint.

6.4 Occurrence-of-Notes-in-Key Constraint

We next consider a constraint affecting pitch in order to ex-
periment in the context of a larger set of token values. This
time the restriction consists of having each note in the scale
(i.e. C,D,E,FG,A,B) occur at least once in the melody (re-
gardless of the octave). We apply it to the initial span of six
to eight bars. Note that only 13% of our test dataset satisfy
such a constraint. To make sure there are enough notes, we

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Constraint applied g groups of 6 bars

-

Top 10 bar rhythms in test dataset
s B’ y 3 BEE BEN
3 . . ; : <
012345678 9101112131415
- H H BN "
2 Ul i
012 3456 78 9101112131415
Cﬁnstraint applied on groups of 7 bars
Constraint applied on groups of 4 bars ”
| pp il group: ~H Ll 6
ol 0 "
N | 0 -
. N | .,

n -l
012345678 9101112131415 -l O O [
~H
012345678 9101112131415

Constraint applied g groups of 8 bars

HCﬁnstraint applied ca groups of 5 bars:= 0 0
-l
LN= O -
©
m:. | | |
M | -l 0
0123456 7 8 9101112131415 ’\.
®

Time step index
012 3456 7 8 9101112131415

Time step index

Figure 5: The same as Fig.4 but with a geometrically decaying
weight applied to the oracle constraint.

nb bars spanned 6 7 8

PR| 0.142 0.149 0.143
PL, 0.077 0.082 0.080
CTR] 0.062 0.059 0.056
PR| 0.091 0.086 0.094
PL 0.054 0.058 0.061
CTR| 0.089 0.098 0.108

Table 3: Pitch metrics of CMT with the Occurrence-of-Notes-in-
Key Constraint (top: unweighted oracle; bottom: geometrically
decaying weight). The smaller the value the better.

also add a constraint on rhythm to have at least eight onset to-
kens in the constrained span of bars. This rhythm constraint
should not heavily affect the generation of the melodies be-
cause CMT is already very likely to generate more than eight
notes in a span of six bars or more.

We define a CSP as before but with D(X;) = {0,...,49},
O = {0Oy,...,015} for each of the twelve possible pitch
classes, and D(O;) = {1,...,n} if pitch class ¢ is in the
scale else D(0;) = {0,...,n}, where n is the number of
onset tokens in the span of b bars in the rhythm sequence.
Constraints C' are

among({X1, ..., Xp16}, Class(i), O;)
21111 O;=n
where Class(z) is the set of tokens corresponding to pitch
class ¢ over different octaves.

The top half of Table 3 reports fairly low metrics, this time
little impacted by the span of the constraint. Figure 6 (left)
shows heat maps counting the number of first occurrences
of the notes of the key at given locations. Once again there
are very dark regions at the end. These are other manifesta-
tions of the procrastination problem. Indeed, it can be inter-

preted as the model having, at the end, no other choice but
to generate the pitches that are missing in order to satisfy the

1<i<12

IZGOOO IBOOO
Constraint applied on first span of 6 bars! 13000 Constraint applied on first span of 6 bars' 4000

0 0

Constraint applied on first span of 7 barsl41000 Constraint applied on first span of 7 bars'llooo

20500 5500

0 0
Constraint applied on first span of 8 bars _ 5409 Constraint applied on first span of 8 barsl15000
Bar 29000 Bar 7500
0 0

Figure 6: First occurrence of the notes of the scale within the span of
constrained bars with the Occurrence-of-Notes-in-Key Constraint:
unweighted oracle (left) and geometric decay (right).

constraint of generating each note of the key. The result can
be very unpleasing to the ear. Again, the constraints are not
pressing enough, and something more realistic or uniform is
desired.

As before we apply a geometric decay of the oracle con-
straint’s weight, choosing ratio 7 = 0.985 so that the weight
reaches around 0.4 once half the sequence has been gener-
ated. Figure 6 (right) shows that once again the procrasti-
nation problem has been considerably mitigated. Indeed the
distribution of the first occurrence of the notes in the scale is
much more spread across the melodies as found in the test
dataset. The bottom half of Table 3 reports some metrics de-
creasing (PR, PI) and others increasing (CTR), but all values
remain quite low. It appears we reach a good balance be-
tween the smooth satisfaction of long-term constraints and
the similarity with what CMT has learned.

Computation time. Using the original CMT (no constraints
imposed), the total runtime was about 22 minutes. Imposing
a rhythm constraint (3 token values), the runtime was about
30 minutes whereas with both rhythm and pitch (50 token
values) constraints, it took about 90 minutes.

7 Conclusion

We presented our neurosymbolic framework GeAI-BLAnC
to add long-term combinatorial structure to machine learning
sequence models at inference time. A new sampling distribu-
tion was obtained by combining the learned probability dis-
tribution (through an oracle constraint) and the marginal
probabilities of a CP model expressing the desired structure.
We achieved a much better combination of dataset similarity
and constraint satisfaction than NN or CP alone. The sin-
gle parameter, weight w on the oracle constraint, can be
used to balance the respective influence of the NN and CPBP
probability distributions, or to promote a more uniform satis-
faction of the constraints across the sequence, by decaying it
throughout the generation.

As we saw in Section 5, if the structure is very restrictive,
it can happen that a partial sequence cannot be completed de-
spite the foresight provided by the computed (approximate)
marginals. Adding beam search to our framework could help
in such a situation.

Very recently [Zhang et al., 2024] proposed an approach
similar to ours that samples from a distribution modified to
take into account constraints expressed as automata. A com-
parative analysis of the two frameworks should be of interest.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgements

This research was made possible through funding from
IVADO Fundamental Research grant PRF-2019-5178609901
and NSERC Discovery grant RGPIN-2023-05705.

References

[Bonlarron and Régin, 2024] Alexandre Bonlarron and Jean-
Charles Régin. Markov constraint as large language model
surrogate. In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence, 1JCAI 2024,
Jeju, South Korea, August 3-9, 2024, pages 1844—1852.
ijcai.org, 2024.

[Bonlarron et al., 2023] Alexandre Bonlarron, Aurélie Cal-
abrese, Pierre Kornprobst, and Jean-Charles Régin. Con-
straints first: A new mdd-based model to generate sen-
tences under constraints. In Proceedings of the Thirty-
Second International Joint Conference on Artificial Intel-
ligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR,
China, pages 1893-1901. ijcai.org, 2023.

[Choi et al., 2021] Kyoyun Choi, Jonggwon Park, Wan Heo,
Sungwook Jeon, and Jonghun Park. Chord conditioned
melody generation with transformer based decoders. /IEEE
Access, 9:42071-42080, 2021.

[Deutsch et al., 2019] Daniel Deutsch, Shyam Upadhyay,
and Dan Roth. A general-purpose algorithm for con-
strained sequential inference. In Proceedings of the 23rd

Conference on Computational Natural Language Learn-
ing (CoNLL), pages 482-492, 2019.

[Dragone et al., 2021] Paolo Dragone, Stefano Teso, and
Andrea Passerini. Neuro-symbolic constraint program-
ming for structured prediction. In Artur S. d’Avila
Garcez and Ernesto Jiménez-Ruiz, editors, Proceedings
of the 15th International Workshop on Neural-Symbolic
Learning and Reasoning as part of the Ist International
Joint Conference on Learning & Reasoning (IJCLR 2021),
Virtual conference, October 25-27, 2021, volume 2986
of CEUR Workshop Proceedings, pages 6—14. CEUR-
WS.org, 2021.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

[Huang er al., 2018] Cheng-Zhi Anna Huang, Ashish
Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon,
Curtis Hawthorne, Andrew M Dai, Matthew D Hoffman,
Monica Dinculescu, and Douglas Eck. Music transformer.
arXiv preprint arXiv:1809.04281, 2018.

[Jaques et al., 2017] Natasha Jaques, Shixiang Gu, Dzmitry
Bahdanau, José Miguel Hernandez-Lobato, Richard E.
Turner, and Douglas Eck. Sequence tutor: Conservative
fine-tuning of sequence generation models with kl-control.
In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on Machine Learn-
ing, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Re-
search, pages 1645-1654. PMLR, 2017.

[Jelinek et al., 2005] F.Jelinek, R. L. Mercer, L. R. Bahl, and
J. K. Baker. Perplexity—a measure of the difficulty of
speech recognition tasks. The Journal of the Acoustical
Society of America, 62(51):S63-S63, 08 2005.

[Lafleur et al., 2022] Daphné Lafleur, Sarath Chandar, and
Gilles Pesant. Combining reinforcement learning and con-
straint programming for sequence-generation tasks with
hard constraints. In Christine Solnon, editor, 28th Inter-
national Conference on Principles and Practice of Con-
straint Programming, CP 2022, July 31 to August 8, 2022,
Haifa, Israel, volume 235 of LIPIcs, pages 30:1-30:16.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022.

[Lattner et al., 2018] Stefan Lattner, Maarten Grachten, and
Gerhard Widmer. Imposing higher-level structure in poly-
phonic music generation using convolutional restricted
boltzmann machines and constraints. Journal of Creative
Music Systems, 2:1-31, 2018.

[Lee eral.,2019] Jay Yoon Lee, Sanket Vaibhav Mehta,
Michael Wick, Jean-Baptiste Tristan, and Jaime Carbonell.
Gradient-based inference for networks with output con-
straints. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 33, pages 4147-4154, 2019.

[Lin, 1991] Jianhua Lin. Divergence measures based on the
shannon entropy. IEEE Trans. Inf. Theory, 37(1):145-151,
1991.

[Manibod, 2022] Virasone Manibod. Ajout de structure aux
modeles génératifs de séquences avec la programmation
par contraintes. Master’s thesis, Polytechnique Montréal,
August 2022. https://publications.polymtl.ca/10495/.

[Marra et al., 2024] Giuseppe Marra, Sebastijan Dumancic,
Robin Manhaeve, and Luc De Raedt. From statistical re-
lational to neurosymbolic artificial intelligence: A survey.
Artif. Intell., 328:104062, 2024.

[Parikh et al., 2016] Ankur P Parikh, Oscar Tickstrom, Di-
panjan Das, and Jakob Uszkoreit. A decomposable atten-
tion model for natural language inference. arXiv preprint
arXiv:1606.01933, 2016.

[Pearl, 1982] Judea Pearl. Reverend Bayes on Inference En-
gines: A Distributed Hierarchical Approach. In David L.
Waltz, editor, Proceedings of the National Conference
on Artificial Intelligence. Pittsburgh, PA, August 18-20,
1982., pages 133-136. AAAI Press, 1982.

[Pesant, 2004] Gilles Pesant. A regular language member-
ship constraint for finite sequences of variables. In Mark
Wallace, editor, Principles and Practice of Constraint Pro-
gramming - CP 2004, 10th International Conference, CP
2004, Toronto, Canada, September 27 - October 1, 2004,
Proceedings, volume 3258 of Lecture Notes in Computer
Science, pages 482-495. Springer, 2004.

[Pesant, 2019] Gilles Pesant. From support propagation to
belief propagation in constraint programming. Journal of
Artificial Intelligence Research, 66:123—-150, 2019.

[Régin et al., 2024] Florian Régin, Elisabetta De Maria, and
Alexandre Bonlarron. Combining constraint program-
ming reasoning with large language model predictions.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

In Paul Shaw, editor, 30th International Conference on
Principles and Practice of Constraint Programming, CP
2024, September 2-6, 2024, Girona, Spain, volume 307
of LIPIcs, pages 25:1-25:18. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2024.

[Rossi et al., 2006] Francesca Rossi, Peter Van Beek, and
Toby Walsh. Handbook of constraint programming. El-
sevier, 20006.

[Simonetta et al., 2018] Federico Simonetta, Filippo
Carnovalini, Nicola Orio, and Antonio Roda. Symbolic
music similarity through a graph-based representation. In
Stuart Cunningham and Richard Picking, editors, Pro-
ceedings of the Audio Mostly 2018 on Sound in Immersion
and Emotion, Wrexham, United Kingdom, September
12-14, 2018, pages 26:1-26:7. ACM, 2018.

[Vaswani ef al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. Advances in neural information processing systems,
30, 2017.

[Weininger, 1988] David Weininger. Smiles, a chemical lan-
guage and information system. 1. introduction to method-
ology and encoding rules. Journal of Chemical Informa-
tion and Computer Sciences, 28(1):31-36, 1988.

[Yang and Lerch, 2020] Li-Chia Yang and Alexander Lerch.
On the evaluation of generative models in music. Neural
Computing and Applications, 32(9):4773-4784, 2020.

[Yin et al., 2024] Chao Yin, Quentin Cappart, and Gilles Pe-
sant. An improved neuro-symbolic architecture to fine-
tune generative Al systems. In Bistra Dilkina, editor, Inte-
gration of Constraint Programming, Artificial Intelligence,
and Operations Research - 21st International Conference,
CPAIOR 2024, Uppsala, Sweden, May 28-31, 2024, Pro-
ceedings, Part II, volume 14743 of Lecture Notes in Com-
puter Science, pages 279-288. Springer, 2024.

[Young et al., 2022] Halley Young, Vincent Dumoulin,
Pablo S Castro, Jesse Engel, and Cheng-Zhi Anna Huang.
Compositional steering of music transformers. Intelligent
User Interfaces, 2022.

[Yu et al., 2023] Dongran Yu, Bo Yang, Dayou Liu, Hui
Wang, and Shirui Pan. A survey on neural-symbolic learn-
ing systems. Neural Networks, 166:105-126, 2023.

[Zaken et al., 2021] Elad Ben Zaken, Shauli Ravfogel, and
Yoav Goldberg. Bitfit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models.
arXiv preprint arXiv:2106.10199, 2021.

[Zhang er al., 2024] Honghua Zhang, Po-Nien Kung,
Masahiro Yoshida, Guy Van den Broeck, and Nanyun
Peng. Adaptable logical control for large language
models. In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak,
and Cheng Zhang, editors, Advances in Neural Infor-
mation Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurlPS
2024, Vancouver, BC, Canada, December 10 - 15, 2024,
2024.

