Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

App2Exa: Accelerating Exact KNN Search via Dynamic Cache-Guided
Approximation

Ke Li !, Leong Hou U?, Shuo Shang'*

'University of Electronic Science and Technology of China, Chengdu, China
2University of Macau, Macau, China
like like @std.uestc.edu.cn, ryanlhu@um.edu.mo, jedi.shang @ gmail.com

Abstract

The k-nearest neighbor (KNN) query is a corner-
stone of similarity-based applications across vari-
ous domains. While prior work has enhanced kNN
search efficiency, it typically focuses on approxi-
mate methods for high-dimensional data or exact
methods for low-dimensional data, often assum-
ing static query and data distributions. This cre-
ates a significant gap in accelerating exact kNN
search for low-to-medium dimensional data with
dynamic query distributions. To fill this gap,
we propose App2Exa, a cache-guided framework
that integrates approximate and exact kNN search.
App2Exa utilizes a dynamically maintained cache
graph index to retrieve approximate results, which
subsequently guide exact search using a VP-Tree
with a best-first strategy. A benefit-driven caching
mechanism further optimizes performance by pri-
oritizing vectors based on frequency, recency, and
computational cost. Experimental results demon-
strate that App2Exa significantly boosts efficiency,
providing a robust and scalable solution for evolv-
ing query patterns and enabling exact kNN search
to support higher dimensionality more effectively.

1 Introduction

The k-nearest-neighbor (kNN) query is widely employed in
similarity-based tasks across various domains, such as image
retrieval [Peng et al., 2022], web search [Bae et al., 2009],
and recommendation [Halder ef al., 2024]. Let V represent a
finite set of vectors in a d-dimensional space, and dist(-) de-
note a distance function between two vectors. Given a query
vector v, and a positive integer k, the kNN query identifies k
vectors v € V such that dist(v, v,) is smaller than that of all
other vectors in V.

The efficiency of KNN search can be greatly enhanced
through indexing techniques. For exact kNN search, tree-
based indexes such as KD-trees [Bentley, 1975] and VP-
trees [Yianilos, 1993] are widely used. However, as vector di-
mensionality increases, the efficiency of exact search declines
due to the “curse of dimensionality” [Beyer et al., 1999].

*Corresponding author.

Dimension Principles Algorithms

medium-high graph-based
T hash-based
T cache-guided

low-medium tree-based

KGraph, HNSW, MRNG
FAISS(+PQ codes), FALCONN
App2Exa*
ball-tree*, KD-Tree*, VP-Tree*

1 Dimension * Ensure exact result

Table 1: Overview of kNN algorithms

In high-dimensional vectors space, graph-based approaches
like kGraph [Dong et al., 2011] and HNSW [Malkov and
Yashunin, 2020] have emerged as popular alternatives. Ta-
ble 1 provides a comparison of representative indexing meth-
ods alongside the approach proposed in this work. While ex-
tensive research has focused on improving the efficiency of
kNN search, efforts to support higher dimensionality while
ensuring exact results remain limited. Moreover, most exist-
ing methods assume static query and data distributions, offer-
ing minimal consideration for scenarios involving periodic or
dynamic updates. In many real-world applications [Li et al.,
2023; Li et al., 2022], query distributions evolve over time
(e.g., varying hot queries) while the database of object vectors
remains static. Certain object vectors experience periods of
high-frequency queries due to evolving user needs or external
factors. For instance, medical articles may receive frequent
queries during health crises (e.g., the COVID-19 pandemic
or flu season), user interests in travel destinations may fluc-
tuate seasonally, and students or educators focus on specific
topics during exams or trending research periods. Advance-
ments in embedding techniques now enable such content to
be efficiently transformed into feature vectors for similarity-
based computations. In these dynamic scenarios, obtaining
exact kNN results becomes critical for ensuring accurate and
reliable outcomes.

Caching is commonly employed to store the results of fre-
quently occurring queries, which enables “hot” queries to
be answered directly, thereby reducing the amount of com-
putation and improving query latency [Zulfa et al., 2020].
Fig. 1 illustrates the speed-up achieved by our cache-guided
approach on the SIFT dataset used in our experiments. By
leveraging approximate kNN results with a cache update fac-
tor € (cf. Alg. 3), our method delivers a substantial perfor-
mance boost, potentially allowing exact kNN search to han-
dle higher dimensionality more efficiently. While caching is

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

6.\/.\./.
o
g
3
O4A\A/A\A/‘
o
S-S -
W:=10 Ac=15 oe=20

10K 20K 30K 40K 50K
The number of queries

Figure 1: The speed-up performance of App2Exa

widely used in web search scenarios, there are important dif-
ferences between general web search and vector kNN search
in terms of query matching and cost variation. In web search,
results from one query are considered a match to another
if they share the same value (e.g., identical text), as exact
matching is required. In contrast, for embedding vectors,
exact matches are nearly impossible. In kNN queries, re-
sults are considered a match if their similarity ratio exceeds a
predefined threshold. When a cache miss occurs, additional
computation is required to obtain the query result, and some
results can be significantly more costly to compute than oth-
ers. To optimize query performance, it is crucial to develop
a cost (or benefit) model that estimates the evaluation cost
of a query. However, to the best of our knowledge, no prior
work has addressed cost estimation for kNN queries within
the context of any index structure.

To address these gaps, we propose a cache-guided ap-
proach called App2Exa, which bridges approximate and ex-
act kNN search to improve efficiency (cf. Table 1). Ini-
tially, approximate kNN results are retrieved from dynami-
cally maintained cached object vectors, supported by a tai-
lored cache graph index. A benefit model for caching vec-
tors is proposed, along with a benefit-driven cache (BDC) re-
placement algorithm. These results are then reused to accel-
erate exact kNN search using a VP-Tree index with a best-
first strategy. Empirical results on real datasets show that
App2Exa consistently outperforms the VP-Tree approach by
at least 3z when using the BDC policy. Our method is partic-
ularly effective in environments where certain object vectors
experience high-frequency retrieval during specific periods,
while exact kNN results are still required. The main contri-
butions of this paper can be summarized as follows.

* We introduce a benefit-driven caching mechanism that
prioritizes vectors based on query frequency, recency,
and computational cost, coupled with an incremental
cache graph index to enhance retrieval efficiency.

* We develop a best-first strategy tailored for the VP-Tree,
which cooperates with a guided distance to prune un-
qualified objects at an early stage.

* We propose App2Exa, a novel cache-guided approach
that bridges approximate and exact kNN search to en-
hance efficiency.

¢ We conduct extensive experimentsl, demonstrating that
our proposal significantly accelerates kNN search, with

'The implementation is available at

likemelike/App2ExaCache.git.

https://github.com/

the benefit-driven cache performing as an optimal
caching policy.

2 Related Work
2.1 The k Nearest Neighbor Search Problem

The kNN search problem is a fundamental component of
similarity-based query tasks and has garnered significant at-
tention from the data science community. Various approaches
have been proposed to address this problem, including tree-
based [Ram and Sinha, 2019], hash-based [Zhao et al., 2023;
Zheng et al., 2022], and graph-based methods [Malkov and
Yashunin, 2020]. As vector dimensionality increases, exact
kNN search becomes increasingly challenging for two main
reasons. First, the curse of dimensionality causes data points
to become more uniformly distributed, making it harder to
distinguish true neighbors, thereby reducing the meaning-
fulness of similarity search [Beyer et al., 1999; Babenko
and Lempitsky, 2016]. Second, traditional indexing meth-
ods, such as R-trees [Guttman, 1984] and KD-trees [Bentley,
19751, perform poorly in high dimensions. These methods di-
vide the data space into orthotopes but struggle to effectively
separate objects in high-dimensional spaces. Pivot-based in-
dexes, such as the VP-Tree [Yianilos, 1993], are better suited
for exact similarity search in metric spaces. The VP-Tree hi-
erarchically partitions data based on a vantage point at each
node and leverages the triangle inequality to prune irrele-
vant regions during search. The MVP-Tree [Bozkaya and
Ozsoyoglu, 1999] extends the VP-Tree by generalizing it to
an m-ary structure. It organizes objects based on their dis-
tance to the vantage point, partitioning them into m groups of
equal size. During search, the mean distance of each group
is used to efficiently prune unqualified sub-trees, improving
search performance in high-dimensional spaces. A recent
study [Lampropoulos et al., 2023] considers short-lived ob-
ject vectors with limited queries before obsolescence. How-
ever, no existing research addresses varied query distributions
for exact kNN in vector space. In contrast, LSH-based in-
dexes [Liu et al., 2021] are not well-suited for scenarios re-
quiring exact search. More recently, graph-based solutions
such as HNSW and MRNG [Fu et al., 2019] have been pro-
posed to ensure connectivity and enable efficient routing in
poly-logarithmic time. However, these methods lack error
guarantees on search results, making them unsuitable for di-
rectly answering exact kNN queries.

2.2 Cache Replacement Policies

Caching is widely used in web search engines to retrieve
the top-k relevant documents (e.g., web pages) that match
a text query. Maintaining a cache can be costly and may
not be worthwhile if queries are evenly distributed. How-
ever, it is particularly effective when a small number of
queries dominate in frequency and remain popular for a pe-
riod of time [Frieder er al., 2024]. Existing caching strate-
gies can be classified into dynamic caching [Markatos, 2001;
Long and Suel, 2006; Gan and Suel, 2009; Cambazoglu et al.,
2010] and static caching [Baeza-Yates et al., 2007]. Dynamic
caching stores results of recently accessed queries and adapts

https://github.com/likemelike/App2ExaCache.git
https://github.com/likemelike/App2ExaCache.git

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Notation Definition

% A collection of vectors

Vg A query vector

v A vector in V

k The query result quantity

C The vector cache

B The budget of a vector cache

R/R' The exact / approximate kNN results

Table 2: The summary of notations

quickly to changing query patterns. For example, the Least-
Recently-Used (LRU) method [Jelenkovic and Radovanovic,
2004] replaces the least recently used result with the cur-
rent query result upon a cache miss, while the First-In-First-
Out (FIFO) replacement policy evicts the oldest cached re-
sult regardless of access patterns. Techniques like Least-
Frequently-Used (LFU) replacement [Lee er al., 2001] ana-
lyze past query logs to identify and cache queries that dom-
inate in frequency. Although these approaches adapt well to
dynamic query distributions, they may incur frequent update
overhead for kNN vector search. Static caching [Ozcan et
al., 2012], on the other hand, focuses on storing results for
the most popular queries based on historical data, which are
updated periodically (e.g., daily).

3 Preliminaries

Let V be a finite vector set in a d-dimensional vector space
R¢, and dist be a distance metric. For two vectors v, v’ € V,
the distance metric is typically the Euclidean distance, i.e.,
dist(v,v") = \/Zle(v[i] — v'[i])2. Table 2 summarizes the
notations frequently used throughout the paper.

k-nearest-neighbor (KNN) query. Given a query vector
v, € V and a positive integer k, a k-nearest-neighbor query
problem returns a subset R C V), such that |[R| = k and
Yo € R,Wv' € V\ R, dist(v,vq) < dist(v',vg).

k-approximate-nearest-neighbor (KANN) query. Given
a query vector v, € V and a positive integer k, the k-
approximate-nearest-neighbor (¢ ANN) query returns a set R’
that is approximated to R, which contains a proportion of
ground-truth answers in R.

In our setting, we assume that the query distribution
evolves periodically, with certain object vectors being fre-
quently retrieved as kNN results. The vector cache, as de-
fined below, can be placed either at a proxy or the server. It
optimizes the computation of approximate KNN searches and
subsequently reduces the response time for exact queries.

Vector cache. Given a cache budget B, a vector cache C is
a subset of) such that [C| < B, where |C| denotes the total
number of vectors in the cache.

4 App2Exa: A Cache-Guided Approach

In this section, we introduce App2Exa, a cache-guided ap-
proach designed to accelerate the exact computation of kNN
queries in the context of evolving query distributions. Fig. 2
illustrates the overall framework of our proposal, which con-
sists of three main components: cache-guided approximate

{ D1
""""""" Binary re”
i Qurey VP-tree “S-mm-mmmmmmmemn-
V. k update |
¢ cache
update

© The Benefit Value

. 7 index
B < EEes
Replac

Cache-Guided Initial Search

————
Figure 2: The components in App2Exa framework

kNN search, exact kNN search, and a dynamically updated,
benefit-driven caching mechanism. Given a query v, and a
positive integer k, the high-level process of our approach is
as follows. First, we retrieve approximate NN results for the
query vector v,, denoted as R, from the dynamically main-
tained cache of vectors. To ensure efficient search, we de-
velop an incremental cache graph index and apply a benefit-
driven caching strategy to optimize the results. The maximum
distance between any vector in R’ and vq, denoted as dg, is
then determined. Next, we perform the exact kNN search
using an improved VP-Tree. The guide value d, is used to
effectively prune the VP-Tree search space, and a best-first
strategy is employed to further enhance efficiency. Finally,
we obtain the exact kNN results, denoted as R. The max-
imum distance between any vector in R and v, is denoted
as dy. Based on the approximate ratio between R and R/,
the cache and the cache graph index is dynamically updated.
Specifically, if the approximate ratio meets or exceeds a given
threshold ¢, we update the cache using a benefit-driven re-
placement policy.

4.1 Cache-Guided Approximate kNN Search

Incremental Cache Graph Index

We investigate the cache index structure, focusing on max-
imizing speed-up and efficiently supporting dynamic up-
dates while ensuring fast result retrieval. To achieve this,
we propose an incremental cache graph index, denoted as
G(C, lnaz, M(l,v), m). Here, C represents the vector cache
and 1,4, denotes the maximum layer. The function M({,v)
maps each vector v to its connections at a specific layer [, with
a maximum of m connections. As illustrated in the bottom-
left of Fig. 2, the structure forms a multi-layered graph, where
each layer corresponds to a subset of nodes with progressively
decreasing density and connectivity as the layers ascend. Our
proposal aligns with established practices from prior stud-
ies [Malkov and Yashunin, 2020], adopting a multi-layered
structure, approximate kNN search, and graph connections.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Algorithm 1 Insert(v)

Input: A vector to be added, v;
Qutput: The updated graph index, G;

1: Let lrandom be the assigned level;

2: R' + PriorityQueue();

3: forl = lyandom;l > 0;1 — — do

4: R «+ find_ AKNN(v,m,l,R");

5: connect(v, R',1); > Record connections of v
6: return G;

Algorithm 2 Delete(v, v')

Input: A vector to be removed, v;
A vector to repair connections, v';
Qutput: The updated graph index, G;

1: C.remove(v);

2: forl =0 : lmae — 1 do

if M(1,v) # 0 then

4 M(1,-).remove(v);

5: for v,, € v.connections do
6: if M(l,v,,) # 0 then
7.

8

9:

M(1, vy).remove(v);
M(1,vy).add(v");
return G;

Innovatively, we introduce Algorithms 1 and 2 to enable dy-
namic insertion and deletion of vectors, respectively.

Insert algorithm details. Algorithm 1 demonstrates the
insertion process, where a vector v is added by traversing
the graph from a random maximum layer (Line 1) downward
to identify the closest entry point. At each layer, v is con-
nected to its m-nearest-neighbors, and these connections are
recorded (Lines 3-5). The find_AkNN(-) and connect(-)
functions are consistent with approaches outlined in prior
work [Malkov and Yashunin, 2020].

Delete algorithm details. Algorithm 2 presents the pseudo
code for the delete operation. Unlike prior studies, the inputs
include both the vector to be removed and a vector used to
repair connections. First, the vector v is removed from the
cache C (Line 1). Subsequently, all connections involving
v are deleted (Lines 4, 7), and these edges are repaired by
establishing new connections with v’ (Line 8).

Benefit-Driven Cache Replacement

In web search scenarios, if a new query matches cached
historical results, the result is immediately returned to the
user. Therefore, the objective of cache designs (e.g., LRU,
LFU, FIFO) is to maximize the cache hit ratio. When the
cache reaches budget, LRU evicts the least recently used re-
sult, LFU removes the least frequently used result, and FIFO
evicts the oldest result to make room. However, in the con-
text of kNN search, maximizing the cache hit ratio does not
necessarily minimize the overall computation cost, as each
cache miss incurs a distinct and often significant computa-
tional overhead. Existing cache replacement policies fail to
effectively quantify the benefit of a completed kNN query.
Furthermore, the importance of a vector may inherently de-
pend on its characteristics and should decay over time.

Motivated by these limitations, we propose a benefit-driven
approach to identify which queried vectors should be priori-
tized for caching.

Benefit model. A benefit model is proposed to evaluate the
caching potential of vectors for future queries, which consid-
ers three key factors: (i) query frequency (F'), (ii) process-
ing cost (£), which refers to the distance computation count,
and (iii) recency of the object vector (R). The normaliza-
tion factors maxz(F), max(FE), and max(T) are computed
for global normalization across the dataset. The benefit value
of a vector v is computed using Equation 1, where F’(v),
R/(v), and E’(v) represent the normalized query frequency,
recency (i.e., inverted time decay), and computation cost, re-
spectively. Parameters «, 3, and +y are adjustable weights that
reflect the relative importance of each metric, subject to the
constraint o + 5 + v = 1. The values of F’(v), R'(v), and
E'(v) are determined using Equation 2, where T'(v) denotes
the time elapsed since the last access of v.

benefit(v) = ax F'(v) + B x E'(v) +v x R'(v) (1)

oy F@) oo E@) s T()
F)= max(F)’E () = maX(E)’R (v) = l_max(T)7
2)

Compared to the replacement methods discussed earlier,
our benefit model offers distinct advantages. While frequency
prioritizes frequently accessed queries and recency empha-
sizes recently accessed ones, computation cost ensures that
queries with high computational overhead are prioritized to
minimize recomputation. By integrating these factors, the
model effectively ranks cached vectors, balancing the trade-
offs between frequency, recency, and computational cost.

Benefit-Driven cache algorithm. Algorithm 3 outlines
the pseudo-code for the benefit-driven cache replacement al-
gorithm. A cache update is triggered if the cache size exceeds
the budget B and the ratio d,/d}, is greater than or equal to
the specified update factor €, where d, and dj, represent the
maximum distances of the approximate results R’ and ex-
act results R to the query, respectively. When the condition
dg/dy > e is satisfied, the cache is updated by adding vector
v to C and inserting v into the graph G (Line 4). If a cache
update occurs, the cached vector v with the minimal benefit
is identified (Line 6). This vector is then removed from the
cache, and all its connections in G are deleted (Line 7).

4.2 Exact Search with Distance Guidance

For exact search, the distance dy (cf. Section 4.1) is uti-
lized to prune unqualified objects early on. Specifically, we
use the VP-Tree as the underlying index structure for exact
kNN search due to its superior efficiency and minimal mem-
ory requirements compared to ball-trees [Rakotondrasoa et
al., 2023; Kumar er al., 2008]. Notably, our approach is
compatible with other tree-based solutions as well. As il-
lustrated in Fig. 2, each node in the VP-Tree is represented
as N = {pt(left), vy, p, I, pt(right)}. Here, v, denotes the
vantage point, I represents the vector items stored in a leaf
node, and pt() serves as a pointer to child nodes. For non-
leaf nodes, I remains empty. Starting at the root node N,

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Algorithm 3 BDC(R,R’,G, B, ¢)

Algorithm 4 BF-kNN(v,, N, R, dg, k)

Input: The exact / approximate kNN results, R and R’;
The cache graph index, G;

Parameter: The cache budget, B;
The cache update factor, ¢;

Output: The updated cache graph index, G;

1: dg = R .top(); d = R.top();
2: if dy/di > ¢ then

3 for v’ € R do

4: G.Insert(v');

5: if |C| > B then

6: v < a cached vector with the minimal benefit;
7 G.Delete(v,v");

8: return G;

which indexes all data, each node N\ selects a vantage object
vp from the data indexed at that node. The data are then split
into two partitions: the medium distance f to v, is calculated
for all points under V. Objects with a distance to v, less than
w are assigned to the left subtree, while those with a distance
greater than or equal to y are placed in the right subtree. To
evaluate a kNN query, the VP-Tree is traversed recursively
following the same partitioning principle.

Algorithm details. Algorithm 4 provides the pseudo code
for kNN search using the VP-Tree with a best-first strategy
(BF-ENN). The inputs to the algorithm include the starting
node of the VP-Tree A/, a query vector vy, and a cache-
guided distance d4. A priority queue, denoted as R, is used
to store the exact kNN results in descending order of their
distances. The kNN search follows a recursive traversal pro-
cess that begins at the root of the tree and progressively up-
dates the result set R. Upon reaching a bucket (i.e., a leaf
node), the elements within the bucket are searched sequen-
tially (Lines 3—11). The cache-guided distance d, is utilized
to prune unqualified candidates early in the search process
(Line 9). In a metric space with the distance dist(v,v,), the
triangle inequality is employed to reduce the search space.
Specifically, only the left subtree is visited if dist(v,vq) <
N . — min(dy, dg). Similarly, only the right subtree is ex-
plored if dist(v,vy) > N.p + min(dy, d,). In cases where
N.p — min(dy,dy) < dist(v,vy) < N.p+ min(dy, dy),
both subtrees must be visited. The high-level concept of
our cache-guided best-first strategy in the VP-Tree is as fol-
lows: (i) Cache-guided: Instead of relying solely on the maxi-
mum distance among the current kNN results, we incorporate
min(dy, dg) to guide the search, enabling early-stage pruning
of the search space. (ii) Best-first: If dist(v,v,) < N.u, the
left subtree is prioritized for traversal; otherwise, the right
subtree is explored first (Lines 14-23).

4.3 Overall Solution: Cache-Guided Search

The overall cache-guided search algorithm (CGS) is pre-
sented in Algorithm 5. Initially, the cache graph index G is
empty (Line 1). The algorithm starts with a greedy search
from a random entry point in the top layer of the cache graph
index, progressively moving closer to the query point through
each layer until the bottom layer is reached. At this stage, the

Input: A query vector, vg;

A node of the VP-Tree, N;

The exact kNN results, R;

A cache-guided distance, dg;
Parameter: The query result quantity, k;
Output: The exact kNN results, R;

1: if N = null then

2: return;

NI #0 > Leaf Node then
4: forveN.Ido

5: if |R| < k then

6: R.push([v, dist(v,vq)];

7: else

8 di, < R.top();

9: if dist(v,vq) < min(dy,d,) then
10: R.poll();

11: R.push([v, dist(v,vq)]);

12: v+ Ny,

13: The same as Lines 5-11;
14: if dist(v,vq) < N.p
15: if dist(v,vq) — N.p < min(dg, dy) then

> Best-First then

16: BE-kNN (v, N.left, R, dg, k):

17: i N.pu— dist(v,vq) < min(dg,dy) then
18: BF-kNN(vq, N.right, R, dg, k);

19: else

20: if Ny — dist(v,vq) < min(dg,dy) then
21: BF-kNN(vq, N.right, R,dg, k);

22: ifdist(v,vq) — N.pu < min(dg, dg) then
23: BF-kNN(vq, M.left,R,dg, k);

24: return R;

top k approximate nearest neighbors R’ and the guiding dis-
tance d,, are identified (Lines 2-5). In the exact search phase,
the guide distance d is used to effectively prune the VP-Tree
search space (Line 6). Based on the ratio between R and R/,
the cache is dynamically updated (Line 7). Finally, the exact
kNN results, R, are returned (Line 8).

5 Experiments

5.1 Experimental Setup

Data preparation. We conducted experiments on two
real-world datasets to evaluate the performance of our pro-
posal: SIFT % and AOL. The SIFT dataset comprises SIFT
image descriptors, which are widely used in feature match-
ing applications. The AOL dataset consists of approximately
20 million web queries collected from 650,000 users over
three months [Pass et al., 2006]. The data is organized
by anonymous user IDs and sequentially arranged. For the
AOL dataset, we use the word2vec technique described in
[Rehiifek and Sojka, 2010] to convert each query text into
10-dimensional vectors by default. To simulate evolved query
distributions in SIFT, we use KMeans clustering [Kanungo et
al., 2002] to reorder the queries. We treat the embedding and
clustering process as a black-box mechanism, and optimizing
the vector embeddings themselves is beyond the scope of our
study. Both the cache graph index and the VP-Tree are kept

*http://corpus-texmex.irisa.fr

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Algorithm 5 CGS(vy, N;, G, k, B, €)

Input: A query vector, vq;
The root node of the VP-Tree, N, ;
The cache graph index, G;
Parameter: The query result quantity, k;
The cache budget, B;
The cache update factor, ¢;
Output: The exact kNN results, R;

1: Init: G < 0;
2: R’ < PriorityQueue(), R < PriorityQueue();
3: forl = lmazr — 1;1>0;1 — — do
4. R « G.find_ AkNN (vq, k,l,R");
5: dg + R’ .top();
6: R < BF-kNN(vq, N, R, dg, k);
7: C +BDC(R,R',G, B,¢);
8: return R;
SIFT AOL
[Q] | 10K, 20K, 30K, 40K, 50K 10K, 20K, 30K, 40K, 50K
30K (default) 30K (default)
V] 100K-500K 100K-500K
300K (default) 300K (default)
k 5, 10, 15, 20, 25 5,10, 15, 20, 25
10 (default) 10 (default)
B 0.5% —2.5%%|V| 0.5%-2.5% x|V
1% x| Q)| (default) 1% x| Q| (default)
€ 1.0,1.5,2.0,2.5,3.0 1.0,1.5,2.0,2.5,3.0
2.0 (default) 2.0 (default)

Table 3: Evaluation parameter settings

in memory. By default, we randomly select 30,000 vectors as
query vectors Q and 300,000 vectors as object vectors V.

Compared algorithms. We evaluate the performance of
the following proposed methods. For approximate kNN
search, we employ the cache graph index with four caching
strategies: the Least-Recently-Used (LRU) strategy, First-In-
First-Out (FIFO) strategy, the Least-Frequently-Used (LFU)
strategy, and the Benefit-Driven Cache (BDC) strategy, de-
noted as App2Exa-LRU, App2Exa-FIFO, App2Exa-LFU,
and App2Exa-BDC, respectively. To validate the best-first
strategy on the VP-Tree for exact search, we compare the per-
formance of App2Exa-BDC with and without the best-first
strategy. The latter is referred to as App2Exa-BDC#. Effi-
ciency is evaluated by measuring the speed-up, computed as
tT" , where t is the query time of the VP-Tree without caching,
and t represents the query time when specific caching strat-
egy. For instance, if an App2Exa based solution takes 1 sec-
ond to process a query while the original VP-Tree without
caching takes 10 seconds, the resulting speed-up is 10.

Parameter settings. The evaluation parameter settings are
listed in Table 3. For the adjustable parameters «, 3 and 7y in
Equation 1, the default values are set to be equal (e.g., 1/3).
All the methods are implemented in Java and evaluated on
Ubuntu equipped with 2 Intel(R) Xeon(R) Silver 4214R CPU
@ 2.40GHz and 128GB memory, utilizing a single thread for
execution. Unless otherwise specified, the reported experi-
mental results represent the averages of 20 independent trials.

B App2Exa-FIFO App2Exa-LFU M App2Exa-FIFO App2Exa-LFU
App2Exa-LRU W App2Exa-BDC 58 App2Exa-LRU W App2Exa-BDC
24.5 : o
= =
24.0 ¥ /- 226 a
2 A 8 2.4/% Ly —) /
2.3.5 e 1 o o
& a
3.0 2.2
2.5 2.0
2.0
10K 20K 30K 40K 50K 10K 20K 30K 40K 50K
The number of queries The number of queries
(a) SIFT (b) AOL
Figure 3: Effect of the number of queries
B App2Exa-FIFO App2Exa-LFU B App2Exa-FIFO App2Exa-LFU
s App2Exa-LRU W App2Exa-BDC App2Exa-LRU W App2Exa-BDC
540 B 526 P
o 36 b e o '
o ™ (A T 824 %
832\ %= &P
28l 2.2
2.4 2.0
2.0 1.8
100K 200K 300K 400K 500K 100K 200K 300K 400K 500K
Cardinality Cardinality
(a) SIFT (b) AOL

Figure 4: Effect of the cardinality

Note that when we vary one parameter, the others are set to
default values.

5.2 Performance Evaluation

Effect of the number of queries. First, we evaluate the
speed-up performance of the proposed methods by varying
the number of queries from 10,000 to 50,000. Fig. 3 il-
lustrates the speed-up performance across different settings.
Using our App2Exa techniques, the exact VP-Tree search
achieves a speed-up of at least 2z for SIFT dataset, and 1.5z
for AOL dataset. It is observed that App2Exa-BDC consis-
tently achieves the best performance among all methods for
all settings, which accelerates the exact search on VP-Tree
by at least 3z for SIFT, and 2.5z for AOL. The similar per-
formance of FIFO and LRU stems from the fact that both
rely solely on recency for cache replacement, and thus be-
have similarly in our scenarios. These experimental results
demonstrate the superiority of our proposal.

Effect of the database size. = Fig. 4 presents the speed-
up performance of the proposed methods when varying the
data cardinality from 100,000 to 500,000. In SIFT dataset, all
methods achieve the best performance when the cardinality is
300,000. We can observe that the App2Exa approach with our
BDC cache replacement policy, consistently outperforms all
other methods, significantly accelerating the exact computa-
tion by a factor of 3.2z — 4.4z in SIFT dataset, demonstrating
the capability of our proposal in handling large data sets.

Effect of the k. We examine the impact of the k — the
results are shown in Fig. 5. Intuitively, a larger £ results in
more nearest neighbors, in which more vectors are required
to be computed. Additionally, as k increases, the distance be-
tween the query and its k-th nearest neighbor becomes larger.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

B App2Exa-FIFO App2Exa-LFU B App2Exa-FIFO App2Exa-LFU
App2Exa-LRU W App2Exa-BDC App2Exa-LRU W App2Exa-BDC

a. a5.0

340 m. 3

= 4.0 A 4.0

o wy 3 ; S > 4
. 23.0 ' = !

& - &

3 I
35 ~, T—
o -
3.0 =0 2.0
25 1.0
2.0 0.0
5 10 15 20 25 5 10 15 20 25
k k
(a) SIFT (b) AOL
Figure 5: Effect of k
M App2Exa-FIFO App2Exa-LFU B App2Exa-FIFO App2Exa-LFU
App2Exa-LRU W App2Exa-BDC . App2Exa-LRU W App2Exa-BDC
g4Sly——¥F—¥— V| o F__F/J/v/v
Do m—n B0 3 26
235 3" __—a
2.3 a | I 20
“30 2 E —
25
2.0 22
05% 1.0% 15% 2.0% 25% 05% 1.0% 15% 2.0% 25%
B B
(a) SIFT (b) AOL

Figure 6: Effect of B

This, in turn, causes the VP-Tree to have a wider initial search
range for exact k-NN search, thereby requiring more compu-
tational effort. All methods achieves their best performance
at k = 5, with the speed-up stabilizing for & > 20. As k
increases, App2Exa-BDC still provides significant speed-up
by at least 3.5z for SIFT dataset, and 3z for AOL dataset,
demonstrating its scalability across various application sce-
narios with different k values.

Effect of the cache budget. Fig. 6 shows the speed-up per-
formance as a function of the cache budget B. Specifically, B
ranges from 0.5% to 2.5% of the size of object vectors (i.e.,
database). An increasing trend of the speed-up ratio is ob-
served across all methods as B increases. Notably, due to the
effects of data distribution, the speed-up in the AOL dataset
increase at a slower rate compared to SIFT. Among the eval-
uated methods, App2Exa-BDC, which incorporates an effec-
tive cache replacement policy in approximate search phase
and employs the best-first strategy in the exact search phase
using the VP-Tree, consistently outperforms others across all
datasets. Specifically, App2Exa-BDC achieves a speed-up
exceeding 4x for SIFT and 2.6z for AOL, highlighting the
effectiveness of our proposed approach.

Effect of the cache update factor. Fig. 7 shows the speed-
up performance when varying the cache update factor € (cf.
Alg. 3). A larger value of e results in fewer cache replace-
ment. As € increases, the methods with LRU, BDC, and
FIFO replacement policies exhibit a declining trend in speed-
up performance. In contrast, this trend is less pronounced for
App2Exa-LFU, due to LFU’s tendency to retain frequently
accessed vectors without considering time decay. This behav-
ior leads to outdated but previously popular vectors remaining
in the cache. Among all methods, our benefit-driven cache

B App2Exa-FIFO App2Exa-LFU B App2Exa-FIFO App2Exa-LFU
App2Exa-LRU W App2Exa-BDC App2Exa-LRU W App2Exa-BDC
6.0 3.5
=) o
= =
- 5.0 - 3
Q E Q
L 153 N
24.0 I ¥ 225 7\‘
A
3.0 0 2 -
2.0 15
1.0 15 2.0 25 3.0 1.0 15 2.0 2.5 3.0
£ £
(a) SIFT (b) AOL

Figure 7: Effect of ¢

45 2.8
[=% (=%
5 526
B40 B24
(53 (5]
o [=%
v

©2.2
3.5 W App2Exa-BDC
dk App2Exa-BDC#

¥ App2Exa-BDC

20| g App2Exa-BDCH#

5 10 15 20 25 5 10 15 20 25
k k
(a) SIFT (b) AOL

Figure 8: Evaluation on the best-first strategy

(BDC) achieves the highest speed-up performance, which
demonstrates the superior effectiveness of our caching re-
placement policy in adapting to dynamic query distributions.

Evaluation on the best-first strategy. Fig. 8 shows the
speed-up performance of best-first strategy that employed in
the VP-Tree index. A performance gap is observed between
the App2Exa-BDC and App2Exa-BDC# across all datasets.
Specifically, the best-first strategy used in the VP-Tree can
further shorten the query latency by 8%-12% in SIFT, and
9%-13% in AOL, demonstrating the effectiveness of this
strategy in enhancing query efficiency.

6 Conclusion

We proposed App2Exa, a cache-guided approach that bridges
approximate and exact kNN searches to enhance efficiency.
App2Exa combines an incremental cache graph for fast ap-
proximate retrieval with an enhanced VP-Tree for exact
search, addressing the challenge of dynamic query distri-
butions in low-to-medium dimensional spaces. Its benefit-
driven caching mechanism ensures optimal cache utilization
by prioritizing vectors based on query frequency, recency, and
computational cost. Experiments on real-world datasets high-
light the scalability and robustness of App2Exa, achieving up
to a 3x speed-up over traditional exact kNN methods.

Acknowledgments

This paper was supported by the National Key R&D Pro-
gram of China 2024YFE0111800, NSFC 62032001, and
the Science and Technology Development Fund Macau
SAR (0003/2023/RIC, 0052/2023/RIA1, 0031/2022/A,
001/2024/SKL for SKL-IOTSC).

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

References

[Babenko and Lempitsky, 2016] Artem Babenko and Vic-
tor S. Lempitsky. Efficient indexing of billion-scale
datasets of deep descriptors. In CVPR, pages 2055-2063.
IEEE Computer Society, 2016.

[Bae et al., 2009] Wan D. Bae, Shayma Alkobaisi, Seon Ho
Kim, Sada Narayanappa, and Cyrus Shahabi. Web data re-
trieval: solving spatial range queries using k-nearest neigh-
bor searches. Geolnformatica, 13(4):483-514, 2009.

[Baeza-Yates et al., 2007] Ricardo A. Baeza-Yates, Aris-
tides Gionis, Flavio Junqueira, Vanessa Murdock, Vassilis
Plachouras, and Fabrizio Silvestri. The impact of caching
on search engines. In SIGIR, pages 183-190. ACM, 2007.

[Bentley, 1975] Jon Louis Bentley. Multidimensional bi-
nary search trees used for associative searching. Commun.
ACM, 18(9):509-517, 1975.

[Beyer er al., 1999] Kevin S. Beyer, Jonathan Goldstein,
Raghu Ramakrishnan, and Uri Shaft. When is “nearest
neighbor” meaningful? In Database Theory - ICDT, vol-
ume 1540 of Lecture Notes in Computer Science, pages
217-235. Springer, 1999.

[Bozkaya and Ozsoyoglu, 1999] Tolga Bozkaya and
Z. Meral Ozsoyoglu. Indexing large metric spaces for
similarity search queries. ACM Trans. Database Syst.,
24(3):361-404, 1999.

[Cambazoglu et al., 2010] Berkant Barla ~Cambazoglu,
Flavio Paiva Junqueira, Vassilis Plachouras, Scott A.
Banachowski, Baoqgiu Cui, Swee Lim, and Bill Bridge. A
refreshing perspective of search engine caching. In WWW,
pages 181-190. ACM, 2010.

[Dong et al., 20111 Wei Dong, Moses Charikar, and Kai Li.
Efficient k-nearest neighbor graph construction for generic
similarity measures. In WWW, pages 577-586. ACM,
2011.

[Frieder ef al., 2024] Ophir Frieder, Ida Mele, Cristina Ioana
Muntean, Franco Maria Nardini, Raffaele Perego, and
Nicola Tonellotto. Caching historical embeddings in con-
versational search. ACM Trans. Web, 18(4):42:1-42:19,
2024.

[Fu et al., 2019] Cong Fu, Chao Xiang, Changxu Wang, and
Deng Cai. Fast approximate nearest neighbor search with
the navigating spreading-out graph. Proc. VLDB Endow.,
12(5):461-474, 2019.

[Gan and Suel, 2009] Qingging Gan and Torsten Suel. Im-
proved techniques for result caching in web search en-
gines. In WWW, pages 431-440. ACM, 2009.

[Guttman, 1984] Antonin Guttman. R-trees: A dynamic in-
dex structure for spatial searching. In SIGMOD, pages 47—
57. ACM Press, 1984.

[Halder et al., 2024] Rajib Kumar Halder, Mohammed Nasir
Uddin, Ashraf Uddin, Sunil Aryal, and Ansam Khraisat.
Enhancing k-nearest neighbor algorithm: a comprehensive
review and performance analysis of modifications. J. Big
Data, 11(1):113, 2024.

[Jelenkovic and Radovanovic, 2004] Predrag R. Jelenkovic
and Ana Radovanovic. Least-recently-used caching with
dependent requests. Theor. Comput. Sci., 326(1-3):293—
327, 2004.

[Kanungo et al., 2002] Tapas Kanungo, David M. Mount,
Nathan S. Netanyahu, Christine D. Piatko, Ruth Silver-
man, and Angela Y. Wu. An efficient k-means cluster-
ing algorithm: Analysis and implementation. /[EEE Trans.
Pattern Anal. Mach. Intell., 24(7):881-892, 2002.

[Kumar et al., 2008] Neeraj Kumar, Li Zhang, and Shree K.
Nayar. What is a good nearest neighbors algorithm for
finding similar patches in images? In ECCV, volume
5303 of Lecture Notes in Computer Science, pages 364—
378. Springer, 2008.

[Lampropoulos erf al., 2023] Konstantinos ~ Lampropoulos,
Fatemeh Zardbani, Nikos Mamoulis, and Panagiotis
Karras. Adaptive indexing in high-dimensional metric
spaces. Proc. VLDB Endow., 16(10):2525-2537, 2023.

[Lee er al., 2001] Donghee Lee, Jongmoo Choi, Jong-Hun
Kim, Sam H. Noh, Sang Lyul Min, Yookun Cho, and
Chong-Sang Kim. LRFU: A spectrum of policies that sub-
sumes the least recently used and least frequently used
policies. IEEE Trans. Computers, 50(12):1352-1361,
2001.

[Li et al,2022] Ke Li, Lisi Chen, Shuo Shang, Haiyan
Wang, Yang Liu, Panos Kalnis, and Bin Yao. Towards
controlling the transmission of diseases: Continuous ex-
posure discovery over massive-scale moving objects. In
Luc De Raedt, editor, IJCAI, pages 3891-3897. ijcai.org,
2022.

[Li et al., 2023] Ke Li, Hongyu Wang, Ziwen Chen, and Lisi
Chen. Relaxed group pattern detection over massive-scale
trajectories. Future Gener. Comput. Syst., 144:131-139,
2023.

[Liu ef al., 2021] Wangi Liu, Hanchen Wang, Ying Zhang,
Wei Wang, Lu Qin, and Xuemin Lin. EI-LSH: an early-
termination driven I/O efficient incremental c-approximate
nearest neighbor search. VLDB J., 30(2):215-235, 2021.

[Long and Suel, 2006] Xiaohui Long and Torsten Suel.
Three-level caching for efficient query processing in large
web search engines. World Wide Web, 9(4):369-395, 2006.

[Malkov and Yashunin, 2020] Yury A. Malkov and
Dmitry A. Yashunin. Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable
small world graphs. [EEE Trans. Pattern Anal. Mach.
Intell., 42(4):824-836, 2020.

[Markatos, 2001] Evangelos P. Markatos. On caching search
engine query results. Comput. Commun., 24(2):137-143,
2001.

[Ozcan er al., 2012] Rifat Ozcan, Ismail Sengor Altingdvde,
Berkant Barla Cambazoglu, Flavio Paiva Junqueira, and
Ozgiir Ulusoy. A five-level static cache architecture for
web search engines. Inf. Process. Manag., 48(5):828-840,
2012.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Pass et al., 2006] Greg Pass, Abdur Chowdhury, and Cayley
Torgeson. A picture of search. In Proceedings of the 1st In-
ternational Conference on Scalable Information Systems,

volume 152 of ACM International Conference Proceeding
Series, page 1. ACM, 2006.

[Peng et al., 2022] Yun Peng, Byron Choi, Tsz Nam Chan,
and Jianliang Xu. LAN: learning-based approximate k-
nearest neighbor search in graph databases. In ICDE,
pages 2508-2521. IEEE, 2022.

[Rakotondrasoa et al., 2023] Hanitriniala Malalatiana Rako-
tondrasoa, Martin Bucher, and Ilya Sinayskiy. Quantitative
comparison of nearest neighbor search algorithms. CoRR,
abs/2307.05235, 2023.

[Ram and Sinha, 2019] Parikshit Ram and Kaushik Sinha.
Revisiting kd-tree for nearest neighbor search. In
SIGKDD, pages 1378-1388. ACM, 2019.

[Rehtifek and Sojka, 2010] Radim Rehtifek and Petr Sojka.
Software framework for topic modelling with large cor-
pora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45-50. ELRA,
2010.

[Yianilos, 1993] Peter N. Yianilos. Data structures and
algorithms for nearest neighbor search in general met-
ric spaces. In ACM/SIGACT-SIAM, pages 311-321.
ACM/SIAM, 1993.

[Zhao et al., 2023] Xi Zhao, Yao Tian, Kai Huang, Bolong
Zheng, and Xiaofang Zhou. Towards efficient index con-
struction and approximate nearest neighbor search in high-
dimensional spaces. Proc. VLDB Endow., 16(8):1979—
1991, 2023.

[Zheng et al., 2022] Bolong Zheng, Xi Zhao, Lianggui
Weng, Quoc Viet Hung Nguyen, Hang Liu, and Chris-
tian S. Jensen. PM-LSH: a fast and accurate in-memory

framework for high-dimensional approximate NN and
closest pair search. VLDB J., 31(6):1339-1363, 2022.

[Zulfa er al., 2020] Mulki Indana Zulfa, Rudy Hartanto, and
Adhistya Erna Permanasari. Caching strategy for web ap-
plication - a systematic literature review. Int. J. Web Inf.
Syst., 16(5):545-569, 2020.

