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Abstract

Vision-language models (VLMs) have demon-
strated strong zero-shot inference capabilities but
may exhibit stereotypical biases toward certain
demographic groups. Consequently, downstream
tasks leveraging these models may yield unbal-
anced performance across different target social
groups, potentially reinforcing harmful stereotypes.
Mitigating such biases is critical for ensuring fair-
ness in practical applications. Existing debiasing
approaches typically rely on curated face-centric
datasets for fine-tuning or retraining, risking over-
fitting and limiting generalizability. To address
this issue, we propose a novel framework, CABIN
(Causal Adjustment Based INtervention). It lever-
ages a causal framework to identify sensitive at-
tributes in images as confounding factors. Employ-
ing a learned mapper, which is trained on general
large-scale image-text pairs rather than face-centric
datasets, CABIN may use text to adjust sensitive at-
tributes in the image embedding, ensuring indepen-
dence between these sensitive attributes and image
embeddings. This independence enables a back-
door adjustment for unbiased inference without the
drawbacks of additional fine-tuning or retraining
on narrowly tailored datasets. Through compre-
hensive experiments and analyses, we demonstrate
that CABIN effectively mitigates biases and im-
proves fairness metrics while preserving the zero-
shot strengths of VLMs. The code is available at:
https://github.com/ipangbo/causal-debias

1 Introduction

Vision-Language Models (VLMs) such as CLIP [Radford et
al., 2021] unify visual and textual representations, enabling
them to excel in a broad range of downstream tasks. Train-
ing on large-scale image-text pairs allows these models to
learn a joint embedding space where visual and linguistic
concepts align effectively, exhibiting strong generalization
even without extensive task-specific fine-tuning [Zhao et al.,
2024]. Their ability to learn generalisable representations
makes VLMs attractive for numerous real-world applications,
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Figure 1: Debiasing VLM using backdoor adjustment. A biased
VLM is influenced by gender-based confounding factors (13), which
leads to biased prediction based on input (X’) and predicted result
()), although pictures reflect the same occupations. By applying
backdoor adjustment to conditioning the value of X (Set operation)
and observing ), we estimate and mitigate the confounding effect
of B, such that models may achieve fairer predictions.

from web-scale image searches [Liilf ef al., 2024] to auto-
mated content filtering [Hong et al., 2024].

Despite their impressive performance, recent studies have
shown that VLMs inherit stereotypical biases in their train-
ing data [Birhane ef al., 2021]. Such biases may manifest as
performance disparities across sensitive attributes (e.g. gen-
der, race and age). For instance, a VLM might misclassify
or underrepresent certain demographic groups in tasks, e.g.
face recognition or occupational image classification [Parraga
et al., 2023]. For image retrieval, such biases could cause
search results to reflect stereotypical associations. For ex-
ample, querying “nurse” primarily returns female-presenting
images. Such bias adversely impacts both the inclusivity and
fairness of VLM-driven systems.

Efforts to mitigate bias in machine learning encompass
several intervention strategies. Pre-processing methods, e.g.
data augmentation [Choi et al., 2020; Lim er al., 2023], and
in-processing techniques, e.g. adversarial learning [Zhang
et al., 2018] and feature disentanglement [Locatello et al.,
20191, generally require retraining the entire model. This
process consumes substantial computational resources and
often involves counterfactual data [Zhang et al., 2022; Lee
et al., 2023], which can generate unrealistic or distorted re-
sults. Post-processing strategies involve adjustments applied
after training and include techniques such as feature projec-
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tion [Chuang et al., 2023; Ratzlaff et al., 2024] and prompt
engineering [Friedrich er al., 2023; Qiao et al., 2025]. Al-
though these methods do not require fine-tuning or retrain-
ing, they typically focus only on single modalities, thus fail-
ing to use VLMs’ shared embedding spaces. Furthermore,
many existing approaches rely on training datasets that are
closely related to their test datasets, often partitioned from
similar face-centric datasets (e.g., FairFace [Karkkainen and
Joo, 2021]), which limits their generalizability and hinders
consistent performance across diverse datasets.

To address these limitations, we propose CABIN, a novel
backdoor adjustment framework that mitigates the influence
of sensitive attributes on VLM predictions (Fig. 1). CABIN
uses a shallow neural network “mapper” to transform text em-
beddings into image embeddings, allowing us to manipulate
sensitive attribute features within the shared embedding space
without altering the image. This is a key advantage, as it will
enable us to directly address biases within the VLM’s core
representation. Trained on data similar to the VLMs, this
mapper avoids overfitting without requiring annotated face-
centric datasets. By manipulating sensitive attribute features
in the image embedding through text, CABIN fully leverages
the VLMs’ shared space. We may identify biased attribute
subspaces within this shared embedding space by finding fea-
tures that vary under different sensitive attributes and locat-
ing the features of the image embedding that encode sensitive
attributes. By neutralizing these subspaces, e.g. removing
these attribute-related components, CABIN makes the image
representations less sensitive to these attributes. Importantly,
CABIN does not require model retraining for different test
sets. By neutralizing these subspaces, CABIN enables debi-
asing via backdoor adjustments, a causal inference technique
that allows us to estimate the causal effect of the input on
the prediction by controlling for confounding factors (i.e.,
sensitive attributes), facilitating accurate causal estimation.
This procedure is independent of domain-specific architec-
tures and task-specific data, making it applicable to various
tasks, including zero-shot classification and image retrieval.

Our key contributions are as follows. (1) We develop
CABIN, a new debiasing framework grounded in causal in-
ference. CABIN uses a lightweight mapper to manipulate
sensitive attributes within image embeddings by leveraging
text, avoiding overfitting specific datasets and ensuring ef-
fective utilization of both image and text modalities. (2) We
introduce a task-agnostic structural causal model for VLM
inference. This model explicitly represents the confounding
influence of sensitive attributes on the model’s predictions, al-
lowing us to identify and address the relevant backdoor paths
for debiasing. (3) We conduct extensive experiments across
diverse image classification and retrieval datasets. The results
demonstrate that CABIN effectively mitigates bias, as quanti-
fied by multiple fairness metrics, while maintaining competi-
tive performance.

2 Related Work

VLMs Bias Evaluation. VLMs, such as CLIP, excel in uni-
fying visual and textual modalities, enabling robust zero-shot
generalization across downstream tasks [Parraga er al., 2023].

Study Tasks CS MP TA FD SG
Wang et al. [2020] IR - + - - G
Berg et al. [2022] IC, IR - + + - GR
Seth et al. [2023] IC, VC - + + - GRA
Jung et al. [2024] IC,IR,CPIG - + + - GR
Friedrich et al. [2022] 1G - + - + GR
Chuang et al. [2023] IC, IR - - + + GRA
Ratzlaff et al. [2024] VQA -+ o+ o+ R
Weng et al. [2024] OD + - + - G
Cheong et al. [2024] VC, AC + + o+ o+ G
Patil et al. [2023] VQA + + - o+ -
Zhang et al. [2023] HCR + + + - GRA
Our Work IC, IR + + + + GRA

Table 1: Comparison of debiasing approaches in Vision-Language
Models. Tasks include IC (Image Classification), IR (Text-to-Image
Retrieval), VC (Video Classification), CP (Image Captioning), IG
(Image Generation), VQA (Visual Question Answering), OD (Ob-
ject Detection), AC (Audio Classification), and HCR (Hair Color
Recognition). CS indicates whether the approach leverages causal
strategies (+: Yes, — No); MP indicates the absence of pixel-level
image modification (+: Yes, —: No); TA denotes task-agnostic de-
sign (+: Yes, — No); FD reflects reliance on face-centric datasets
for training (+: No reliance, —: Relies on face data). SG specifies the
social groups addressed: G (Gender), R (Race), and A (Age).

These models effectively align image and text embeddings
effectively, supporting applications such as image classifica-
tion and retrieval. However, their reliance on large-scale, un-
curated datasets often perpetuates societal biases [Birhane et
al., 2021], raising fairness concerns. Early fairness evalua-
tions primarily relied on datasets containing human images
[Wang et al., 2021; Weng et al., 2024], with face-centric
datasets, FairFace [Karkkainen and Joo, 2021] being a com-
mon choice [Zhang et al., 2023; Berg et al., 2022]. Text-
image pair datasets with sensitive attribute annotations were
also used to assess the fairness of VLMs [Jung er al., 2024].
Debiasing VLMs. Efforts to mitigate biases in multimodal
models typically adapt single-modality techniques such as ad-
versarial training [Zhang et al., 2018], feature disentangle-
ment [Locatello er al., 2019], and data augmentation [Choi
et al., 2020; Lim et al., 2023]. However, extending these
methods to VLMs is challenging due to the complexity of
joint embedding spaces and the high cost of retraining. Post-
processing approaches, such as feature projection [Chuang
et al., 2023; Ratzlaff er al., 2024] and prompt engineer-
ing [Friedrich er al., 20231, avoid retraining but often fail to
address cross-modal biases. Other methods [Jung et al., 2024;
Seth et al.,, 2023] disentangle visual and textual features
but rely on curated datasets, risking overfitting and limit-
ing generalization. Our approach leverages post-processing
by manipulating embeddings without altering image pixels
or model architecture. Trained on open-source image-text
pairs [Schuhmann er al., 2021], CABIN reduces overfitting
while identifying sensitive attribute subspaces in the joint em-
bedding space, which generalises across tasks, including clas-
sification and retrieval.

Debias using Causal Inference. Causal inference offers an
approach to disentangle spurious associations from genuine
causal relationships by introducing interventions that modify
variable distributions while keeping others unchanged. Re-



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

cent research [Weng er al., 2024; Patil et al., 2023; Zhang
et al., 2023] apply causal inference to debias machine learn-
ing models but often target specific tasks or single modal-
ities, limiting generalizability. We propose a task-agnostic
framework for modelling causal relationships in VLM pre-
dictions. Our approach removes spurious correlations with-
out task-specific adaptations by treating sensitive attributes
as confounders and applying backdoor adjustment. Experi-
ments demonstrate its effectiveness in mitigating bias across
diverse tasks while preserving model performance. Table 1
summarizes the main characteristics of existing compared to
ours.

3 Preliminaries

Vision-Language Models (VLMs) such as CLIP [Radford et
al., 2021] represent a class of foundational models trained
on large-scale image-text pairs. These models learn a shared
latent space where both images and text are embedded into
a common representation. VLMs are trained to align these
embeddings such that related image-text pairs are close in the
joint embedding space.

Bias in Vision-Language Models. Although VLMs demon-
strate strong zero-shot capabilities, they may inherit bi-
ases from their pre-training data [Birhane et al., 2021;
Gustafson er al., 2023]. Such biases may manifest as sys-
temic performance disparities across different demographic
attributes. Consider a set of m sensitive attribute groups
A = {A1,As,... A}, and each A; = {a},a?,... a7
is a set of categories corresponding to a particular sensi-
tive attribute dimension where n is the number of sensi-
tive attributes in sensitive attribute group A;. Let D =
{(.%‘17 {ag}zll)’ (xQ’ {af}lnﬂ)a Y o (xkv {az}zll)} be an im-
age dataset with sensitive attribute annotations, i.e., each im-
age xj, has a corresponding annotation set {a} },. For in-
stance, if A; corresponds to race with categories {ai, a?, a3}
(e.g., Black, Asian, White) and A, corresponds to age
with categories {a},a3} (e.g., young, old), then annotation
{a?,al} might indicate that z; is an image of a young Asian
person. We focus on the event where the VLM’s top simi-
larity score for an image x; is at least a certain threshold e.
Among all the textual prompts 7 used to compute similarity,
let:

M(k) = ]I(Igle%)_(sim(xk,t) > €), (1)

where I(+) is an indicator function. The binary result M (k)
indicates whether the model’s confidence, as measured by the
maximum similarity to any class, surpasses the threshold ¢
for the image x;. This may be interpreted as bias if the pro-
portion of images meeting this criterion differs significantly
across categories within an attribute group. Alternatively, €
could be tuned as a hyperparameter to balance the tradeoff
between the number of high-confidence results and the sensi-
tivity of bias measurement. To obtain high-confidence results
for the model, we set € to 0.5.

Fairness Metrics. To quantify bias more interpretably,
we examine how high-confidence predictions are distributed
across the categories of each attribute group A; € A by mea-
suring the relative representation of these predictions for each

category within an attribute group. This approach enables us
to identify disparities in how the model treats different cat-
egories, such as age or race. Consider one attribute group
A; = {a},a2,...,a}, let the subset of the dataset D con-
taining a] attribute be D ;. For each category a; in A;, where
1 < j < n, define:
- |D_;|
R 2
fi D[ 2
as the proportion of images in D that belong to category a{
of the ¢-th attribute group. Similarly, let

; Hewe Dy | M) =1}

Y=o @

be the proportion of images that both belong to category ag
and meet the confidence criterion (M (k) = 1) among all
high-confidence classifications. We compute the disparity us-

ing the Skew value for each category a?:

‘ 1
Skew(a?) = log <ffj> : “4)

A positive Skew(ag) indicates that the model is dispropor-
tionately favouring category a; relative to its baseline fre-
quency in the dataset. In contrast, a negative Skew(a}) sug-

gests that a{ is underrepresented or disadvantaged.
For a given attribute group A;, we summarise the skew val-

ues across all categories {a’ } using aggregate metrics as fol-

lows. The MaxSkew is defined as max; Skew(a}), which
captures the most favoured category within the attribute

group. Conversely, the MinSkew, defined as min; Skew(a]),
identifies the most disfavored category. Additionally, we use
MaxSkew @k, which represents the average MaxSkew val-
ues of the top-k results within A;, providing insights into
which categories are most favoured collectively. Similarly,
MinSkew @k computes the average MinSkew values of the
top-k results, highlighting the categories that are most disfa-
vored on aggregate.

4 CABIN Framework

This section describes our debiasing approach grounded in
causal inference to mitigate stereotyped biases in VLMs.
First, we formulate the causal inference framework for VLMs
to make predictions. To effectively mitigate biases in VLMs,
we employ a causal inference strategy known as backdoor ad-
justment in Sec. 4.1 and introduce a lightweight mapper that
alters image embeddings based on text prompts introduced in
Sec. 4.2. By combining the mappers and backdoor adjust-
ment, we effectively identify biased features in embedding
VLMSs, described in Sec. 4.3.

4.1 Causal Problem Formulation

Our method selectively incorporates only those causal fac-
tors relevant to understanding and mitigating bias, omitting
other causal relationships that do not pertain to the debias-
ing objectives. To define the relationships between different
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variables in a VLM-based prediction task, e.g., zero-shot im-
age classification, we use a Structural Causal Model (SCM)
to model the causal relationships. The model includes three
primary variables: X, the input to the VLM, exemplified by
an image; )/, the prediction of the VLM, which could be the
predicted class label; and B, which represents the sensitive
attributes such as gender and age. The causal relationship be-
tween these three variables may be graphically represented
using SCM in Fig. 2(c).

The VLM learns complex associations from large-scale
image-text data. Thus, the input data X’ may naturally en-
code sensitive attributes 3 when making predictions. The
model will predict the stereotypical bias inherited from train-
ing data. Thus, B also affects the prediction of ). Since B af-
fects both X and ), we identify B as a confounding sensitive
factor using a backdoor path X <— B — ), which may ren-
der the prediction biased. Specifically, the model may favour
certain demographic groups or produce systematically differ-
ent predictions for images with different sensitive attributes.
To mitigate this bias, we isolate the causal effect of X on
Y by removing the influence of the confounding factor B.
Specifically, we identify a set of variables, known as a back-
door adjustment set, that blocks all non-causal paths between
X and ). By conditioning on this set, we eliminate spurious
correlations introduced by I3, enabling the computation of the
genuine causal effect of X on ):

P(Y|set(X)) =Y PV |X,2)P(z), 5)

where P(Y | set(X')) denotes the interventional distribution
of ) when X is set at a particular value.

4.2 Text Embedding to Image Embedding Mapper

We use backdoor adjustment to block the backdoor path
X < B — Y. Applying the backdoor adjustment formula
requires that X and B be independent so that conditioning on
B removes the confounding influence. However, B is typi-
cally visibly encoded in the image X" in vision-based tasks.
For example, facial features in a nurse’s image may reveal
gender information, implying that X and 5 are not indepen-
dent.

To resolve that X’ and B are not independent, we propose
training a mapper that transforms from text modality to im-
age modality. This mapper is trained on a large-scale text-
image pairs dataset LAION-400-MILLION [Schuhmann et
al., 2021]. Since the mapper learns the transformative re-
lationship between text and image embedding of the same
sense, we only need a neural network with a small number
of parameters, such as Bottleneck [He et al., 2016], to lever-
age the text encoder to generate embeddings for variants of
textual descriptions that differ only in their sensitive attribute
terms. By applying the mapper to these textual embeddings,
we simulate how changes in sensitive attributes affect image
embeddings in the VLM’s joint space.

Here, we define the mapping process for aligning sensitive
attributes. Let ¢ : Z — R% and ) : T — R? represent the
image and text encoders, mapping inputs z € Z and ¢t € T to
d-dimensional embeddings ¢(z) and (t), respectively. The
mapper M : R — R? is trained so that M (¢(t)) ~ ¢(x) for

corresponding image-text pairs. Once trained, we identify di-
mensions or subspaces of the image embedding space that are
responsible for encoding the sensitive attribute by analyzing
how substituting one attribute (e.g., male) for another (e.g.,
female) changes M (9(t)).

As shown in Fig. 2(a), we design a training loss with a
combination of two loss terms: the first term L,jign measures
the alignment between text embeddings and image embed-
dings, while the second contrastive term Ldiff encourages
mismatched image-text pairs to be pushed farther apart, en-
hancing the discriminative ability of the learned mapper. To
balance two loss items, we use A to adjust the weights of loss
items. In order to find a proper A to balance two terms in the
loss function, we use PCGrad [Yu ef al., 2020], which dy-
namically adjusts the gradient directions by projecting con-
flicting gradients onto orthogonal subspaces to reduce inter-
ference between losses and ensure a more stable optimization
process. This approach aligns with our requirement to simul-
taneously enhance the mapper’s alignment capacity and dis-
criminative ability. Let (xy, tx) be a matched image-text pair.
We define an arbitrary prompt that does not correspond to xj,
in the dataset as ¢, = {t € T | t # t} and let (z,t’) be a
non-matching pair where ¢’ € t,;. We propose the following
loss function:

['mapper N ¢ »Calign + )\»Cdiff (6)

where A is a learnable parameter determined by PCGrad.

Alignment Loss (Lgjign):  The primary goal is to ensure that
M(4(t)) aligns closely with ¢(x). Intuitively, we minimize
the distance measure between text and image embeddings:

L= 2 S (M) — s)’ )

Difference Loss (Lgir): Additionally, to guide the map-
per to distinguish matched text-image pairs from mismatched
pairs, we introduce a contrastive term:

L = max(0, pu — sim(M (4 (tx)), d(x1))
+sim(M (y(t')), ¢(x1)))

where p > 0 is a contrastive loss margin. Incorporating L g
into Lmapper ensures that matched pairs are mapped closer to-
gether than mismatched pairs, fostering a more discriminative
mapping.

By analyzing pairs of textual descriptions that differ only
in their sensitive attribute categories, we identify embedding
directions corresponding to specific attribute groups. For a
given attribute group A; (e.g. gender), we compute all pair-
wise differences among the categories (e.g. male and female)
to form a set of directional vectors:

Sa, =AM W(tar)) — M((tae)) | Vaf,af € A af # af}.

€))

The S 4, defines a subspace that captures the variations across

categories within the attribute group, effectively characteriz-
ing biased directions.

To ensure the independence of X and B so that the image

embedding does not contain information related to sensitive

(®)
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Figure 2: Overview of our proposed debiasing approach. (a) Training the Mapper: We train a lightweight mapper M to align textual and image
embeddings. The mapper is guided by an alignment loss Laign and a difference loss Laig to ensure that M (1(t,)) closely matches ¢(in ).
(b) Neutralizing Attribute-specific Features Exemplified by Gender Bias: Take gender bias as an example. By examining pairs of textual
prompts differing only in a sensitive attribute (e.g., “male nurse” vs. “female nurse”), we extract the attribute embedding direction A gender
using the mapped textual embeddings and remove the projection of image embeddings onto these attribute directions results in neutralized
features ¢(X) that are less sensitive-attribute-dependent. (c) Unbiased Prediction: With neutralized image embeddings and known attribute
distributions P(a]), we apply the backdoor adjustment formula. It provides unbiased predictions that are fairer to different social groups.

attributes, we neutralize these attribute-specific components
from the image representation:

da)=o(x)— Y > Talgx),  (10)

A;€AAESy,

where IT () denotes the projection onto the subspace defined
by all difference vectors A in S4,. After this transforma-
tion, ¢(x) is less dependent on sensitive attributes, moving us
closer to a scenario where X and these sensitive attributes are
independent.

4.3 Applying Backdoor Adjustment

As we have ensured that X and the sensitive attributes are
approximately independent by neutralizing the corresponding
attribute subspaces in the image embeddings, we apply the
backdoor adjustment to estimate the causal effect of X' on
Y, which represents the genuine causal relationship, i.e., the
unbiased prediction.

To implement the backdoor adjustment, we first compute a
generalised outcome distribution conditioned on the neutral-
ized embedding ¢(X’) under each category a] € A; for every
attribute group A; € A. This involves providing the VLM
with the neutralized visual representation ¢(X') as well as the
textual inputs {¢(¢)} that vary depending on the downstream

task. The VLM’s inference function f(¢(X), {¢(¢)}, 6), pa-
rameterised by ¢, then produces a conditional outcome distri-

bution. For each a] € A;:

P(Y | $(X).a}) = Norm(f(4(X), {#:(1)}.9)), (D)
where Norm(+) is a normalizing function (e.g., softmax for
categorical outcomes) chosen according to the requirements

of the downstream task. Next, the probabilities P(a]) for

each category af are estimated from the distribution of at-
tributes in the test data Dyeg;:

J
_ ‘D?elst|

B ‘Dtest|7

P(al) (12)

where D?jst represents the subset of Dy, containing a; at-
tribute.

Finally, we aggregate over all weighted conditional out-
comes for each attribute group. For a single attribute group
AZ‘Z

P(Y|set(X)) = > PV |d(X),al) Plal). (13)

agEAi

Extending to multiple attribute groups, each A; is adjusted
independently. Fig. 2(c) illustrates the process of applying
backdoor adjustment. This approach is agnostic to the spe-
cific downstream task, relying only on the availability of tex-
tual inputs {¢(¢)} to guide the VLM’s prediction. By per-
forming a backdoor adjustment on the neutralized embed-
dings, the outcome reflects the genuine causal relationships
free from confounding sensitive attributes.

S Experiments

We structure our experimental study around two key research
questions (RQs): How effectively does our method reduce
bias? (RQ1) and How does our approach balance debiasing
with preserving task performance? (RQ2). We focus on two
representative tasks, image classification and image retrieval,
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Age 044 038 035 031 -038 -042 -037 -0.29 057 028 030 027 -345 2.80 -2.83 -2.69
Gender 042 025 023 0.8 -0.50 -0.35 -032 -0.20 047 033 029 023 -270 240 -2.20 -2.10
8 ResNet50 | Race  0.55 032 030 027 -062 -038 -040 -0.25 050 035 0.33 029 -3.10 -2.60 -2.50 -2.40
8 Age 050 035 031 028 -0.80 -038 -036 -0.28 049 030 029 022 -325 270 -2.65 -2.50
v Gender 040 022 028 025 -045 -030 -033 -0.25 048 034 036 037 -2.60 240 -2.35 -2.30
= VIiT-B/32 |[Race 050 0.5 039 032 -048 -030 -0.28 -0.20 046 036 040 0.33 -3.00 -2.60 -250 -2.55
Age 044 033 035 026 -044 -038 -042 -024 040 029 027 031 -320 270 -2.75 -2.60
» ResNet50 | Gender 041 025 028 018 -051 -032 -029 -020 047 031 032 022 270 -2.50 -255 -2.40
% VitBAR2 | Gender 042 027 029 023 -046 -030 -028 -023 044 032 035 025 262 -250 -2.40 -2.30
»» ResNet50 | Gender 049 034 036 0.26 -059 -0.32 -030 -0.24 053 038 035 029 290 -2.60 -2.52 -2.41
=%
VIT-B/32 | Gender 039 025 027 019 -049 -034 -031 -0.20 048 033 030 021 -2.80 -256 -2.50 -2.35

Table 2: Comparison of Skew metrics across diverse datasets for fairness evaluation. Results include MaxSkew, MinSkew, MaxSkew @k, and
MinSkew @k metrics for Vanilla CLIP models (VA), DeAR (DR), SFID (SF), and CABIN (CB). Standard deviations for results are below
0.01, which is less than the precision shown, omitted for clarity. We conducted paired t-tests for each metric across repeated runs, applying
Holm-Bonferroni correction. The performance differences are statistically significant (all adjusted p < 0.05). Bold numbers denote the best
(lower for MaxSkew, higher for MinSkew), and underlined numbers denote the second best.

to provide a holistic perspective on how bias arises and is
mitigated in VLMs.

Baseline and Architecture. All experiments use Vanilla
CLIP encoders with ResNet50 and ViT-B/32 backbones as
baselines. DeAR [Seth et al., 2023] and SFID [Jung et al.,
2024] serve as comparative methods. We report Skew-based
metrics mentioned in Sec. 3.

Data and Training. As mainstream VLMs such as CLIP’s
training data have not been published, we use a large-
scale open-source image-text dataset LAION-400-MILLION
[Schuhmann er al., 2021] to train our mapper M. We ran-
domly sampled 10 million paired image-text data from the
dataset to ensure M (1)(t)) approximates ¢(x) accurately.

Evaluation Datasets. We use FACET [Gustafson et al.,
2023], PATA [Seth et al., 20231, and Flickr30K [Plummer et
al., 2015] to evaluate our debiasing method. Traditional face-
centric datasets such as FairFace [Karkkainen and Joo, 20211,
MS-COCO (MS) [Lin et al., 2014], and Pascal-Sentence (PS)
[Rashtchian et al., 2010] are also used to show our method
applies to various ranges of datasets and tasks.

6 Results and Discussions

We present analyses of our proposed approach to address re-
search questions (RQ1 and RQ?2) outlined in Sec. 5. We fur-
ther include a parameter sensitivity analysis demonstrating
how our choice of hyperparameters influences both bias mit-
igation and overall performance.

Evaluation of Skew-based Fairness (RQ1). Table 2
presents Skew-based metrics across diverse datasets and sen-
sitive attributes. Our method consistently reduces MaxSkew
and MaxSkew @k compared to the vanilla CLIP model (VA)
and strong debiasing baselines (DeAR, SFID). Additionally,
it shows comparable performance in image-to-text retrieval
on Flickr30K while effectively lowering Skew values for sen-
sitive attributes.

Figure 3 further illustrates these improvements through vi-
sual examples, where we use GradCAM [Selvaraju et al.,
2017] to reveal how our method shifts focus away from sen-
sitive attributes such as faces to more contextually relevant
features when we use the CLIP model to classify images with
different sensitive attributes in different scenarios.
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Vanilla CLIP CABIN

Similarity: 0.78  Similarity: 0.41

Similarity: 0.74  Similarity: 0.40

Figure 3: Comparison of visualizations between the Vanilla CLIP
model representing ¢(z) with ViT-B/32 backbone and CABIN rep-
resenting qz;(a:) Each row corresponds to a different sensitive at-
tribute bias using the prompts “A photo of a (doctor/person skat-
ing/person working)” respectively. In each scenario, one image
depicts a socially dominant group member and the other a less-
represented group. After applying CABIN, the model focuses less
on features related to sensitive attributes and more on features re-
lated to prompts.

Evaluation of Accuracy and Recall-based Performance
(RQ2). Although our primary goal is bias mitigation, pre-
serving task performance is also essential. Table 3 reports
zero-shot classification accuracy and image retrieval Re-
call@k before and after debiasing, comparing our method
with unmodified CLIP models and two baselines (DeAR,
SFID). Our method maintains competitive performance while
achieving improved fairness.

Parameter Analysis. Intuitively, a loss function containing
only L is unsuitable, as a mapper trained solely on mis-
matched image—text pairs cannot accurately transform text
embeddings into image embeddings. The weighting factor A
balances the alignment loss Ljign and the contrastive differ-
ence loss L, influencing how the mapper trades off embed-
ding fidelity against discriminative power. While PCGrad [Yu
et al., 2020] is used to mitigate gradient conflicts between
these two objectives, A itself remains a fixed hyperparame-
ter. To study its impact, we evaluate three settings (A = 0,
A =0.5,and A = 1). As shown in Figure 4, different )\ values
yield distinct trade-offs between bias mitigation and task per-
formance. When ) is near zero, the model prioritizes align-
ment. The mapper lacks the ability to distinguish between
matched and mismatched pairs, resulting in weak attribute
direction signals extracted from attribute pairs. Conversely,
at A = 1, the contrastive term dominates: attribute subspaces
become more sharply defined, yielding stronger bias mitiga-
tion but at the cost of embedding alignment and occasional
drops in performance. An intermediate setting (A = 0.5)
achieves moderate bias reduction while retaining reasonable

FACET Flickr30K

Accuracy(%) R@1 R@5 R@10

VA 51.88+£.56 57.92+.70 57.20+.55 81.67+.68 88.17+.59
DR 51.36+.44 57.09+.52 57.15+.61 8.87+.63 87.20+.70
SF 51.07+.60 56.92+.65 56.65+.66 8.63+.55 87.16+.66
CB 51.65+.42 57.58+.45 57.02+.64 81.31+.51 87.89+.63

VA 52.19+.57 58.92+.64 58.90+.66 83.00+.72 89.20+.59
DR 51.41+.67 57.86+.61 58.15+.58 82.03+.55 89.03+.50
SF 51.55+.53 58.72+.61 57.93+.51 81.84+.63 88.54+.68
CB 51.80+.48 58.56+.55 58.61+.53 82.70+.60 88.84+.64

ImageNet

ResNet50

ViT-B/32

Table 3: Comparison of performance across three datasets: FACET
and ImageNet for image classification (Accuracy) and Flickr30K
for text-to-image retrieval (R@1, R@5, R@10). We compare four
methods, including Vanilla CLIP (VA), DeAR (DR), SFID (SF), and
CABIN (CB), on two CLIP backbones (ResNet50, ViT-B/32). Re-
sults are shown as mean=+std (%).

Gender Race Age

A Value
0.0
0.5
2 4 1.0 - i

Absolute Skew Value

MS [mS| Mk |mk|  MS |mS| Mk [mk|  MS |mS| Mk [mk]
Figure 4: Effect of varying A on Skew-based fairness metrics for the
FACET dataset using ResNet50 backbone. Negative Skew values

are normalized to absolute values for visual clarity.

task accuracy. However, as shown in Table 2 and Table 3,
even A = (.5 falls short of the stable bias—performance bal-
ance achieved when using PCGrad to dynamically reconcile
both losses; manually tuning A across fixed values is also
computationally expensive for only marginal gains.

7 Conclusion

We present CABIN, a novel debiasing framework that sys-
tematically mitigates stereotypical biases in Vision-Language
Models (VLMs) through causal inference while preserving
the models’ original capabilities. By using a lightweight map-
per to identify and neutralize sensitive attribute directions in
the joint embedding space and applying backdoor adjustment
to remove confounding influences, CABIN substantially re-
duces Skew-based bias across demographic groups on down-
stream tasks (e.g., image classification and text-to-image re-
trieval) without requiring retraining. CABIN focuses on debi-
asing the model rather than specific downstream tasks, such
that it can be easily extended to other applications. Experi-
ments and ablation studies on multiple benchmarks demon-
strate that CABIN achieves a favourable balance between
fairness enhancement and performance retention, underscor-
ing its adaptability to diverse real-world scenarios.
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