
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Witnesses for Answer Sets of Basic Logic Programs
Yisong Wang1,2,3,4 , Xianglong Wang1,3 , Zhongtao Xie1,3 , Thomas Eiter5

1 State Key Laboratory of Public Big Data, Guiyang, Guizhou, China
2 Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, China

3 College of Computer Science and Technology, Guizhou University, Guiyang, Guizhou, China
4 Institute for Artificial Intelligence, Guizhou University, Guiyang, Guizhou, China

5 Knowledge-based Systems Group, Institute of Logic and Computation, TU Wien, Austria
yswang@gzu.edu.cn, gzu xlwang@163.com, francisol.net@gmail.com thomas.eiter@tuwien.ac.at

Abstract
Explanation plays an important role in the decisions
of both symbolic and neural network-based AI sys-
tems. Logic programs under answer set semantics
(ASP) have been a typical declarative reasoning and
problem-solving paradigm that has extensive appli-
cations in various AI domains. In this paper, we
consider the issue of explanation for logic program-
s with abstract constraint atoms (c-atoms) under
SPT-answer set semantics. Such c-atoms are gener-
al enough to capture complex constructors of logic
programs, including aggregates, and the SPT-answer
sets exclude circular justifications that other seman-
tics have. We propose a minimal reduct for logic
programs with c-atoms that yields a new semantic
characterization of SPT-answer sets, and then in-
troduce an extension of resolution for clauses with
c-atoms. As we show, every atom in an SPT-answer
set enjoys an extended resolution proof from the
minimal reduct of its logic program. Finally, we
present minimal sufficient subsets of logic programs
(witnesses) to structure such an extended resolution
proof for an atom in an SPT-answer set. Our re-
sults contribute to the justification of answer sets
and provide a basis for explainability of ASP-based
applications.

1 Introduction
Explanation tasks in AI include justifying the behavior of
autonomous agents, debugging machine learning models, ex-
plaining medical decision making, and explaining classifier
predictions [Burkart and Huber, 2021; Dazeley et al., 2021].
The subject has been attracting growing attention with the
success of deep learning neural networks [Marques-Silva and
Huang, 2024; Weber et al., 2024]. Notably, explaining symbol-
ic reasoning has been extensively studied in the past in several
different contexts, including database query languages such as
Datalog [Cheney et al., 2009; Arioua et al., 2015], ontologi-
cal reasoning under description logics [Bienvenu et al., 2019;
Peñaloza, 2020] and existential rules [İsmail İlkan Ceylan et
al., 2025].

Logic programming under answer set (stable model) seman-
tics (ASP in short) is a declarative problem solving paradig-

m [Baral, 2003; Brewka et al., 2011]. It encodes the spec-
ifications of a problem in a logic program whose answer
sets correspond to the solutions of the problem, which has
been widely and successfully applied in planning, diagno-
sis, scheduling [Gebser et al., 2012; Brewka et al., 2016;
Lifschitz, 2019] thanks to the efficient ASP solvers clingo and
DLV. An explanation for the answer sets of a logic program
amounts to answering “why a set of atoms is an answer set in a
well-justified manner, instead of by definition” [Fandinno and
Schulz, 2019]. This is quite useful for debugging ASP pro-
grams. From the perspective of knowledge representation, an
explanation for a solution may be equally or more important
than the solution itself [Sosa, 2019]. This challenging task has
been extensively investigated from the perspective of off-line
justification [Pontelli et al., 2009], causal graph [Cabalar and
Fandinno, 2016], minimal assumption set and well-founded
derivation [Alviano et al., 2024] and so forth. Various explain-
ing ASP tools and systems are available, such as DiscASP [Li
et al., 2021], s(CASP) [Arias et al., 2020], xclingo [Cabalar et
al., 2020] and xASP [Alviano et al., 2024].

Abstract constraint atoms (c-atoms) [Marek and Truszczyns-
ki, 2004] are a general framework to capture complex construc-
tors in logic programs, such as weight constraints [Simons
et al., 2002] and aggregates [Dell’Armi et al., 2003; Faber
et al., 2004; Ferraris, 2011]. Such constructors are widely
used in practical ASP languages, and they usually complicate
the answer set semantics of logic programs [Son et al., 2007;
Liu et al., 2010; Shen et al., 2009; Gelfond and Zhang, 2019;
Alviano et al., 2023]. Very recently, the explanation issue for
answer sets was investigated from the perspective of witness
for disjunctive logic programs [Wang et al., 2023], and m-
justifications and r-justifications for FLP-answer sets [Faber
et al., 2004] of logic programs with abstract constraint atom-
s [Eiter and Geibinger, 2023]. It is well-known that FLP-
answer sets suffer from circular justifications.

This paper follows the idea of the witness approach
to the explanation issue of another answer set semantic-
s of logic programs with abstract constraint atoms, name-
ly SPT-answer sets [Son et al., 2007; Shen et al., 2009;
Shen et al., 2014]. These answer sets have the property of ex-
cluding circular justification in FLP-answer sets, which makes
the SPT-semantics particularly attractive. Informally, witness-
es are resolution proofs in the context of an answer set that
respect dependencies among atoms. The main contributions

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

of the paper are as follows.
• We present a general minimal reduct for logic programs

with c-atoms. Informally, the minimal reduct is to prop-
erly remove all the assumed false atoms from a logic
program [Wang et al., 2023]. With the help of mini-
mal reduct, a new characterization of SPT-answer sets is
established and the minimal model decomposition the-
orem [Angiulli et al., 2022] is then extended to logic
programs without nonmonotonic c-atoms.
• We propose a notion of CA-resolution for rules with c-

atoms to resolve a c-atom at one resolution step. We show
that every atom in an SPT-answer set of a logic program
has a sound CA-resolution proof from the minimal reduct
of the logic program w.r.t. the SPT-answer set.
• Finally, we present the notions of α-witness and β-

witness to explain why an atom is in an SPT-answer
set in terms a CA-resolution proof. While α-witnesses
are concerned with a set of atoms in each step, β-witness
are concerned with a single atom.

Since the current well-known ASP solvers compute FLP-
answer sets and SPT-answer sets are non-circular FLP-answer
sets, this “resolution proof”-based witness has potential practi-
cal applications for ASP, e.g., debugging of ASP programs.

The remainder of the paper is outlined as follows. In the
next section, we present the basic notions and notations of
logic programs with c-atoms. Section 3 presents minimal
reduct and its properties about minimal model decomposition.
Section 4 contains the CA-resolution. The α-witness and β-
witness are presented in Section 5. We compare the β-witness
with r-justification in Section 6. Finally, concluding remarks
and future work are discussed in Section 7.

2 Preliminaries
In this section, we recall some basic notions and notations
of logic programs with abstract constraint atoms [Marek and
Truszczynski, 2004; Faber et al., 2004; Son et al., 2007; Liu
et al., 2010; Shen et al., 2009] and the dependency graph of
logic programs [Angiulli et al., 2022].

2.1 Syntax and semantics
We assume an underlying propositional language L over a
finite setA of atoms. The notions of atoms, literals, interpreta-
tions, satisfaction, models, minimal models, least models, and
logical consequences are the standard ones in L.

An abstract constraint atom (c-atom in short) is a tuple
A = (D,C), where D ⊆ A is its domain and C ⊆ 2D is the
set of candidate solutions of A. For a c-atom A = (D,C), we
denote Ad = D and Ac = C. We use > to denote (D, 2D)
and ⊥ for (D, ∅). Any propositional atom a can be expressed
by the c-atom ({a}, {{a}}). We call the latter elementary, and
whenever convenient, we identify it with a. The complement
of a c-atom A = (D,C) is A = (D,C) where C = 2D \ C.
It is evident A = A. A c-literal is either a c-atom A (positive
c-literal) or its (default) negation not A (negative c-literal).

Let A = (D,C) be a c-atom. It is monotonic if S ∈ C
implies S′ ∈ C for all S and S′ with S ⊆ S′ ⊆ D. It is
convex if S′′ ∈ C implies S′ ∈ C for all S, S′ and S′′ with

S ∈ C and S ⊆ S′ ⊆ S′′ ⊆ D. It is anti-monotonic if for
every S ⊆ D, S ∈ C implies S′ ∈ C for every S′ ⊆ S.

A (disjunctive) logic program (with abstract constraint atom-
s) is a finite set of rules of the form,

A1 ∨ · · · ∨Al ← Al+1, . . . , Am, notAm+1, . . . , notAn (1)

where Ai (1 ≤ i ≤ n) are c-atoms.
Let r be a rule of the form (1). We denote the head of r

by hd(r) = {Ai | 1 ≤ i ≤ l}, the positive body of r by
bd+(r) = {Ai | l + 1 ≤ i ≤ m}, the negative body of r
by bd−(r) = {Ai | m + 1 ≤ i ≤ n} and the body of r by
bd(r) = bd+(r) ∪ not bd−(r), with notS = {not s | s ∈ S}.
For simplicity, a rule r is usually written as

hd(r)← bd+(r) ∪ not bd−(r). (2)

A rule of form (1) is called normal if l = 1, a constraint if
l = 0, a fact if l = n = 1 and A1 is elementary and in this
case the “←” is usually omitted, positive if n = m, definite
if it is normal and m = n, basic if every Ai (1 ≤ i ≤ l) is
elementary1; convex if every Ai, for 1 < i ≤ n, is convex. A
logic program is normal (positive, definite, basic and convex,
respectively) if all its rules are normal (positive, definite, basic,
and convex respectively). In the present paper, we focus on
the fragment of basic logic programs and assume that logic
programs are of this form unless explicitly stated otherwise.

Let I be an interpretation (a set of atoms). The satisfaction
relation (model) |= is defined below: let A be a c-atom, S be
a set of c-literals, r be a rule, P be a logic program,
• I |= A if I ∩Ad ∈ Ac;
• I |= notA if I does not satisfy A;
• I |= S if I |= s for every s ∈ S;
• I |= r if I |= bd(r) implies I |= h for some h ∈ hd(r);
• I |= P if I |= r for every r ∈ P .
Let M and S be two sets of atoms. We say that S condition-

ally satisfies a c-atom A w.r.t. M , written S |=M A, if S |= A
and I ∈ Ac for every I with S ∩ Ad ⊆ I ⊆ M ∩ Ad. By
S |=M T for a set T of c-atoms we mean S |=M A for every
A ∈ T .

Let P be a normal basic logic program with c-atoms. A
set M ⊆ A is an SPT-answer set of P whenever M =
T∞PM (∅,M) where

• PM is obtained from P by
– removing every rule r from P if M |= A for some
A ∈ bd−(r), and

– removing all the remaining notA from P where A
is a c-atom;

• the operator TP : 2A × 2A → 2A is defined as, for a
definite basic logic program P ,

TP (S,M) = {a | ∃r ∈ P s.t . S |=M bd(r), hd(r) = {a}}.
A set M ⊆ A is an FLP-answer set of a logic program P if

M is a minimal model of the FLP-reduct PM,FLP of P w.r.t.
M , given by PM,FLP = {r ∈ P |M |= bd(r)}.

1This is different from the one in [Shen et al., 2009] in which it
requires l = 1 additionally. Thus, the notion of “basic” in [Shen et
al., 2009] corresponds to “normal basic” in this paper.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Let W and V be two disjoint subsets of A. The W-prefixed
power set of V is the family W] V = {W ′ | W ⊆ W ′ ⊆
W ∪ V } of all subsets W ′ between W and W ∪ V ; it is
maximal in a c-atomA ifW]V ⊆ Ac and there is no otherW ′
and V ′ such that W ′] V ′ ⊆ Ac and W] V ⊂W ′] V ′. The
set of all maximal prefixed power sets of A is denoted by A∗c .
Intuitively, A∗c contains all maximal intervals [W,W ∪ V] of
the powerset lattice in Ac; computing A∗c from Ac is tractable,
cf. Theorem 3.5 of [Shen et al., 2009].
Definition 1. Let A be a c-atom and I an interpretation. W]
V ∈ A∗c is an abstract satisfiable set of A w.r.t. I if I ∩Ad ∈
W] V . In this case, W is called a satisfiable set of A w.r.t.
I ∩Ad.

Given a basic logic program P and an interpretation I , the
generalized Gelfond-Lifschitz reduct of P w.r.t. I , written as
P I,SY Y , is the basic logic program obtained from P by:
(a) removing from P all rules whose bodies contain either a

negative c-literal notA such that I |= A or a c-atom A
such that I 6|= A,

(b) removing all negative c-literals from the remaining rules,
(c) replacing each c-atom A in the body of a rule with a

special elementary atom θA and introduce a new rule

θA ← a1, ..., am (3)

for each satisfiable set W = {a1, . . . , am} of A w.r.t.
I ∩Ad,

(d) replacing hd(r) with hd(r) ∩M ,
Definition 2. An interpretation I ⊆ A is a stable model of a
logic program P if P I,SY Y has a minimal model M such that
I = M ∩ A.

It has been shown that, for every positive normal logic
program P , M ⊆ A is an SPT-answer set of P according to
[Son et al., 2007] if and only if M is a stable model of P by
Definition 2, cf. Theorem 6.2 of [Shen et al., 2009]. We thus
refer to stable models by Definition 2 also as SPT-answer sets.

Note that if P is a positive logic program without c-atoms,
i.e., all atoms are elementary, then the answer sets of P are
exactly the minimal models of P . However, if P is a positive
logic program with c-atoms, a minimal model of P may not
be an FLP-answer set of P , and thus not an SPT-answer set
of P 2. For example, let P = {a ← ({a, b}, {∅, {a, b}})}.
The set M = {a} is a minimal model of P . But M is not an
FLP-answer set of P . In fact, P has no FLP-answer set.

2.2 Dependency graph
The (positive) dependency graph3 GP of a logic program P is
the directed graph (V,E), where
• V consists of all the atoms occurring in P and,
• (q, p) ∈ E if, for some r ∈ P and A ∈ bd+(r), p ∈

hd(r) and some W exists s.t. q ∈W and W] V ∈ A∗c .

2For positive basic logic programs, SPT-answer sets are well-
justified FLP-answer sets, cf, Theorem 9 of [Shen et al., 2014].

3The dependency graph defined below coincides with the one in
[Angiulli et al., 2022]. But the direction of edge or arc is opposite to
that given in [Lin and You, 2002; Shen et al., 2009].

For a directed graph G = (V,E) and v ∈ V , we denote by
DG(v) the set of all ancestor nodes u of v in G, i.e., G has
a path v0, . . . , vn+1 with v0 = u and vn+1 = v; for any set
V ′ ⊆ V we let DG(V ′) =

⋃
v′∈V ′ DG(v′). A vertex v is a

source of G if DG(v) = ∅. If P is clear from its context, i.e.,
G is the dependency graph of P , we also call v a source of P .

The SCC-graph of a directed graph G = (V,E) is the
directed acyclic graph (DAG) SG = (V,E) [Leone et al.,
1997] where

• V is the set of the strongly connected components (SCCs)
of G, i.e., every C ∈ V is a maximal subgraph G′ =
(V ′, E′) of G such that G′ has a path from any vertex
v′ ∈ V ′ to every other vertex in V ′; we also denote C by
V ′ when it is clear from its context, and

• E consists of all edges (C,C ′) such that E∩ (C×C ′) 6=
∅, i.e., there are p ∈ C and q ∈ C ′ for some (p, q) ∈ E.

For a logic program P , we write SP instead of SGP
for conve-

nience. The atom-clause dependency graph of a basic logic
program P is the directed graph GP = (V,E), where

• V consists of the atoms and rules occurring in P ;

• for each rule δ ∈ P , E contains edges (q, δ) ∈ E and
(δ, p) ∈ E for all p ∈ hd(δ) and q ∈ W for some A ∈
bd+(δ) and W] V ∈ A∗c for some V , respectively.

Intuitively, if both (A, δ) and (δ,B) are in E, then A de-
pends on B by rule δ. The super-dependency graph SGP

of P is then the collapsed dependency graph of GP , i.e.,
SGP = SGP

. We call a source of SGP also a source of P .
The example below demonstrates these dependency graphs.

Example 1. Let P consist of the following rules:

r1 : a← b, r2 : b← a, r3 : a ∨ b, r4 : c← A

where A = ({a, b}, {{a}, {b}}). Then, A∗c = {{a}]∅, {b}]
∅}. The various dependency graphs for P are as follows:

• GP = (V1, E1) with V1 = {a, b, c} and E1 = {(b, a),
(a, b), (a, c), (b, c)}. Notice that this graph has no source,
and that the SCCs of GP are {c} and {a, b}.

• Hence, SP = (V2, E2) with V2 = {v1, v2}, v1 = {a, b},
v2 = {c} and E2 = {(v1, v2)}.

• GP = (V3, E3) with V3 = V1∪{r1, r2, r3, r4} andE3 =
{(r1, a), (b, r1)}∪ {(r2, b), (a, r2)}∪ {(r3, a), (r3, b)}∪
{(r4, c), (a, r4), (b, r4)}. Its SCCs are {r3}, {r4},
{r1, r2, a, b}, and {c}.

• Hence, SGP = (V4, E4) with V4 = {v1, v2, v3, v4},
v1 = {a, b, r1, r2}, v2 = {r3}, v3 = {r4}, v4 = {c}
and E4 = {(v1, v2), (v1, v3), (v3, v4)}. Here, v1 is its
unique source.

3 Minimal Reduct and Model Decomposition
In this section, we propose the notion of minimal reduct and
prove our minimal model decomposition theorem for basic
logic programs.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

3.1 Minimal reduct
Let A be a c-atom and M ⊆ A. The (extended) minimal
reduct of A w.r.t. M , written MR(A,M), is defined as

(a) ⊥ if M 6|= A,

(b) > if either M |= A and Ad ∩ M = ∅, or 2Ad∩M =
{S ∩M | S ∈ Ac},

(c) (Ad ∩ M,Bc) where Bc = {Z | there is W] V ∈
A∗c such that M ∩Ad ⊆W ∪V and W ⊆ Z ⊆M ∩Ad}
if M |= A and M ∩Ad 6= ∅.

Intuitively, given the assumption M ⊆ A that the atoms
in M are true and the others are false, the minimal reduc-
t MR(A,M) of a c-atom A removes from A the assumed
false atoms and candidate solutions in which they are true.
For instance, let A = ({a, b}, {{a}, {b}}). Recall that
A∗c = {{a}] ∅, {b}] ∅}. We have MR(A, {a, b}) = ⊥
since {a, b} 6|= A and MR(A, {a}) = ({a}, {{a}}).

Note that for an elementary atom a, the corresponding c-
atom isA = ({a}, {{a}}). Thus, MR(A,M) = A ifM |= A
and ⊥ otherwise. For the c-atom A = ({a}, {∅}), M |= A
whenever M ∩ {a} = ∅. In this case, MR(A,M) = > if
M |= A and ⊥ otherwise.

Let P be a basic logic program, and M ⊆ A. The minimal
reduct of P w.r.t. M , written MR(P,M), contains for each
r ∈ P with M |= bd(r), the rule

M∩hd(r)← {MR(B,M) | B ∈ bd+(r),MR(B,M) 6= >}

Please note that MR({r},M) = ∅ if M 6|= bd(r). Thus, this
minimal reduct for basic logic programs is indeed a general-
ization of the same notion for logic programs without c-atoms.

Intuitively, the minimal reduct MR(P,M) of a logic pro-
gram P w.r.t. M keeps the rules whose body is satisfied by
M and applies the minimal reduct to all c-atom in their heads
and positive bodies, and it removes the negative bodies; fur-
thermore, simplications (remove > in bodies, ⊥ in heads) are
made. We note that the minimal reduct for basic logic program-
s generalizes the one for disjunctive logic programs [Wang et
al., 2023]. It is different from the GL-reduct [Gelfond and Lif-
schitz, 1988], FLP-reduct [Faber et al., 2004], and Ferraris’s
reduct [Ferraris, 2011].

Proposition 1. Let r be a basic rule and M ⊆ A. The follow-
ing statements are equivalent to each other.

(i) M |= r.

(ii) M |= MR({r},M).

(iii) M∗ |= {r}M,SY Y where M∗ = M ∪ {θA | A ∈
bd+(r),M |= bd(r)}.

In terms of the minimal reduct, we obtain a new characteri-
zation for SPT-answer sets as follows.

Theorem 1. Let P be a basic logic program, and M ⊆ A.
Then, the following statements are equivalent to each other.

(i) M is an SPT-answer set of P .

(ii) M∗ is the least model of PM,SY Y where M∗ = M ∪
{θA | r ∈ P,M |= bd(r), A ∈ bd+(r)}.

(iii) M is the least model of MR(P,M).

The following example confirms the new characterization
of SPT-answer sets in terms of the minimal reduct.

Example 2 (Continued from Example 1). Let M = {a, b}.
One can check that M is the unique minimal model of P and
an SPT-answer set of P : MR(P,M) = {r1, r2, r3} and the
least model of MR(P,M) is M .

3.2 Minimal model decomposition
In this section, we present a theorem for decomposing minimal
models of basic logic programs generalizing previous results.

Let Σ be a basic positive program. We call a source S of
SGΣ empty, if S ∩ A = ∅, and denote by ΣS the set of rules
in Σ that mention only atoms from S.

For a basic positive program Σ and X ⊆ A, the logic
program Reduce(Σ, X) is obtained from Σ by

(a) removing every rule r if hd(r) ∩X 6= ∅,
(b) removing every c-atomA from rule bodies ifAd \X = ∅

and X ∩Ad ∈ Ac,

(c) replacing each remaining c-atom A by A′ where A′d =
Ad \X and A′c = {S \X | S ∈ Ac}.

Clearly, if in Step (b) the c-atom A is an elementary atom
a ∈ X , then A is removed. Thus, this reduction generalizes
Reduce(Σ, X, ∅) for propositional clause theories Σ [Ben-
Eliyahu-Zohary et al., 2017; Angiulli et al., 2022], which
replaces every atom p occurring in Σ by true if p is in X .

Proposition 2. Let P be a basic positive program with merely
monotonic c-atoms. A set M ⊆ A is a minimal model of P if
and only if M is the least model of MR(P,M).

We note that the monotonicity condition in the above propo-
sition is necessary and can not be relaxed to convexity:

• Let P1 = {a ← ({a}, {∅})}. The c-atom in the rule
body is convex, and clearly {a} is the unique minimal
model of P1. But P1 has no SPT- and no FLP-answer set.

• Let P2 = {a ← ({a, b}, {∅, {b}})). The c-atom in the
rule body is convex and nonmonotonic. The set {a} is
the unique minimal model of P but neither an SPT- nor
an FLP-answer set of P2.

Theorem 2 (Minimal model decomposition). Let P be a basic
program without nonmonotonic c-atoms, M be a minimal
model of P and Q = MR(P,M). Then, for any nonempty
source S of Q, X = M ∩ S is a minimal model of QS , and
M \X is a minimal model of Reduce(Q,X).

Based on Theorem 2, a minimal model verification algo-
rithm is presented in Algorithm 1. It generalizes similar ones
for propositional clause theories [Ben-Eliyahu-Zohary et al.,
2017; Angiulli et al., 2022] and for disjunctive logic programs
without c-atoms [Wang et al., 2023].

Note that a model M of a clause theory T is minimal if and
only if the clause theory T ∪ {¬p | p ∈ A \M} ∪ {

∨
{¬p |

p ∈ M}} is unsatisfiable, where
∨
S is the disjunction of

all elements in S. The above algorithm CheckMinMRCA de-
composes the minimal model checking (unsatisfiability) to a
series of minimal model checks in terms of modularity i.e.,
Theorem 2. The following result states its correctness.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1: CheckMinMRCA (Π, N)

Input: A basic positive program Π with merely
monotonic c-atoms and a model M of Π

Output: true if M is a minimal model of Π, else false
1 Σ← MR(Π,M); N ←M ; G← SGΣ;
2 Recursively delete from G all empty sources;
3 while G has some nonempty source S do
4 if S ∩N is not a minimal model of ΣS then break

Σ← Reduce(Σ, N ∩ S);
5 N ← N − S;
6 G← SGΣ;
7 Recursively delete from G all empty sources;
8 end
9 if N = ∅ then return true else return false

Theorem 3. Let P be a basic positive program without non-
monotonic c-atoms and M be a model of P . Then M is a
minimal model of P iff CheckMinMRCA(P,M) returns true.

4 Resolution of c-atoms
In this section, we present the notion of resolution proof for
basic positive rules, which we also call clauses with c-literals
(CA-clauses in short).
Definition 3 (CA-resolution). Let r, r1, . . . , rn (n ≥ 1) be
CA-clauses such that
• ai ∈ hd(ri) (1 ≤ i ≤ n),
• A ∈ bd(r) and some W exists such that W = {a1, . . . ,
an} and W] V ∈ A∗c .

The result of CA-resolution r, r1, . . . , rn on W of A, written
res(r, r1, . . . , rn, A,W), is the following CA-clause:

(hd(r) ∪
⋃n

i=1(hd(ri) \ {ai})) ←
((bd(r) \ {A}) ∪

⋃n
i=1 bd(ri))

(4)

which we call the resolvent of CA-resolution r, r1, . . . , rn on
W of A. In this case, we call r, r1, . . . , rn resolvable on A
w.r.t. W .

Please note that if A is elementary, then there are ex-
actly two CA-clauses involved in the CA-resolution. Thus,
the CA-resolution is indeed a generalization of the resolu-
tion for propositional clauses. The CA-resolution for the re-
solvent res(r, r1, . . . , rn, A,W) is sound if every model of
{r, r1, . . . , rn} is also a model of res(r, r1, . . . , rn, A,W).
Example 3. Let us consider the following CA-clauses:

r1 : a1 ∨ b1, r2 : a2 ∨ b2, r : a← A,B

where A = ({a1, a2}, {{a1, a2}}), B = ({b1, b2}, {{b1}}).
Note that {a1, a2}] ∅ ∈ A∗c and {b1}] ∅ ∈ B∗c . Then,

res(r, r1, r2, A, {a1, a2}) = b1 ∨ b2 ∨ a← ({b1, b2}, {{b1}}),
res(r, r1, B, {b1}) = a1 ∨ a← ({a1, a2}, {{a1, a2}}).

We can check that both res(r, r1, r2, A, {a1, a2}) and
res(r, r1, B, {b1}) are sound. However, CA-resolution is not
sound in general E.g., consider the following CA-clauses:

r1 : a, r : c← ({a, b}, {{a}})(= A).

We then have res(r, r1, A, {a}) = c←. Clearly M = {a, b}
satisfies both r1 and r, but M 6|= c.

Lemma 1. Let N ⊆ A, P be a basic positive logic program
such that MR(P,N) = P and rules R = r, r1, . . . , rn in P
are resolvable on A w.r.t. W . Then

(i) MR(res(R,A,W), N) = res(R,A,W).

(ii) {r, r1, . . . , rn} |= res(R,A,W).

A CA-resolution proof of a CA-clause c from a set Σ of
CA-clauses is a sequence

res(R0, A0,W 0), . . . , res(Rk, Ak,W k) (5)

where Ri = ri, ri1, . . . , r
i
ni

, 0 ≤ i ≤ k, of CA-resolutions
such that c = res(Rk, Ak,W k), and for every i, 0 ≤ i ≤ k,
• Ai ∈ bd(ri), Wi = {ai,1, . . . , ai,ni

},
• W i] V i ∈ Ai

c
∗ for some V i and

• ri, rij , 1 ≤ j ≤ ni, are from Σ ∪ {res(Rt, At,W t) |
0 ≤ t < i}.

The CA-resolution proof (5) is sound if each CA-resolution
for the resolvent of (5) is sound. By Σ `CA c we denote that
there is a CA-resolution proof of c from Σ, meaning that Σ
can “derive” c (by a CA-resolution proof).

From item (ii) of Lemma 1 and the definition of minimal
reduct, we obtain the following result.
Proposition 3. Let P be a basic logic program and M ⊆ A
such that MR(P,M) = P . Then every CA-resolution proof of
a clause c from P is sound.

For convenience and in abuse of notation, we let in what
follows a `CA a for atoms a ∈ A, i.e., any fact can derive
itself by a CA-resolution proof.

The following theorem shows that for any SPT-answer set
M of a basic logic program P , every atom in M admits a
CA-resolution proof from the minimal reduct of P w.r.t. M .
In this sense, such proofs can be taken as the justification for
SPT-answer sets.
Theorem 4. Let M be an SPT-answer set of a basic logic
program P . Then there is a sound CA-resolution proof for
every a ∈M from MR(P,M).

5 Witnesses
We are now in the position to present the notion of witnesses
for SPT-answer sets of basic logic programs.

We first present the notion of minimal witness to capture
the “minimal sufficient subprogram” (under set inclusion) for
the CA-resolution proof.
Definition 4 ((minimal) Witness). Let M ⊆ A and B,S be
disjoint subsets of M . A basic logic program P is a witness of
B under S w.r.t. M if MR(P,M)∪S `CA B. Moreover, P is
minimal if no P ′ ⊂ P exists such that MR(P ′,M)∪S `CA B.

The set of all minimal witnesses P ′ ⊆ P of B under S w.r.t.
M is denoted by MW(B,P, S,M).

In other words, under the assumption M (to be justified as
an SPT-answer set of a basic logic program P) and the justified
subset S ofM , the (minimal) witness ofB under S w.r.t. M is

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 2: MinWitness(Π, B, S,M)
Input: A basic logic program Π, a nonempty SPT-answer

set M of Π, and two disjoint subsets B,S of M
Output: A minimal witness Π′ ⊆ Π of B under S

w.r.t.M
1 Π′ ← MR(Π,M);
2 Π′′ ← Π;
3 foreach r ∈ Π′ do
4 if Π′ − {r} ∪ S `CA B then
5 Π′ ← Π′ − {r};
6 Π′′ ← Π′′ − {r′ ∈ Π | {r′} = MR({r},M)};
7 end
8 end
9 return Π′′ ;

a (minimal) subprogram P ′ of P such that every atom inB has
a CA-resolution proof from the minimal reduct MR(P ′,M)
and the as justified regarded atoms in S. Algorithm 2 can be
used to compute such a minimal witness.
Example 4. Let P consist of the following rules:

r1 : a←, r2 : b← not c, r3 : c← A

where A = ({a, b}, {{a}}) and A∗c = {{a}] ∅ }. Then
M = {a, c} is an SPT-answer set of P .

The CA-resolution res(r3, r1, A, a) is c←, and P ′c = {r1,
r3} is the only minimal witness of {c} under ∅ w.r.t. M . Under
M and the justified a, the minimal sufficient subprogram to

“justify” c is {r3}, i.e., MW({c}, P, {a},M) = {{r3}}.

5.1 α-witness and α?-witness
The following notions of α-witness and α?-witness capture the
structural witness for SPT-answer sets. They serve to explain
why a group of atoms are in an SPT-answer set.
Definition 5 (α∗-witness and α-witness). Let P be a basic
logic program,M 6= ∅ be an SPT-answer set of P ,B and S be
disjoint subsets ofM . An α?-witness ofB under P and S w.r.t.
M is a directed acyclic graphG = ({(Si, Pi)|1 ≤ i ≤ n}, E)
where
• {Si | 1 ≤ i ≤ n} is a partitioning of B (i.e.,

⋃n
i=1 Si =

B, Si ∩ Sj = ∅ (i 6= j) and Si 6= ∅), and
• for every i, 1 ≤ i ≤ n,

(i) Pi ⊆ P is a witness of Si under S ∪Xi w.r.t. M ,
(ii) Pi is not a witness of Sj under S ∪ Xi w.r.t. M ,

for every 1 ≤ j 6= i ≤ n and (Sj , Pj) /∈
DG((Si, Pi))

4, where for each k (1 ≤ k ≤ n),

Xk =
⋃
{S′ | (S′, P ′) ∈ DG((Sk, Pk))}.

If G induces a total order (S1, P1) < (S2, P2) < · · · <
(Sn, Pn), i.e., E = {((Si, Pi), (Si+1, Pi+1)) | 1 ≤ i < n},
then we call it an α-witness of B under P and S w.r.t. M , and
denote it as

W = [(S1, P1), . . . , (Sn, Pn)].

4If (Sj , Pj) ∈ DG((Si, Pi)) then Sj ⊆ Xi and Q∪Xi `CA Sj

for any basic logic program Q.

We callGminimal, if every Pi is minimal andG is compact,
if in addition to minimality Pi ∩Pj = ∅ for all 1 ≤ i < j ≤ n.
If B = M and S = ∅, we call G a (minimal, compact) α?-
witness resp. α-witness of M w.r.t. P .

Note that Definition 5, requires M 6= ∅. This means that for
an empty SPT-answer set (= ∅) of a logic program, no witness
is defined; however, in this case no atom needs to be justified.

While α?-witnesses are any directed acyclic graphs, α-
witnesses are chains. Intuitively, for each node (Si, Pi) of
a witness, the atoms in Si can be “derived” from Pi with the
help of those “derived” atoms in Xi, that are on the paths of
G to (Si, Pi). In this sense Pi is a justification for why the
atoms in Si are in an SPT-answer set, i.e., Pi is minimal such
that MR(Pi,M) ∪Xi can “derive” the atoms in Si.
Example 5. Let us consider the logic programP in Example 4.
The SPT-answer set M = {a, c} of P has two α?-witnesses:

• G1 = (V1, ∅) with V1 = {({a, c}, {r1, r3})};
• G2 = ({v1, v2}, {(v1, v2)}) with v1 = ({a}, {r1}) and
v2 = ({c}, {r3}).

Notice that both G1 and G2 are α-witnesses since they can
be written as W1 = [({a, c}, {r1, r3})] and W2 = [({a},
{r1}), ({c}, {r3})], respectively. It is easy to check that both
G1 and G2 are compact.

The next proposition shows that every nonempty SPT-
answer set of a basic logic program has a compact α?-witness.
Proposition 4. Let P be a basic program, M 6= ∅ be an
SPT-answer set of P and Q = MR(P,M). Then, the DAG
G = ({(Si, Qi) | 1 ≤ i ≤ n}, E′) obtained from SQ =
({S1, . . . , Sn}, E) such that

• Qi ∈ MW(Si, P, SBi,M), where SBi =
⋃
DSQ(Si),

1 ≤ i ≤ n, and

• ((Si, Qi), (Sj , Qj)) ∈ E′ if (Si, Sj) ∈ E
is a compact α?-witness of M w.r.t. P .

The compact α?-witness constructed in Proposition 4 is
called the full-split α? (α?

fs)-witness of M w.r.t. P . The
proposition also implies that DSG(Si) can be utilized to form
different compact α?-witnesses for M w.r.t.P . For example,
if there is a path ((Si, Qi), (Si+1, Qi+1, . . . , (Sk, Qk)) in the
DAG G = (V,E′) of Proposition 4, then the DAG G′ =
(V ′′, E′′) with

• V ′′ = V ′ \ {(Si′ , Qi′), . . . , (Sk′ , Qk′)} ∪ (
⋃k′

j=i′ Sj ,⋃k′

j=i′ Qj) where i ≤ i′ ≤ k′ ≤ k, and

• ((Sv, Qv), (Su, Qu)) ∈ E′′ if ((Sv, Qv), (Su, Qu)) ∈
E′ and at most one of (Su, Qu) and (Sv, Qv) is com-
bined in V ′′, i.e., |{u, v} ∩ {i′, . . . , k′}| ≤ 1

is a compact α?-witnesses for M w.r.t. P .

5.2 β-witness and β?-witness
The notion of α-witness addresses the justifications for a
group of atoms simultaneously. However, in many situations,
including debugging, engineers are more concerned with the
justification of individual atoms. This leads to the following
more refined testimony.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 3: MinBetaWitness(Π, B, S,M)

Input: A basic logic program Π, a nonempty SPT-answer
set M of Π, and two disjoint subsets B,S of M

Output: A minimal β-witness of B under Π and S w.r.t.
M

1 T ← S; Π′ ← []; Σ← MR(Π,M);
2 while B − T 6= ∅ do
3 while ∃r ∈ Σ s.t. bd+(r) ⊆ T , hd(r) = {p},

p ∈M − T do
4 T ← T ∪ hd(r);
5 Π′.append((p, rm({r},Π,M)));
6 end
7 if M = T then break Let u ∈ B − T ;
8 Σu ← MinWitness(Σ, {u}, T,M);
9 while Σu ∪ T ` v for some v ∈M − ({u} ∪ T) do

10 Σv ← MinWitness(Σu, {v}, T,M);
11 u← v;
12 Σu ← Σv;
13 end
14 Π′.append((u, rm(Σu,Π,M)));
15 T ← T ∪ {u};
16 end
17 return Π′;

Definition 6 ((minimal, compact) β∗- and β-witness). Let P
be a basic logic program, M 6= ∅ an SPT-answer set of P ,
and B,S be two disjoint subsets of M .
• Every α?-witness G = ({(Si, Pi)|1 ≤ i ≤ n}, E) of B

under P and S w.r.t. M such that Si = {pi} for some
atom pi, 1 ≤ i ≤ n, is a β?-witness of B under P and S
w.r.t. M , also written as G = ({(pi, Pi)|1 ≤ i ≤ n}, E).
• The notions of β-witness and minimal/compact β? resp.
β-witness of B under P and S w.r.t. M are defined
analogously to α-witness and minimal/compact α?- resp.
α-witness of B under P and S w.r.t. M .

In particular, ifB = M and S = ∅, then we callG a (minimal,
compact) β?-witness, respectively, β-witness of M w.r.t. P .

Clearly β-witnesses and β?-witnesses are special cases
of α-witnesses and α?-witnesses, respectively. It has been
shown that an answer set of a logic program containing merely
elementary atoms may not have a compact β-witness, and
that deciding whether some compact β-witness exists is Σp

2-
complete [Wang et al., 2023]. This motivates us to confine
computation to minimal β-witnesses, which always exist.

Algorithm 3, MinBetaWitness, computes a minimal β-
witness of B under a basic logic program P relative to S
w.r.t. M . It uses a function rm(Σ,Π,M) that returns, given
basic logic programs Σ,Π and M ⊆ A, a minimal subset Π′

of Π such that MR(Π′,M) = Σ. The external while-loop
(line 2-17) checks whether all atoms in M have a minimal
witness. The first inner while-loop identifies the atoms by unit
propagation, while the second inner while-loop searches for
an atom u and its minimal witness Σu under T such that there
is no atom v in {u} ∪ T that can be observed by Σu ∪ T .

The next proposition shows the correctness of Algorithm 3.
Thus, every nonempty SPT-answer set of a basic logic program

has a minimal β-witness.

Proposition 5. IfM is an SPT-answer set of a basic logic pro-
gram P then MinBetaWitness (P,M, ∅,M) returns a minimal
β-witness of M w.r.t. P .

Example 6. Let us consider the logic program P with aggre-
gates from Example 14 in [Eiter and Geibinger, 2023], which
consists of the following rules:

r1 : a← #sum{1 : b, 2 : d} > 2,#sum{3 : d, 2 : c} < 5,

r2 : d← b, r3 : b ∨ c← .

The formulas involving #sum are aggregate atoms of the
form #sum{wi : li | 1 ≤ i ≤ n} � w where wi and w are
numbers, � is an arithmetic comparison operator and li is a
(possibly negated) atom. An interpretation M satisfies such
an aggregate atom if (

∑n
i=1,M |=li

wi) � w.
Hence the aggregate atoms #sum{1 : b, 2 : d}> 2 and

#sum{3 : d, 2 : c}< 5 can be modeled as abstract constrain-
t atoms A = ({b, d}, {{b, d}}) and B = ({c, d}, {∅, {c},
{d}}), respectively. Thus, rule r1 can be represented as

r′1 : a← A,B.

It is not hard to check thatM = {a, b, d} is an SPT-answer set
of P . We note that MR(B,M) = > as 2{c,d}∩M = {S ∩M |
S ∈ {∅, {c}, {d}}} = {∅, {d}}. Thus, MR({r′1, r2, r3},M)
consists of following rules, where A′ = ({b, d}, {{b, d}}):

r′′1 : a← A′, r′2 : d← b, r′3 : b← .

Furthermore, M has a unique compact β-witness, namely:

W = [(b, {r3}), (d, {r2}), (a, {r′1})].

Informally, b ∈M is justified by rule r3, as MR({r3},M) =
{r′3} (minimally) “derives” b. Then, with the help of b,
MR({r2},M) = {r′2} (minimally) “derives” d. Finally, with
the help of b and d, MR({r1},M) minimally “derives” a.

6 Related Work
There have been various notions for explaining answer set-
s of logic programs and some systems have been available.
The difference between witness-based explanations, off-line
justifications, and causal graph based ones have been dis-
cussed in [Wang et al., 2023]. To our best knowledge, only
r-justification [Eiter and Geibinger, 2023] can deal with ab-
stract constraint atoms. We firstly recall some basic notations
and notions about r-justification.

A partial interpretation is a tuple I = 〈I+, I−〉, where
I+, I− ⊆ A and I+ ∩ I− = ∅; it is total on a set S of atoms
if S ⊆ I+ ∪ I−. For two partial interpretations J1, J2,
we denote by J1 ≤ J2 that J+

1 ⊆ J+
2 and J−1 ⊆ J−2 , and by

J1 < J2 that J1 ≤ J2 and J1 6= J2. A partial interpretation
I = 〈I+, I−〉 satisfies a c-atom A if I+ ∩ Ad ∈ Ac and, for
each U ∈ Ac with I+ ∩ Ad ⊂ U , U ∩ I− 6= ∅ holds. The
latter intuitively means that I+ cannot be extended (under the
restriction of I−) to falsify A. In other words, U ∈ Ac for
every U s.t. Ad ∩ I+ ⊆ U ⊆ Ad \ I−. If I is total (on Ad),
then I |= A whenever I+ ∩Ad ∈ Ac.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Definition 7 (Presumptuous Entailment). Let P be a program,
J be a partial interpretation and A be a c-atom. Then P |=J

A if every total model I of P s.t. I ≥ J fulfills I |= A.
Definition 8 (Failed Support). Let r be a rule and I be a total
model of r. Then, r is a failed support for atom a w.r.t. I if
I 6|= bd(r) and for every I ′, I ′ |= a if I ′ |= r and I ′ |= bd(r).
Definition 9 (r-justification). Let P be a program, I be an
answer set of P and a be an atom. Then, a triple (a◦, Q, J),
where ◦ ∈ {+,−}, Q ⊆ P is a set of rules, and J ≤ I , is a
partial interpretation, is an r-justification for a w.r.t. P and I
if the following conditions hold:
(a) If a ∈ I , then ◦ = +, QI |=J a and there is no R ⊂ Q

such that RI |=J a.
(b) If a 6∈ I , then ◦ = −, Q = {r ∈ P | r is a failed support

of a w.r.t. I}, and for every r ∈ Q, J |= A for some
A ∈ bd(r).

The r-justification is concise if J is ≤-minimal.
Definition 10 (r-justification chain). A sequence J =
(a◦1, Q1, J1), · · · , (a◦n, Qn, Jn) of r-justifications w.r.t. P
and I is an r-justification chain for a1, if for every
(a◦i , Qi, Ji) (1 ≤ i ≤ n), it holds that

(a) for each a ∈ J+
i some (a+

j , Qj , Jj) exists such that
aj = a and either j > i or aj = a1 and there is no subse-
quence (a+

k1
, Qk1, Jk1

), · · · , (a+
k`
, Qk`

, Jk`
) of J where

k1 = 1, k` = i, and akh+1
∈ J+

kh
, for all 1 < h < `;

(b) for each a ∈ J−i some (a−j , Qj , Jj) exists s.t. aj = a;

(c) if i > 1, then some (a◦j , Qj , Jj) exists such that ai ∈ J◦j
and j < i; and

(d) ai = aj for 1 ≤ j ≤ n implies i = j.
It was shown that, for every logic program P and every

FLP-answer I of P , every atom in I has an r-justification
chain w.r.t. P and I , cf. Theorem 4 of [Eiter and Geibinger,
2023].

The next example shows some subtle difference between
r-justification and witness.
Example 7. Let us consider the basic logic programP consist-
ing of the following rules, where A = ({b, a}, {∅, {b, a}}):5

r1 : a← b, r2 : b← a, r3 : a← A, r4 : a ∨ b.
It is not difficult to verify that I = {a, b} is the unique SPT-
answer set of P . Note that A∗c = {∅] ∅, {a, b}] ∅} and
MR(P, I) consists of

α1 : a← b, α2 : b← a,

α3 : a← ({b, a}, {{b, a}}), α4 : a ∨ b.
Clearly {α1, α4} `CA a and {α2, a} `CA b. Thus, we have
the following compact β-witness W for I w.r.t. P :

W = [(a, {r1, r4}), (b, {r2})]. (6)

From this β-witness and the fact that the total model-
s of {r1, r4} that extend the partial interpretation 〈∅, ∅〉

5This logic program is similar to the one P7 ∪ P8 in Example 13
of [Eiter and Geibinger, 2023]

are 〈{a}, {b}〉 and 〈{a, b}, ∅〉, we obtain the following r-
justification chain J for b:

J = (b+, {r2}, 〈{a}, ∅〉), (a+, {r1, r4}, 〈∅, ∅〉).
Note that the FLP-reduct P I of P w.r.t. I is P . The total

models of {r1, r3} are 〈{a}, {b}〉 and 〈{a, b}, ∅〉, i.e., the
classical interpretations {a} an {a, b}. It is tedious but not
difficult to check that

(a+, {r1, r3}, 〈∅, ∅〉) (7)

is an r-justification for a w.r.t. P and I since {r1, r3} is (sub-
set) minimal s.t. {r1, r3}I = {r1, r3} and {r1, r3}I |=〈∅,∅〉 a
(every total model of {r1, r3} that extends the partial interpre-
tation 〈∅, ∅〉 satisfies a). The r-justification chain (7) is indeed
a chain. It explains why a is in the FLP-answer set by the
argument that every total model of {r1, r3} that extends 〈∅, ∅〉
satisfies a. Due to the fact that MR({r1, r3}, I) = {α1, α3},
we have MR({r1, r3}, I) 6`CA a; hence, this r-justification
for a cannot be mapped to a witness for a. For the same
reason, the following r-justification chain

J ′ = (b+, {r2}, 〈{a}, ∅〉), (a+, {r1, r3}, 〈∅, ∅〉)
for b cannot be mapped to a witness for b yet. Since {r1, r4}
can derive a by classical resolution, while {r1, r3} cannot, the
justification chain J is more intuitive than J ′.

The next proposition shows that every minimal witness can
capture an r-justification. Its converse does not hold, as shown
by Example 7.
Proposition 6. Let P be a basic logic program, I be an
SPT-answer set of P , S ⊆ I , and p ∈ I \ S. If Q ∈
MW({p}, P, S, I), then (p+, Q, 〈S, I〉) is an r-justification
for p w.r.t. P and I .

Hence, when we consider r-justifications under SPT-answer
set semantics, the minimal witness provides a more selective
and intuitive way to chose rules as justifications as seen the J
and J ′ in Example 7.

7 Conclusion
For logic programs with abstract constraint atoms, we have
proposed the notions of minimal reduct, the resolution proof,
and witness for SPT-answer sets. We showed that this minimal
reduct provides a new characterization for SPT-answer sets of
basic logic programs. It also facilitates an extended resolution
for atoms in SPT-answer sets. Thus, an explanation in terms
of “proof” can be obtained for the SPT-answer sets.

It is well-known that the problem of finding shorter resolu-
tion proofs in propositional logic is intractable [Haken, 1985].
To construct short CA-resolution-based explanations for SPT-
answer sets is a challenge, but it deserves further investigation.
In addition, we will analyze the computational complexity of
(compact) α-witnesses and β-witnesses.

Acknowledgments
This research has been partially supported by the National Nat-
ural Science Foundation of P.R. China under grants 62376066
and 61976065 and was funded in whole or in part by the
Austrian Science Fund (FWF) 10.55776/COE12.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Alviano et al., 2023] Mario Alviano, Wolfgang Faber, and

Martin Gebser. Aggregate semantics for propositional an-
swer set programs. Theory and Practice of Logic Program-
ming, 23(1):157–194, January 2023.

[Alviano et al., 2024] Mario Alviano, Ly Ly T. Trieu,
Tran Cao Son, and Marcello Balduccini. The XAI sys-
tem for answer set programming xasp2. J. Log. Comput.,
34(8):1500–1525, 2024.

[Angiulli et al., 2022] Fabrizio Angiulli, Rachel Ben-
Eliyahu-Zohary, Fabio Fassetti, and Luigi Palopoli.
Graph-based construction of minimal models. Artificial
Intelligence, 313:103754, 2022.

[Arias et al., 2020] Joaquı́n Arias, Manuel Carro, Zhuo Chen,
and Gopal Gupta. Justifications for goal-directed constraint
answer set programming. In Francesco Ricca, Alessan-
dra Russo, Sergio Greco, Nicola Leone, Alexander Ar-
tikis, Gerhard Friedrich, Paul Fodor, Angelika Kimmig,
Francesca A. Lisi, Marco Maratea, Alessandra Mileo, and
Fabrizio Riguzzi, editors, Proceedings 36th International
Conference on Logic Programming (Technical Communi-
cations), ICLP Technical Communications 2020, (Tech-
nical Communications) UNICAL, Rende (CS), Italy, 18-
24th September 2020, volume 325 of EPTCS, pages 59–72,
2020.

[Arioua et al., 2015] Abdallah Arioua, Nouredine Tamani,
and Madalina Croitoru. Query answering explanation in
inconsistent datalog$$+/-$$knowledge bases. In Qiming
Chen, Abdelkader Hameurlain, Farouk Toumani, Roland
Wagner, and Hendrik Decker, editors, Database and Ex-
pert Systems Applications, pages 203–219, Cham, 2015.
Springer International Publishing.

[Baral, 2003] Chitta Baral. Knowledge Representation, Rea-
soning and Declarative Problem Solving. Cambridge Uni-
versity Press, New York, NY, 2003.

[Ben-Eliyahu-Zohary et al., 2017] Rachel Ben-Eliyahu-
Zohary, Fabrizio Angiulli, Fabio Fassetti, and Luigi
Palopoli. Modular construction of minimal models. In
Logic Programming and Nonmonotonic Reasoning - 14th
International Conference, pages 43–48, Espoo, Finland,
July 2017. Springer.

[Bienvenu et al., 2019] Meghyn Bienvenu, Camille Bour-
gaux, and François Goasdoué. Computing and explaining
query answers over inconsistent dl-lite knowledge bases.
Journal of Artificial Intelligence Research, 64:563–644,
2019.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011.

[Brewka et al., 2016] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski. Answer set programming: An
introduction to the special issue. AI Mag., 37(3):5–6, 2016.

[Burkart and Huber, 2021] Nadia Burkart and Marco F. Hu-
ber. A survey on the explainability of supervised ma-
chine learning. Journal of Artificial Intelligence Research,
70:245–317, 2021.

[Cabalar and Fandinno, 2016] Pedro Cabalar and Jorge
Fandinno. Justifications for programs with disjunctive and
causal-choice rules. Theory and Practice of Logic Program-
ming, 16(5-6):587–603, 2016.

[Cabalar et al., 2020] Pedro Cabalar, Jorge Fandinno, and
Brais Muñiz. A system for explainable answer set pro-
gramming. In Proceedings 36th International Conference
on Logic Programming (Technical Communications), ICLP
Technical Communications 2020, (Technical Communica-
tions) UNICAL, Rende (CS), Italy, 18-24th September 2020,
pages 124–136, 2020.

[Cheney et al., 2009] James Cheney, Laura Chiticariu, and
Wang-Chiew Tan. Provenance in databases: Why, how, and
where. Foundations and Trends R© in Databases, 1(4):379–
474, 2009.

[Dazeley et al., 2021] Richard Dazeley, Peter Vamplew,
Cameron Foale, Charlotte Young, Sunil Aryal, and Fran-
cisco Cruz. Levels of explainable artificial intelligence
for human-aligned conversational explanations. Artificial
Intelligence, 299:103525, 2021.

[Dell’Armi et al., 2003] Tina Dell’Armi, Wolfgang Faber,
Giuseppe Ielpa, Nicola Leone, and Gerald Pfeifer. Aggre-
gate functions in disjunctive logic programming: Seman-
tics, complexity, and implementation in DLV. In Georg
Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings of
the Eighteenth International Joint Conference on Artificial
Intelligence, Acapulco, Mexico, August 9-15, 2003, pages
847–852. Morgan Kaufmann, 2003.

[Eiter and Geibinger, 2023] Thomas Eiter and Tobias
Geibinger. Explaining answer-set programs with abstract
constraint atoms. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence,
IJCAI 2023, 19th-25th August 2023, Macao, SAR, China,
pages 3193–3202. ijcai.org, 2023.

[Faber et al., 2004] Wolfgang Faber, Nicola Leone, and Ger-
ald Pfeifer. Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In José Júlio Alferes
and João Alexandre Leite, editors, Logics in Artificial In-
telligence, 9th European Conference, JELIA 2004, Lisbon,
Portugal, September 27-30, 2004, Proceedings, volume
3229 of Lecture Notes in Computer Science, pages 200–
212. Springer, 2004.

[Fandinno and Schulz, 2019] Jorge Fandinno and Claudia
Schulz. Answering the “why” in answer set programming -
A survey of explanation approaches. Theory and Practice
of Logic Programming, 19(2):114–203, 2019.

[Ferraris, 2011] Paolo Ferraris. Logic programs with propo-
sitional connectives and aggregates. ACM Trans. Comput.
Log., 12(4):25:1–25:40, 2011.

[Gebser et al., 2012] M. Gebser, R. Kaminski, B. Kaufmann,
and T. Schaub. Answer Set Solving in Practice. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir
Lifschitz. The stable model semantics for logic program-
ming. In Robert A. Kowalski and Kenneth A. Bowen,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

editors, Logic Programming, Proceedings of the Fifth Inter-
national Conference and Symposium, Seattle, Washington,
USA, August 15-19, 1988 (2 Volumes), pages 1070–1080,
Seattle, Washington, USA, 1988. MIT Press.

[Gelfond and Zhang, 2019] Michael Gelfond and Yuanlin
Zhang. Vicious circle principle, aggregates, and forma-
tion of sets in ASP based languages. Artificial Intelligence,
275:28–77, 2019.

[Haken, 1985] Armin Haken. The intractability of resolution.
Theoretical Computer Science, 39:297–308, 1985.

[Leone et al., 1997] Nicola Leone, Pasquale Rullo, and
Francesco Scarcello. Disjunctive stable models: Unfound-
ed sets, fixpoint semantics, and computation. Information
and Computation, 135(2):69–112, 1997.

[Li et al., 2021] Fang Li, Huaduo Wang, Kinjal Basu, Elmer
Salazar, and Gopal Gupta. Discasp: A graph-based ASP
system for finding relevant consistent concepts with appli-
cations to conversational socialbots. In Andrea Formisano,
Yanhong Annie Liu, Bart Bogaerts, Alex Brik, Verónica
Dahl, Carmine Dodaro, Paul Fodor, Gian Luca Pozzato,
Joost Vennekens, and Neng-Fa Zhou, editors, Proceed-
ings 37th International Conference on Logic Programming
(Technical Communications), ICLP Technical Communica-
tions 2021, Porto (virtual event), 20-27th September 2021,
volume 345 of EPTCS, pages 205–218, 2021.

[Lifschitz, 2019] Vladimir Lifschitz. Answer Set Program-
ming. Springer, 2019.

[Lin and You, 2002] Fangzhen Lin and Jia-Huai You. Ab-
duction in logic programming: A new definition and an
abductive procedure based on rewriting. Artificial Intelli-
gence, 140(1/2):175–205, 2002.

[Liu et al., 2010] Lengning Liu, Enrico Pontelli, Tran Cao
Son, and Miroslaw Truszczyński. Logic programs with ab-
stract constraint atoms: The role of computations. Artificial
Intelligence, 174:295–315, 2010.

[Marek and Truszczynski, 2004] Victor W. Marek and
Miroslaw Truszczynski. Logic programs with abstract
constraint atoms. In Proceedings of the Nineteenth
National Conference on Artificial Intelligence, pages
86–91, California, USA, September 2004. AAAI Press /
The MIT Press.

[Marques-Silva and Huang, 2024] João Marques-Silva and
Xuanxiang Huang. Explainability is Not a game. Com-
mun. ACM, 67(7):66–75, 2024.

[Peñaloza, 2020] Rafael Peñaloza. Axiom pinpointing. In
Giuseppe Cota, Marilena Daquino, and Gian Luca Pozzato,
editors, Applications and Practices in Ontology Design,
Extraction, and Reasoning, volume 49 of Studies on the
Semantic Web, pages 162–177. IOS Press, 2020.

[Pontelli et al., 2009] Enrico Pontelli, Tran Cao Son, and O-
mar El-Khatib. Justifications for logic programs under
answer set semantics. Theory and Practice of Logic Pro-
gramming, 9(1):1–56, 2009.

[Shen et al., 2009] Yi-Dong Shen, Jia-Huai You, and Li-Yan
Yuan. Characterizations of stable model semantics for

logic programs with arbitrary constraint atoms. Theory and
Practice of Logic Programming, 9(4):529–564, 2009.

[Shen et al., 2014] Yi-Dong Shen, Kewen Wang, Thomas Eit-
er, Michael Fink, Christoph Redl, Thomas Krennwallner,
and Jun Deng. FLP answer set semantics without circular
justifications for general logic programs. Artificial Intelli-
gence, 213:1–41, 2014.

[Simons et al., 2002] Patrik Simons, Ilkka Niemelä, and Tim-
o Soininen. Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

[Son et al., 2007] Tran Cao Son, Enrico Pontelli, and
Phan Huy Tu. Answer sets for logic programs with arbitrary
abstract constraint atoms. Journal of Artificial Intelligence
Research, 29:353–389, 2007.

[Sosa, 2019] Ernest Sosa. Knowledge and Justification, chap-
ter 15, pages 220–228. John Wiley & Sons, Ltd, 2019.

[Wang et al., 2023] Yisong Wang, Thomas Eiter, Yuanlin
Zhang, and Fangzhen Lin. Witnesses for answer sets of log-
ic programs. ACM Transactions on Computational Logic,
24(2):15:1–15:46, 2023.

[Weber et al., 2024] Rosina O. Weber, Adam J. Johs, Prateek
Goel, and João Marques-Silva. XAI is in trouble. AI Mag.,
45(3):300–316, 2024.

[İsmail İlkan Ceylan et al., 2025] İsmail İlkan Ceylan,
Thomas Lukasiewicz, Enrico Malizia, and Andrius
Vaicenavičius. Explanations for query answers under
existential rules. Artificial Intelligence, 341:104294, 2025.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

