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Abstract
Federated stochastic bilevel optimization has been
actively studied in recent years due to its
widespread applications in machine learning. How-
ever, most existing federated stochastic bilevel op-
timization algorithms require the computation of
second-order Hessian and Jacobian matrices, which
leads to longer running times in practice. To ad-
dress these challenges, we propose a novel fed-
erated stochastic variance-reduced bilevel gradient
descent algorithm that relies solely on first-order
oracles. Specifically, our approach does not require
the computation of second-order Hessian and Jaco-
bian matrices, significantly reducing running time.
Furthermore, we introduce a novel learning rate
mechanism, i.e., a constant single-timescale learn-
ing rate, to coordinate the update of different vari-
ables. We also present a new strategy to establish
the convergence rate of our algorithm. Finally, the
extensive experimental results confirm the efficacy
of our proposed algorithm.

1 Introduction
In this paper, we focus on the following federated stochastic
bilevel optimization (FedSBO) problem:

min
x∈Rdx

f(x, y∗(x)) ≜
1

N

N∑
n=1

f (n)(x, y∗(x))

s.t., y∗(x) = arg min
y∈Rdy

g(x, y) ≜
1

N

N∑
n=1

g(n)(x, y) . (1)

Here, g(x, y) ≜ 1
N

∑N
n=1 g

(n)(x, y) denotes the lower-
level loss function, where g(n)(x, y) = E[g(n)(x, y; ξ(n))]
denotes the lower-level loss function on the n-th de-
vice, and f(x, y∗(x)) ≜ 1

N

∑N
n=1 f

(n)(x, y∗(x)) repre-
sents the upper-level loss function, where f (n)(x, y∗(x)) =
E[f (n)(x, y∗(x); ξ(n))] represents the upper-level loss func-
tion on the n-th device. Throughout this paper, we assume
that the upper-level loss function is nonconvex with respect

∗Corresponding author

to both variables and the lower-level loss function is strongly
convex with respect to y, which is a commonly used as-
sumption in the existing literature [Ghadimi and Wang, 2018;
Ji et al., 2021; Chen et al., 2021; Tarzanagh et al., 2022].

The stochastic bilevel optimization problem has attracted
increasing attention recently because many machine learn-
ing models belong to this class of optimization problem,
such as model-agnostic meta-learning [Finn et al., 2017],
hyperparameter optimization [Ji et al., 2021], neural ar-
chitecture search [Liu et al., 2018], etc. To solve the
stochastic bilevel optimization problem, numerous optimiza-
tion algorithms [Ghadimi and Wang, 2018; Ji et al., 2021;
Chen et al., 2021; Hong et al., 2020; Khanduri et al., 2021;
Yang et al., 2021; Guo and Yang, 2021; Dagréou et al., 2022;
Dagréou et al., 2024] have been developed in the single ma-
chine setting in the past few years. However, enabling fed-
erated learning for the stochastic bilevel optimization prob-
lem is much more challenging than the standard single-level
optimization problem. Specifically, as shown in Eq. (1), the
upper-level problem on each device depends on the optimal
solution y∗(x) of the global lower-level problem. As a re-
sult, computing the stochastic hypergradient for the upper-
level loss function on each device requires the global Jaco-
bian and Hessian matrices, introducing significant challenges
for local computation and global communication.

In recent years, numerous efforts [Gao, 2022; Tarzanagh
et al., 2022; Li et al., 2024; Yang et al., 2024; Huang et
al., 2023] have been made to address the unique challenges
in FedSBO problems. For example, [Gao, 2022] developed
a local stochastic bilevel gradient descent with momentum
algorithms under the homogeneous setting, which can re-
move the dependence on global Jacobian and Hessian ma-
trices due to the homogeneous data distribution. [Tarzanagh
et al., 2022] proposed FedNEST in the heterogeneous setting.
It employs the Neumann series expansion approach in an in-
ner loop to estimate Hessian-inverse-vector product. How-
ever, this method suffers from a large communication com-
plexity because it requires to communicate every intermediate
Hessian-inverse-vector product in that inner loop. [Li et al.,
2024] proposed a single-loop algorithm to address the issue
of large communication complexity. In particular, it intro-
duces an additional gradient descent procedure to replace the
Neumann series expansion approach to estimate the Hessian
inverse vector product.
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Nevertheless, the aforementioned federated stochastic
bilevel optimization algorithms still suffer from high com-
putation costs. Specifically, those algorithms need to com-
pute the second-order Jacobian and Hessian matrices. It is
computationally expensive, especially when the problem is
high-dimensional. In fact, to avoid computing the second-
order Jacobian and Hessian matrices, [Kwon et al., 2023;
Shen and Chen, 2023; Kwon et al., 2024; Chen et al., 2023]
developed a fully first-order method in the single-machine
setting. Specifically, [Kwon et al., 2023] converts the bilevel
optimization problem into a single-level one, and then only
the first-order gradient is required to solve it, significantly
reducing computational costs. More specifically, [Kwon et
al., 2023] converts the lower-level optimization problem as a
constraint and then leverages the penalty approach to further
convert it to an unconstrained minimax optimization prob-
lem, which can be solved by the first-order stochastic gra-
dient descent ascent algorithm. Inspired by this, we aim to
develop an efficient federated stochastic bilevel optimization
algorithm that uses only first-order gradients to address the
aforementioned challenges. However, developing first-order
methods for the FedSBO problem in Eq. (1) presents unique
challenges, which are outlined below.

• First, existing first-order methods [Kwon et al., 2023]
for the single-machine setting employ the iteration-
dependent learning rate to guarantee convergence.
However, this strategy is not practical in federated learn-
ing. Specifically, from the iteration-dependent learning
rate, the participating device is able to infer the current
training stage, which could be used to attack the train-
ing procedure by attackers. Therefore, it is necessary to
develop a constant learning rate to avoid this problem
while guaranteeing convergence.

• Second, existing first-order methods [Kwon et al.,
2023] under the single-machine setting employ a
two-timescale learning rate to guarantee convergence.
Specifically, some variables have an order-wise larger
learning rate than the others. This kind of learning
rate is difficult to tune for practical federated learning
practitioners. Thus, it is necessary to propose a single-
timescale learning rate to make it easy to tune while en-
suring convergence.

• Third, the first-order method under the single-machine
setting requires a penalty hyperparameter to guarantee
convergence. However, it is unclear how this penalty
hyperparameter affects the consensus error in federated
learning. Specifically, it is unclear whether the impact of
the penalty hyperparameter on the consensus error will
lead to a slower convergence rate. Therefore, it is neces-
sary to establish the theoretical convergence rate, reveal-
ing how the penalty hyperparameter affects the consen-
sus error and the convergence rate in federated learning.

To address the aforementioned unique challenges, we de-
velop a novel federated stochastic variance-reduced bilevel
gradient descent algorithm with fully first-order oracles.
Specifically, on the algorithm design side, we develop a novel
single-timescale constant learning rate, where we demon-
strate how this new learning rate depends on the penalty hy-

perparameter. On the theoretical analysis side, we propose
a novel strategy to establish the convergence rate of our al-
gorithm. In particular, we develop a novel potential function
for convergence analysis, where we demonstrate how to com-
bine different components together with carefully designed
coefficients. With these novel algorithmic and theoretical de-
signs, our algorithm can achieve the O( 1

Nϵ5 ) convergence
rate to obtain the ϵ-accuracy solution, which indicates the lin-
ear speedup with respect to the number of devices N . Finally,
extensive experimental results confirm the efficacy of our new
algorithm. In summary, our paper has made the following
contributions.

• We develop a novel federated stochastic variance-
reduced bilevel gradient descent algorithm, which uses
the fully first-order gradient and the single-timescale
constant learning rate. To the best of our knowledge, this
is the first time a single-timescale constant learning rate
has been shown to be applied to the first-order bilevel
optimization algorithms.

• We establish the convergence rate of our algorithm,
where we demonstrate how to use a potential function to
combine different estimation errors together with care-
fully designed coefficients. As far as we know, this is the
first work to provide convergence guarantees for first-
order federated bilevel optimization algorithms with the
single-timescale constant learning rate .

• Our extensive experimental results on various tasks con-
firm the efficacy of our algorithm, i.e., our new algorithm
is more computationally efficient than existing second-
order methods.

2 Related Works
2.1 Stochastic Bilevel Optimization
Since the upper-level loss function depends on the optimal
solution of the lower-level optimization problem, the hyper-
gradient of the upper-level loss function needs to compute
∂y∗(x)/∂x, which brings unique challenges for optimizing
this class of optimization problems. Specifically, computing
∂y∗(x)/∂x depends on Jacobian and Hessian inverse matri-
ces. To compute them, many efforts [Ghadimi and Wang,
2018; Ji et al., 2021; Chen et al., 2021; Hong et al., 2020;
Khanduri et al., 2021; Yang et al., 2021; Guo and Yang, 2021;
Dagréou et al., 2022; Chu et al., 2024; Dagréou et al., 2024]
have been made in the single machine setting recently. For
example, [Ghadimi and Wang, 2018] proposed using the Neu-
mann series expansion approach to approximate the Hessian-
inverse-vector product, based on which the convergence rate
of the stochastic gradient descent is established. In this di-
rection, several improved algorithms have been developed.
For example, [Ji et al., 2021] developed a mini-batch stochas-
tic gradient descent method to improve the convergence rate
with a large batch size. [Hong et al., 2020] studied the
convergence rate of the stochastic gradient descent with a
two-timescale learning rate. [Chen et al., 2021] established
the convergence rate of the stochastic gradient descent with
an alternating update strategy. To further improve the con-
vergence rate, [Khanduri et al., 2021; Yang et al., 2021;
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Guo and Yang, 2021] introduces the variance reduction tech-
niques [Cutkosky and Orabona, 2019; Fang et al., 2018;
Nguyen et al., 2017] into stochastic bilevel optimization,
whose convergence rate O(ϵ−3) can match their counterparts
for the single-level optimization problem. In addition to the
Neumann series expansion approach, there exists another ap-
proach for estimating the hypergradient. Specifically, the
Hessian-inverse-vector product is viewed as the optimal so-
lution of a quadratic optimization problem, and then an ad-
ditional gradient descent procedure is introduced to estimate
the Hessian-inverse-vector product. Based on this approach,
a couple of algorithms have been developed. For example,
[Dagréou et al., 2022; Chu et al., 2024; Dagréou et al., 2024]
combined it with variance reduction techniques, whose con-
vergence rates O(ϵ−3) can also match their counterparts for
the single-level optimization problem.

Since the aforementioned approaches need to compute the
second-order Jacobian and Hessian inverse matrices, [Kwon
et al., 2023; Shen and Chen, 2023] developed the fully first-
order method to address this issue. In particular, they trans-
formed the lower-level optimization problem as a constraint
and then used the penalty approach to further convert it as an
unconstrained minimax optimization problem. However, the
penalty hyperparameter significantly affects the convergence
rate. For example, [Kwon et al., 2023] shows that the stan-
dard stochastic gradient descent ascent algorithm can only
achieve the convergence rate of O(ϵ−7) and can be improved
to O(ϵ−5) with the variance reduction technique. However,
these methods do not require computation of the second-order
Jacobian and Hessian inverse matrices. As a result, their prac-
tical performance is more efficient in terms of running time,
especially when the problem is high-dimensional.

2.2 Federated Stochastic Bilevel Optimization
To enable distributed optimization for stochastic bilevel
optimization problems, numerous algorithms [Gao, 2022;
Tarzanagh et al., 2022; Li et al., 2024; Yang et al., 2024;
Huang et al., 2023; Gao et al., 2023; Zhang et al., 2023]
have recently been developed. For example, based on the
Neumann series expansion approach, [Gao, 2022] devel-
oped local stochastic bilevel gradient descent with momen-
tum algorithms under the homogeneous setting, which only
need to communicate two variables and their gradient esti-
mators. Its communication complexity O(ϵ−1) can match
its counterpart for the single machine setting. [Tarzanagh
et al., 2022] proposed FedNEST for the heterogeneous set-
ting, where every intermediate Hessian-inverse-vector prod-
uct in the the Neumann series expansion approach should be
communicated, leading to a large communication complex-
ity. Later, [Huang et al., 2023] developed the FedMBO al-
gorithm, which does not need to communicate the interme-
diate Hessian-inverse-vector product. However, the upper-
level variable in FedMBO needs to be communicated in ev-
ery iteration, which also leads to a large communication com-
plexity. Based on the other approach for estimating Hessian-
inverse-vector product, [Li et al., 2024] developed a feder-
ated stochastic bilevel optimization algorithm with the vari-
ance reduction technique, whose communication complexity
can match that of its counterpart for the single-level problem.

However, all these existing algorithms need to compute the
second-order Jacobian and Hessian matrices, which is com-
putationally expensive for high-dimensional problems. As far
as we know, there do not exist first-order federated bilevel op-
timization algorithms. Note that a concurrent work [Yang et
al., 2025] appeared online after we submitted our paper to
IJCAI, and it has a worse convergence rate O(ϵ−7).

3 Algorithm Design
3.1 Problem Definition
According to [Kwon et al., 2023], Eq. (1) can be converted to
a constrained optimization problem as follows:

min
x∈Rdx ,y∈Rdy

f(x, y), s.t. g(x, y)− g(x, y∗(x)) ≤ 0 . (2)

Then, by leveraging the penalty approach, this constrained
optimization problem can be converted to an unconstrained
minimax optimization problem as follows:

min
x∈Rdx ,y∈Rdy

max
z∈Rdy

f(x, y) + λ(g(x, y)− g(x, z))︸ ︷︷ ︸
Lλ(x,y,z)

, (3)

where λ > 0 is the penalty hyperparameter. Denoting

L(x) = f(x, y∗(x)) ,

L∗
λ(x) = f(x, y∗λ(x)) + λ(g(x, y∗λ(x))− g(x, y∗(x))) ,

where y∗λ(x) = argminy∈Rdy f(x, y) + λ(g(x, y) −
g(x, y∗(x))), existing works [Kwon et al., 2023] have shown
that L∗

λ(x) is a good approximation to L(x) when given an
appropriate penalty hyperparameter λ.

Based on this reformulation, we can solve Eq. (1) by opti-
mizing the following minimax problem:

min
x,y

max
z

1

N

N∑
n=1

(
f (n)(x, y) + λ(g(n)(x, y)− g(n)(x, z))

)
︸ ︷︷ ︸

L(n)
λ (x,y,z)

.

(4)

Obviously, the gradients ∇xL(n)
λ (x, y, z), ∇yL(n)

λ (x, y, z),
and ∇zL(n)

λ (x, y, z) on the n-th device do not depend on the
second-order Jacobian and Hessian matrices. Thus, Eq. (4)
can be solved efficiently.

3.2 Our Algorithm
To solve Eq. (4), we develop a novel federated stochas-
tic variance-reduced bilevel gradient descent algorithm with
fully first-order oracles (FedSVRBGD-FO) in Algorithm 1.
Specifically, in the t-th iteration, device n computes the
stochastic variance-reduced gradient for each component of
∇xL(n)

λ (x, y, z) as follows:

u
(n)
1,t = (1− βxη

2)(u
(n)
1,t−1 −∇1f

(n)(x
(n)
t−1, y

(n)
t−1; ξ

(n)
t ))

+∇1f
(n)(x

(n)
t , y

(n)
t ; ξ

(n)
t ) ,

u
(n)
2,t = (1− βxη

2)(u
(n)
2,t −∇1g

(n)(x
(n)
t−1, y

(n)
t−1; ξ

(n)
t ))

+∇1g
(n)(x

(n)
t , y

(n)
t ; ξ

(n)
t ) ,
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Algorithm 1 FedSVRBGD-FO

Input: x0, y0, z0, η > 0, αx > 0, αy > 0, αz > 0, βx > 0, βy > 0, βz > 0.
1: Initialization when t = 0: compute the stochastic gradient with a mini-batch of samples where the batch size is B:

m
(n)
x,0 = ∇1f

(n)(x
(n)
0 , y

(n)
0 ; ξ

(n)
0 ) + λ(∇1g

(n)(x
(n)
0 , y

(n)
0 ; ξ

(n)
0 )−∇1g

(n)(x
(n)
0 , z

(n)
0 ; ξ

(n)
0 )) ,

m
(n)
y,0 = ∇2f

(n)(x
(n)
0 , y

(n)
0 ; ξ

(n)
0 ) + λ∇2g

(n)(x
(n)
0 , y

(n)
0 ; ξ

(n)
0 ) , m(n)

z,0 = λ∇2g
(n)(x

(n)
0 , z

(n)
0 ; ξ

(n)
0 ) ,

2: for t = 0, · · · , T − 1, each device n do
3: Update x: x

(n)
t+1 = x

(n)
t − αxηm

(n)
x,t ,

4: Update y : y
(n)
t+1 = y

(n)
t − αyηm

(n)
y,t ,

5: Update z: z
(n)
t+1 = z

(n)
t − αzηm

(n)
z,t ,

6: Update the variance-reduced gradient m(n)
x,t+1:

u
(n)
1,t+1 = (1− βxη

2)(u
(n)
1,t −∇1f

(n)(x
(n)
t , y

(n)
t ; ξ

(n)
t+1)) +∇1f

(n)(x
(n)
t+1, y

(n)
t+1; ξ

(n)
t+1) ,

u
(n)
2,t+1 = (1− βxη

2)(u
(n)
2,t −∇1g

(n)(x
(n)
t , y

(n)
t ; ξ

(n)
t+1)) +∇1g

(n)(x
(n)
t+1, y

(n)
t+1; ξ

(n)
t+1) ,

u
(n)
3,t+1 = (1− βxη

2)(u
(n)
3,t −∇1g

(n)(x
(n)
t , z

(n)
t ; ξ

(n)
t+1)) +∇1g

(n)(x
(n)
t+1, z

(n)
t+1; ξ

(n)
t+1) ,

m
(n)
x,t+1 = u

(n)
1,t+1 + λ(u

(n)
2,t+1 − u

(n)
3,t+1) ,

7: Update the variance-reduced gradient m(n)
y,t+1:

v
(n)
1,t+1 = (1− βyη

2)(v
(n)
1,t −∇2f

(n)(x
(n)
t , y

(n)
t ; ξ

(n)
t+1)) +∇2f

(n)(x
(n)
t+1, y

(n)
t+1; ξ

(n)
t+1) ,

v
(n)
2,t+1 = (1− βyη

2)(v
(n)
2,t −∇2g

(n)(x
(n)
t , y

(n)
t ; ξ

(n)
t+1)) +∇2g

(n)(x
(n)
t+1, y

(n)
t+1; ξ

(n)
t+1) ,

m
(n)
y,t+1 = v

(n)
1,t+1 + λv

(n)
2,t+1 ,

8: Update the variance-reduced gradient m(n)
z,t+1:

w
(n)
1,t+1 = (1− βzη

2)(w
(n)
1,t −∇2g

(n)(x
(n)
t , z

(n)
t ; ξ

(n)
t+1)) +∇2g

(n)(x
(n)
t+1, z

(n)
t+1; ξ

(n)
t+1) ,

m
(n)
z,t+1 = λw

(n)
1,t+1 ,

9: if mod(t+ 1, p) == 0 then
10: x

(n)
t+1 = x̄t+1 = 1

N

∑N
n′=1 x

(n′)
t+1 , y

(n)
t+1 = ȳt+1 = 1

N

∑N
n′=1 y

(n′)
t+1 , z

(n)
t+1 = z̄t+1 = 1

N

∑N
n′=1 z

(n′)
t+1 ,

u
(n)
1,t+1 = ū1,t+1 = 1

N

∑N
n′=1 u

(n′)
1,t+1 , u

(n)
2,t+1 = ū2,t+1 = 1

N

∑N
n′=1 u

(n′)
2,t+1 , u

(n)
3,t+1 = ū3,t+1 = 1

N

∑N
n′=1 u

(n′)
3,t+1 ,

v
(n)
1,t+1 = v̄1,t+1 = 1

N

∑N
n′=1 v

(n′)
1,t+1 , v

(n)
2,t+1 = v̄2,t+1 = 1

N

∑N
n′=1 v

(n′)
2,t+1 , w

(n)
1,t+1 = w̄1,t+1 = 1

N

∑N
n′=1 w

(n′)
1,t+1 ,

11: end if
12: end for

u
(n)
3,t = (1− βxη

2)(u
(n)
3,t −∇1g

(n)(x
(n)
t−1, z

(n)
t−1; ξ

(n)
t ))

+∇1g
(n)(x

(n)
t , z

(n)
t ; ξ

(n)
t ) , (5)

where η > 0 is the learning rate and βx > 0 is a constant
hyperparameter, which satisfies βxη

2 < 1. Then, our algo-
rithm composes the variance-reduced gradient estimator for
∇xL(n)

λ (x, y, z) as follows:

m
(n)
x,t = u

(n)
1,t + λ(u

(n)
2,t − u

(n)
3,t ) . (6)

This gradient estimator is then used to update the local vari-
able as follows:

x
(n)
t+1 = x

(n)
t − αxηm

(n)
x,t , (7)

where αx > 0 is a constant hyperparameter. Then, at every p

iterations, where p > 1, the local variable x
(n)
t+1 and gradient

estimators u
(n)
1,t+1, u(n)

2,t+1, u(n)
3,t+1 are uploaded to the central

server and then reset to the global ones, which is shown in
Step 9 in Algorithm 1. The other two variables are updated in
the same way.

It is worth noting that the learning rate η and the associ-
ated hyperparameters αx, αy , αz in our Algorithm 1 are con-

stant, rather than iteration-dependent as existing methods in
the single-machine setting.

4 Convergence Analysis
4.1 Assumption
To establish the convergence rate of our Algorithm 1, we in-
troduce the following assumptions that are commonly used in
existing work [Kwon et al., 2023; Chen et al., 2023].

Assumption 4.1. For n ∈ {1, · · · , N}, the upper-level func-
tion f (n)(·, ·) is Lf -smooth in expectation where Lf > 0 is
a constant, and it is Cf -Lipschitz with respect to the second
variable in expectation.

Assumption 4.2. For n ∈ {1, · · · , N}, the lower-level func-
tion g(n)(·, ·) is Lg,1-smooth in expectation where Lg,1 > 0
is a constant and ∇2g(·, ·) is Lg,2-Lipschitz in expectation
where Lg,2 > 0 is a constant.

Assumption 4.3. For n ∈ {1, · · · , N}, the lower-level func-
tion g(n)(·, ·) is µ-strongly-convex with respect to the second
variable.
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Based on Assumptions 4.1-4.3, [Kwon et al., 2023] shows
that Lλ(x, y, z) is λµ

2 -strongly-convex in y when λ >
2Lf

µ .

Assumption 4.4. The stochastic gradients of the loss func-
tions at the upper and lower levels have an upper bounded
variance σ2 where σ > 0 is a constant.
Assumption 4.5. The data distribution between workers is
heterogeneous and the upper-level and lower-level gradients
satisfy the following conditions:

1

N

N∑
n=1

∥∇f (n)(x, y)− 1

N

N∑
n′=1

∇f (n′)(x, y)∥2 ≤ δ2 ,

1

N

N∑
n=1

∥∇g(n)(x, y)− 1

N

N∑
n′=1

∇g(n
′)(x, y)∥2 ≤ δ2 , (8)

where δ > 0 is a constant, x ∈ Rdx , and y ∈ Rdy .
Following [Chen et al., 2023], we introduce the following

definition.
Definition 4.6. Given Assumptions 4.1-4.3, we denote ℓ =
max{Cf , Lf , Lg,1, Lg,2} and κ = ℓ/µ.

With the aforementioned assumptions and definitions, the
following lemma shows how well L∗

λ(x) approximates L(x).
Lemma 4.7. [Chen et al., 2023; Kwon et al., 2023] Given
Assumptions 4.1-4.3, by setting λ >

2Lf

µ , then L∗
λ(x) satisfies

the following conditions:
• ∇L∗

λ(x) is L-Lipschitz, where L = O(ℓκ3);

• ∥∇L∗
λ(x)−∇L(x)∥ = O(ℓκ3/λ) for any x ∈ Rdx ;

• |L∗
λ(x)− L(x)| = O(ℓκ2/λ) for any x ∈ Rdx .

4.2 Convergence Rate
Based on Assumptions 4.1-4.5, we established the conver-
gence rate of our algorithm below, whose proof can be found
in Appendix.
Theorem 4.8. Given Assumptions 4.1-4.5, by setting λ =

O
(

κ3

ϵ

)
, βx = O

(
1
N

)
, βy = O

(
1
N

)
, βz = O

(
1
N

)
, αx =

O
(

1
λκ3

)
, αy = O

(
1
λκ

)
, αz = O

(
1
λκ

)
, η = O

(
Nϵ2

κ4

)
, p =

O
(

κ
Nϵ

)
, B = O

(
κ6

Nϵ3

)
, and T = O

(
κ10

Nϵ5

)
, Algorithm 1

can achieve the ϵ-accuracy solution as follows:

1

T

T−1∑
t=0

E[∥∇L(x̄t)∥2] ≤ O
(
ϵ2
)
. (9)

Remark 4.9. The complexity of the iteration T = O
(

κ10

Nϵ5

)
indicates that our algorithm can achieve a linear speedup with
respect to the number of devices N . To the best of our knowl-
edge, this is the first time that the first-order algorithm can
achieve the linear speedup for federated bilevel optimization
problems. Moreover, when N = 1, i.e., the single-machine
setting, our convergence rate can match that of the single-
machine counterpart in [Kwon et al., 2023]. Furthermore, the
communication complexity of Algorithm 1 is T

p = O
(

κ9

ϵ4

)
.

Remark 4.10. The existing method [Kwon et al., 2023] under
the single-machine setting employs a time-dependent learn-
ing rate. For example, the learning rate in the t-th iteration
for x is of the order of O(t−3/5). On the contrary, our Algo-
rithm 1 employs a constant learning rate η that is independent
of the current iteration. Moreover, [Kwon et al., 2023] em-
ploys a two-timescale learning rate. Specifically, the learning
rate for x is O(t−3/5), while that for z is O(t−2/5). Then,
limt→∞ t−3/5/t−2/5 = 0. In contrast, the learning rate for
three variables in Algorithm 1, i.e., αxη, αyη, and αzη, are
in the same timescale 1. Therefore, our learning rate setting
is easier to tune in practice.

4.3 Proof Sketch
To establish the convergence of Algorithm 1, we develop a
novel potential function as follows:

Pt = E[L∗
λ(x̄t)] + c1λE[∥ȳt − y∗

λ(x̄t)∥2] + c2λE[∥z̄t − y∗(x̄t)∥2]

+ c3E[∥
1

N

N∑
n=1

∇1f
(n)(x

(n)
t , y

(n)
t )− 1

N

N∑
n=1

u
(n)
1,t ∥

2]

+ c4λ
2E[∥ 1

N

N∑
n=1

∇1g
(n)(x

(n)
t , y

(n)
t )− 1

N

N∑
n=1

u
(n)
2,t ∥

2]

+ c5λ
2E[∥ 1

N

N∑
n=1

∇1g
(n)(x

(n)
t , z

(n)
t )− 1

N

N∑
n=1

u
(n)
3,t ∥

2]

+ c6E[∥
1

N

N∑
n=1

∇2f
(n)(x

(n)
t , y

(n)
t )− 1

N

N∑
n=1

v
(n)
1,t ∥

2]

+ c7λ
2E[∥ 1

N

N∑
n=1

∇2g
(n)(x

(n)
t , y

(n)
t )− 1

N

N∑
n=1

v
(n)
2,t ∥

2]

+ c8λ
2E[∥ 1

N

N∑
n=1

∇2g
(n)(x

(n)
t , z

(n)
t )− 1

N

N∑
n=1

w
(n)
1,t ∥

2] ,

(10)

where {ci}8i=1 are positive coefficients.
A key design in our potential function is that c1 and c2 are

associated with λ while c4, c5, c7, and c8 are associated with
λ2. As such, all coefficients {ci}8i=1 are independent of the
penalty parameter λ. Otherwise, {ci}8i=1 will depend on
λ, which will further affect the variance term and then re-
sult in a worse convergence rate. For example, as shown in
Eq. (68), the coefficient {ci}8i=3 affects the terms regarding
the variance in the last line. If they depended on the penalty
parameter, the learning rate η has to be much smaller to con-
trol the variance term. For example, when c4 = O(λ2), η
should be as small as O(ϵ6) because of λ = O( 1ϵ ), leading to
a much slower convergence rate.

Based on this potential function, we first establish the up-
per bound for each term of this potential function in the Ap-
pendix A.1 and then identify the coefficient {ci}8i=1 in Ap-
pendix A.2 to eliminate all their associated terms in the upper
bound of Pt+1 − Pt, resulting in Eq. (131). Then, we can
establish the convergence rate of our Algorithm 1.

1In this paper, the same timescale refers to having the same order
with respect to ϵ or the number of iterations.
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Figure 1: The upper-level loss function value versus the running time (seconds). Communication period p = 4.

Moreover, a key step for establishing the final convergence
rate is to bound the consensus error in the following lemma,
whose proof can be found in Appendix A.1.
Lemma 4.11. Given Assumptions 4.1-4.5, and η ≤

1

500p
√

L2
f+L2

g,1λ
2

, βx ≤ L2
f+L2

g,1λ
2

N , βy ≤ L2
f+L2

g,1λ
2

N , βz ≤
L2

f+L2
g,1λ

2

N , αx ≤ 10, αy ≤ 10, αz ≤ 10, we have

1

T

T−1∑
t=0

1

N

N∑
n=1

(
E[∥u(n)

1,t − ū1,t∥2] + λ2E[∥u(n)
2,t − ū2,t∥2]

+ λ2E[∥u(n)
3,t − ū3,t∥2] + E[∥v(n)1,t − v̄1,t∥2]

+ λ2E[∥v(n)2,t − v̄2,t∥2] + λ2E[∥w(n)
1,t − w̄1,t∥2]

)
≤ 576p2α2

xη
2
(
L2
f + L2

g,1λ
2
) 1

T

T−1∑
t=0

E[∥m̄x,t∥2]

+ 576p2α2
yη

2
(
L2
f + L2

g,1λ
2
) 1

T

T−1∑
t=0

E[∥m̄y,t∥2]

+ 576p2α2
zη

2
(
L2
f + L2

g,1λ
2
) 1

T

T−1∑
t=0

E[∥m̄z,t∥2]

+ 576p2β2
xη

4(1 + λ2)δ2 + 576p2β2
yη

4(1 + λ2)δ2

+ 576p2β2
xη

4(1 + λ2)σ2 + 576p2β2
yη

4(1 + λ2)σ2

+ 576p2β2
zη

4λ2δ2 + 576p2β2
zη

4λ2σ2 . (11)
In this lemma, we reveal how the penalty hyperparameter

λ and the communication period p affect the consensus error.
With such a lemma, we can then establish the convergence
rate of our Algorithm 1.

5 Experiments
In this section, we evaluate the performance of our Algo-
rithm 1 on the commonly used benchmark task: hyperparam-
eter optimization and hyper-representation learning.

5.1 Hyperparameter Optimization
In the experiment, we apply Algorithm 1 to the following hy-
perparameter optimization problem:

min
x∈Rd

1

N

N∑
n=1

1

m(n)

m(n)∑
i=1

ℓ(y∗(x)T a
(n)
v,i , b

(n)
v,i )

s.t. y∗(x) = arg min
y∈Rd×c

1

N

N∑
n=1

1

m(n)

m(n)∑
i=1

ℓ(yT a
(n)
t,i , b

(n)
t,i )

+
1

cd

c∑
p=1

d∑
q=1

exp(xq)y
2
pq ,

(12)

where the lower-level problem is to learn the parameter
y ∈ Rd×c of the logistic regression model with the train-
ing set {(a(n)t,i , b

(n)
t,i )}m

(n)

i=1 , the upper-level problem learns the
the regularization coefficient x ∈ Rd with the validation set
{(a(n)v,i , b

(n)
v,i )}m

(n)

i=1 .
In this experiment, we used three benchmark datasets: a9a,

w8a, covtype, which are obtained from LIBSVM datasets 2.
Here, 10% of the samples are randomly selected as the test
set. For the remaining samples, 70% of them are randomly
selected as the training set and the others are used as the vali-
dation set. The training and validation sets are then randomly
distributed to eight workers. The batch size for each worker
is set to 10 in this experiment. To verify the performance
of our Algorithm 1, we compare it with four state-of-the-art
second-order methods: FedNEST [Tarzanagh et al., 2022],
FedMBO [Huang et al., 2023], LocalBSGVRM [Gao, 2022],
and FedBiOAcc [Li et al., 2024]. In our experiment, we set
the solution accuracy ϵ to 0.1. Then, according to the theo-
retical results in [Tarzanagh et al., 2022; Huang et al., 2023;
Gao, 2022; Li et al., 2024], the learning rate of FedNEST
and FedMBO is set to ϵ2, while that of LocalBSGVRM and
FedBiOAcc is set to ϵ. Regarding our method, according to
Theorem 4.8, we set the learning rate η to ϵ2, the coefficient
αx = αy = αz = ϵ, and the penalty λ = 5/ϵ. Moreover,
for all methods using the momentum-based variance reduc-
tion technique, we set the the coefficient of the momentum
to 0.1. Then, we run all experiments on a workstation with
4 NVIDIA A5000 GPU cards, each of which accommodates
two threads to simulate eight workers.

2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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In Figure 1, we plot the upper-level loss function value ver-
sus the running time (seconds). Specifically, to make a fair
comparison, we ran all methods to update x for 16,000 iter-
ations on all datasets. The communication period is set to 4
in this experiment. From Figure 1, we can find that our al-
gorithm requires much less time to converge than all baseline
methods. This confirms the advantage of using the fully first-
order gradient in practical applications.
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cu
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FedSVRBGD-FO

(a) Test Performance
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=0.3

(b) Different ϵ

Figure 2: (a) shows the test accuracy versus the running time (sec-
onds). (b) shows the upper-level loss function value when using
different ϵ. Both use a9a dataset.

In addition, in Figure 2(a), we plot the accuracy in the test
set versus the running time for the a9a dataset. In Figure 2(a),
we can still find that our algorithm uses much less time to
achieve almost the same accuracy as the baseline methods,
further confirming the efficacy of using fully first-order gra-
dients for federated bilevel optimization.

Because the learning rate and penalty parameter are set
according to the accuracy of the solution ϵ as suggested by
Theorem 4.8, we added an additional experiment to show the
influence of ϵ on the convergence rate, which is shown in Fig-
ure 2(b). It can be observed that a smaller ϵ leads to a slower
convergence rate. The reason is that a smaller ϵ results in a
smaller learning rate as shown in Theorem 4.8, slowing the
convergence.

Furthermore, to verify the impact of the communication
period on convergence performance, we performed an addi-
tional experiment with p = 16. In Figure 3, we plot the
upper-level loss function value versus the running time in Fig-
ure 3(a) and plot the test accuracy in Figure 3(b). Note that
FedNest becomes more efficient than FedBiOAcc because it
computes the second-order Hessian and Jacobian matrices in
each communication round, rather than each iteration. Thus,
it computes second-order information less frequently when
the communication period becomes large. However, we can
still find that our algorithm needs less time to converge than
all baseline methods when the communication period is 16.

5.2 Hyper-representation Learning
To further verify the performance of our algorithm, we ap-
ply our algorithm to the hyper-representation learning task as
[Tarzanagh et al., 2022]. Specifically, given a deep neural
network, the upper-level problem learns the weight of hid-
den layers, while the lower-level problem learns the weight
of the classifier. As such, the upper-level problem is noncon-
vex and the lower-level one is strongly convex when using
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(a) Loss
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(b) Accuracy

Figure 3: The upper-level loss function value and the test accuracy
versus the running time (seconds) for a9a dataset. Communication
period p = 16.

the cross-entropy loss function with ℓ2-norm regularization
for the classifier’s weight. In our experiment, we used a fully
connected two-layer neural network. Its dimensionality of the
input, hidden, and output layer is 54, 30, and 7, respectively.
The dataset is covtype, which has seven classes. The batch
size is 100. The communication period p = 4. All the other
settings are the same as the first experiment.

In Figure 4, we plot the loss function value versus the run-
ning time (seconds) for the hyper-representation task. It can
be seen that our algorithm converges much faster than all
baseline methods in terms of running time, which further con-
firms the advantages of using the first-order gradient over the
second-order ones.
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Figure 4: The upper-level loss function value versus the running
time (seconds) for the hyper-representation task.

6 Conclusions
In this paper, we develop a novel federated stochastic bilevel
optimization algorithm based on the fully first-order gradi-
ent. In particular, each work only needs to compute the
first-order stochastic variance-reduced gradient to update the
upper- and lower-level variables. This can significantly save
running time because our algorithm does not need to compute
the second-order Hessian and Jacobian matrices. Moreover,
we developed a novel single-timescale constant learning rate
to coordinate the update of different variables and presented
a novel strategy to establish the convergence rate of our al-
gorithm. The extensive experimental results confirm the effi-
cacy of our algorithm.
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