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Abstract
Large Language Models (LLMs) have emerged as
a promising technology for solving combinatorial
optimization problems. However, their direct ap-
plication to scheduling problems remains limited
due to the inherent complexity of these problems.
This paper proposes an LLMs-based neighborhood
search method that leverages LLMs to tackle the
job shop scheduling problem (JSP) and its variants.
The main contributions of this work are threefold.
First, we introduce a novel LLMs-guided neighbor-
hood evaluation strategy that guides local search by
dynamically adjusting operation weights. Second,
we develop a verification evolution (VeEvo) frame-
work to mitigate the hallucination effects of LLMs,
enabling the generation of high-quality heuristics
for weight updates. Third, we integrate this frame-
work with the weighted neighborhood evaluation
strategy to effectively guide the search towards
promising regions. Extensive experiments are con-
ducted on 349 benchmark instances across three
classical scheduling problems. The results demon-
strate that our algorithm significantly outperforms
existing state-of-the-art methods. For JSP, our al-
gorithm reduces the average optimality gap from
10.46% to 1.35% on Taillard’s instances compared
to reinforced adaptive staircase curriculum learn-
ing. For flexible JSP (FJSP), it reduces the gap
from 13.24% to 0.05% on Brandimarte’s instances
compared to deep reinforcement learning methods.
Furthermore, for FJSP with sequence dependent
setup time, our algorithm updates 9 upper bounds
for benchmark instances.

1 Introduction
Job shop scheduling problem (JSP) is one of the most funda-
mental and extensively studied scheduling problems in com-
binatorial optimization, with significant applications in mod-
ern intelligent manufacturing systems and transportation lo-
gistics. The problem involves scheduling a set of jobs J =
{J1, J2, ..., Jn}, where each job Ji consists of Ni operations

∗Corresponding author

(Oi1, Oi2, ..., OiNi) that must be processed sequentially on
a set of machines M = {M1,M2, ...,Mm} [Iklassov et al.,
2023]. Each operation Oij must be processed on a specified
machine with processing time PTij . In the flexible job shop
scheduling problem (FJSP), each operation can be processed
on any machine from its candidate machine set Mij ⊆ M
with machine-dependent processing time PTijk [Yuan et al.,
2023]. For FJSP with sequence dependent setup time (FJSP-
SDST), each operation requires setup time STijk before pro-
cessing, which depends on its machine predecessor [Oddi et
al., 2011]. All processing times and setup times are predeter-
mined, and the objective is to minimize the maximum com-
pletion time (makespan) of all jobs.

The optimization of JSPs focuses on determining optimal
operation sequences and processing times across multiple
machines while considering various operational constraints.
These scheduling problems are crucial in production planning
and control, as they encompass complex aspects of resource
allocation, task sequencing, and process optimization. Ef-
fective scheduling algorithms can significantly impact man-
ufacturing performance by improving production efficiency,
reducing operational costs, and minimizing production cy-
cles. While the classical JSP focuses on fixed machine assign-
ments, its variants such as FJSP and FJSP-SDST introduce
additional complexity through flexible machine routing and
sequence-dependent setup considerations, making them par-
ticularly relevant for modern manufacturing environments.

These scheduling problems belong to the class of NP-
hard optimization problems, where computational complex-
ity grows exponentially with problem size [Tian et al., 2024].
While exact methods can guarantee optimal solutions, they
become computationally intractable for large-scale instances,
rendering them impractical for industrial applications. Al-
though rule-based heuristics can rapidly generate feasible so-
lutions, they often fail to provide high-quality solutions [Guo
et al., 2024]. Metaheuristics have thus emerged as the pre-
dominant research direction in scheduling optimization, of-
fering an effective balance between solution quality and com-
putational efficiency [Yao et al., 2024].

Large Language Models (LLMs) offer several compelling
advantages for addressing scheduling problems. Their so-
phisticated reasoning capabilities enable comprehensive un-
derstanding of complex scheduling constraints and their in-
tricate interactions. Furthermore, LLMs excel at learning
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from historical experiences and identifying patterns, capa-
bilities that are essential for developing effective heuristic
search strategies. Their ability to process and interpret natural
language descriptions of problems and objectives facilitates
more flexible and adaptable algorithm design. These char-
acteristics position LLMs as particularly promising tools for
addressing challenging scheduling optimization problems.

Recent research has demonstrated the potential of Large
Language Models in automating algorithm generation for
combinatorial optimization problems [Romera-Paredes et al.,
2024; Liu et al., 2024a; Liu et al., ; Zeng et al., ]. How-
ever, current LLMs-based methodologies exhibit several crit-
ical limitations in addressing scheduling problems: (1) The
predominant approach of generating complete algorithms
directly [Romera-Paredes et al., 2024; Liu et al., 2024a;
Liu et al., ; Zeng et al., ; Ye et al., 2024] often proves in-
adequate for problems with complex constraints such as JSP,
failing to maintain solution quality; (2) The inherent halluci-
nation phenomenon in LLMs may produce unreliable or in-
valid outputs, potentially compromising algorithmic perfor-
mance;

To address these limitations, we propose a novel LLMs-
based neighborhood search framework that synergistically
combines the strengths of LLMs and traditional local search
methodologies. Instead of attempting to generate complete
algorithms directly, our approach utilizes LLMs to guide
neighborhood selection in local search, thereby maintaining
solution feasibility while enhancing solution quality. Ad-
ditionally, we introduce a verification evolutionary frame-
work that systematically validates LLMs-generated sugges-
tions and provides structured feedback, analogous to gradi-
ent information in deep learning, enabling progressive im-
provement in heuristic generation. Furthermore, the proposed
LLMs-guided neighborhood search framework (NS4S) can
be directly applied to other metaheuristics or even extended
problems without manual parameter tuning, demonstrating
strong generalization capability.

2 Literature Review
2.1 Heuristic Methods
Traditional methods for solving the JSP can be classified
into heuristics and metaheuristics. Heuristics gradually con-
struct a complete solution from an empty one that does not
contain any operations, whereas metaheuristics usually per-
form improvement based on a complete feasible solution. In
tackling the job shop scheduling problem, heuristics mostly
rely on priority dispatching rules such as shortest process-
ing time (SPT), first in first out (FIFO), most work remain-
ing (MWKR) [Sels et al., 2012], and so on. For JSP,
prominent metaheuristic approaches include evolutionary al-
gorithm [Pan et al., 2021], particle swarm algorithm [Fontes
et al., 2023], and memetic algorithm [Sun et al., 2023a]. In
the context of FJSP, popular algorithms include the Jaya algo-
rithm [Caldeira and Gnanavelbabu, 2019], hybrid search al-
gorithm [Xie et al., 2023], and genetic algorithm [Sun et al.,
2023b]. For solving FJSP-SDST, common strategies involve
hybrid algorithm [Oddi et al., 2011], tabu search [González
et al., 2013], and genetic algorithm [González et al., 2013].

2.2 Learning-based Methods
With the development of machine learning theory, the meth-
ods based on deep learning have demonstrated their ability
to tackle complex problems in the field of computer vision
and combinatorial optimization. Chen et al. [2020] pro-
posed a self-learning genetic algorithm by integrating rein-
forcement learning into genetic algorithms. Their algorithm
can adaptively adjust the execution frequency of the Sarsa
and Q-learning algorithms based on the features of the current
search region to guarantee the quality of solutions. In order to
reduce the reliance on expert knowledge for priority dispatch-
ing rules, Zhang et al. [2020] introduced an end-to-end deep
reinforcement learning approach, which involves utilizing a
graph neural network to extract features from incomplete so-
lutions rather than commonly using complete feasible solu-
tions. Finally, the policy network model outputs a dispatch-
ing rule suitable for the current state. Moreover, experimen-
tal results showed that their method also exhibits good gen-
eralization capabilities. Zhang et al. [2023] combined deep
reinforcement learning with multi-agent systems to propose
the deepMAG framework. In deepMAG, each agent has its
own optimization objective. Additionally, neighboring agents
can collaborate with each other by executing a shared action.
Experimental results indicate that this collaborative approach
can improve the algorithm’s efficiency. Yuan et al. [2023]
proposed a deep reinforcement learning-based method by uti-
lizing graph-heterogeneous networks for feature embedding
and modeled JSP as a standard Markov decision process.

2.3 Automatic Heuristic Design
Traditional automated heuristic design is commonly referred
to as Hyper-heuristics, which typically involve the combina-
tion of various simple heuristic rules or select the best per-
forming heuristic from a predefined set [Ye et al., 2024]. In
recent years, significant advancements have been made in nat-
ural language generation using LLMs. Consequently, some
researchers have attempted to apply LLMs to generate entire
algorithms and codes. DeepMind team [Romera-Paredes et
al., 2024] utilized a pre-trained large language model to gen-
erate heuristics for the cap set problem and the online pack-
ing problem, which led to new constructions in the cap set
problem, breaking previous world records. In order to tackle
black-box optimization problems, Liu et al. [2024c] embed-
ded LLMs into a Bayesian optimization framework, enabling
the LLMs to generate and evaluate feasible solutions based
on context.

However, when the problem constraints exhibit high com-
plexity, this direct generation of complete algorithms cannot
guarantee the quality of solutions. Zhuang et al. [2024] em-
ployed LLMs to generate the cost function for specific tasks
and integrated it with A* algorithm to effectively prune the
search tree, achieving a trade-off between exploration and ex-
ploitation. Liu et al. [2024a] utilized LLMs to generate sev-
eral heuristics for specific tasks and enhance the generated
heuristics through selection, crossover, and mutation opera-
tions. To further improve the performance of heuristics, they
performed parameter tuning and strategy optimization on the
generated heuristics at different stages.
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Algorithm 1 The main framework of the NS4S algorithm
Input: JSP Instance
Output: the best solution found so far S∗

1: S∗ ← S ← Init(),
2: f∗ ← S.makespan
3: while stopping condition is not met do
4: move(o∗, k)← LLMGuidedNeighborEval(S)

/*Section 3.2*/
5: S ←− S ⊕move(o∗, k)
6: f ← S.makespan
7: WeightUpdateByLLMs() /*Section 3.3*/
8: if f∗ > f then
9: S∗ ← S, f∗ ← f

10: end if
11: end while
12: Return S∗

3 LLMs-guided Neighborhood Search
3.1 Overall Framework
In this section, we present a comprehensive framework that
leverages LLMs to guide neighborhood search in solving
classical scheduling problems. The framework’s primary in-
novation lies in its utilization of LLMs to direct the neighbor-
hood search process through dynamic weight adjustments, ef-
fectively steering the search towards promising regions of the
solution space.

The main framework of our algorithm, detailed in Algo-
rithm 1, comprises three fundamental components:

• An LLMs-guided neighborhood evaluation strategy that
employs operation weights to assess move quality

• A verification-based evolutionary framework (VeEvo)
that generates and refines high-quality weight adjust-
ment heuristics

• A neighborhood search process that integrates these
components to systematically explore the solution space

The algorithm begins by constructing an initial feasible so-
lution through random assignment of operations to candidate
machines with uniform probability (line 1). Solutions S∗ and
S represent the global best and current solutions respectively,
with their corresponding objective values denoted by f∗ and
f (line 2). The algorithm then iteratively applies a series of
moves to improve solution quality until meeting the termina-
tion criterion (lines 3-11).

Specifically, the proposed LLMs-guided neighborhood
evaluation (LNE) strategy evaluates potential neighborhood
moves of the incumbent solution to identify the most promis-
ing move (line 4). The selected move is then executed to ob-
tain a new solution (line 5), where move(o∗, k) denotes the
relocation of operation o∗ to position k. Subsequently, the
weights of affected operations are updated based on the re-
sulting changes in makespan (line 7), with the update heuris-
tic generated by the proposed VeEvo framework. The best-
found solution is updated when improvements are discovered
(lines 8-10).

3.2 Neighborhood Structure and Evaluation
The design of neighborhood structure and evaluation strategy
plays a pivotal role in determining the effectiveness of neigh-
borhood search algorithms. While we adopt the established
neighborhood structure from Ding et al. [2019], we propose a
novel approach to perform move evaluation. Traditional local
search methods typically evaluate all feasible neighborhood
moves and select the one yielding the best evaluation value.
Although this greedy strategy facilitates rapid convergence, it
frequently leads to entrapment in local optima. To overcome
this limitation, we introduce an LLMs-guided neighborhood
evaluation (LNE) strategy that incorporates dynamically ad-
justed operation weights, learned through LLMs evolution, to
guide the search process more effectively.

Consider a sequence of operations O1, O2, . . . , Ok pro-
cessed on the same machine in JSP. When evaluating the
insertion of operation O1 after operation Ok, the evaluation
metric is computed as follows (the move with the best F will
be selected and performed at next iteration):

F = max{Ri + pi +Qi +W (i)}, ∀i ∈ {O1, ..., Ok} (1)

W (i) = CLIP (1− ti/rand(N), 1)× wi (2)

Here, W (i) represents the LLMs-guided weight compo-
nent for operation i, pi denotes its processing time, while
Ri and Qi indicate the earliest start time and the length of
the longest path from operation i to the terminating operation
prior to the move, respectively. The function CLIP (x, 1)
constrains values to the interval [0,1], ti counts the itera-
tions since operation i was last moved, and N represents
the mean operation count across all jobs. To enhance ex-
ploration, rand(N) generates a random integer in the range
[1,N]. The weight wi, initialized to 0, is dynamically updated
using heuristics derived from our VeEvo framework.

This LLMs-guided evaluation strategy has several signifi-
cant advantages: (1) It allows the search to escape from lo-
cal optima by dynamically adjusting operation weights based
on LLMs-generated heuristics. (2) The weights provide a
form of learning that captures problem-specific knowledge
through the search process. (3) The randomization factor
helps to maintain diversity in the search process while still
being guided by the learned weights.

According to Equations (1) and (2), the weights of opera-
tions can significantly impact move evaluation and influence
the selection of neighboring moves. The VeEvo framework is
employed to generate high-quality weight adjustment strate-
gies that can effectively guide the search towards promising
regions.

3.3 LLMs-based Weight Adjustment
In order to employ a robust mechanism for weight adjustment
to effectively utilize LLMs for search guidance, we introduce
a verification-based evolutionary framework (VeEvo) for gen-
erating high-quality weight adjustment strategies. A funda-
mental challenge in leveraging LLMs for this purpose stems
from their susceptibility to hallucination [Xu et al., 2024;
Banerjee et al., 2024; Liu et al., 2024b; Li et al., 2024], which
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Figure 1: Schematic illustration of VeEvo.

can result in unreliable or counterproductive outputs. While
existing LLMs-based evolutionary algorithms often assume
output reliability, this assumption may lead to the exploration
of unpromising search spaces. Our VeEvo framework ad-
dresses this challenge through a systematic approach to veri-
fication and evolutionary refinement.

The architecture of VeEvo is illustrated in Figure 1.
The framework’s effectiveness stems from three key mech-
anisms: (1) learning-based adaptation that enables continu-
ous strategy refinement through evolutionary feedback, (2)
systematic verification that ensures the reliability of LLMs-
generated strategies through empirical validation, and (3) dy-
namic knowledge base optimization that facilitates continu-
ous learning through systematic feedback mechanisms and
comprehensive experience integration.

VeEvo adopts a methodology analogous to genetic pro-
gramming in evolutionary computation. Following Romera et
al. [2024], the framework evolves individual heuristic meth-
ods rather than problem solutions as in traditional genetic pro-
gramming. The framework comprises the following essential
components:

Initialization: The population is initialized through
LLMs-generated heuristics based on carefully crafted
prompts containing task descriptions, heuristic definitions,
and illustrative examples. Generated heuristics undergo vali-
dation to eliminate invalid candidates, followed by evaluation
and ranking based on their fitness values.

Suggestion Generation: The framework processes heuris-
tic codes sequentially through the LLMs to generate natural
language suggestions, which serve as gradient-like informa-
tion to guide evolutionary crossover. To mitigate the impact
of LLMs’ uncertainty, suggestions for low-performing indi-
viduals (bottom 50% by fitness) are labeled as “Unlabeled”
(e.g., “# Unlabeled Suggestion: [Unlabeled] Increase weight
for moved operations, decrease for unmoved with conditions
favoring current optimization goal”). These Unlabeled sug-
gestions undergo additional verification.

Verification Process: Low-performing individuals and
their associated suggestions are processed by the LLMs to

generate improved heuristics. The new heuristics undergo
evaluation and comparison with their predecessors. Superior
performance results in a “Good suggestion” label, while in-
ferior performance yields a “Bad suggestion” label (e.g., “#
Good Suggestion: [High Quality] Increase weight for moved
operations...”). These quality indicators inform subsequent
evolutionary operations.

Crossover Operation: The LLMs generates offspring
code based on parent codes, suggestions, and their corre-
sponding quality labels. Rather than discarding ineffective
suggestions, they are retained with “bad suggestion” labels,
as they provide valuable negative gradient information for the
learning process.

Memory Mechanism: VeEvo maintains an evolving
knowledge base through continuous reflection on suggestion
effectiveness. The framework accumulates expertise such
as “Penalize stagnation and prioritize diverse solutions. Re-
member, non-negative weights are crucial for algorithm sta-
bility”. The LLMs updates this knowledge base by process-
ing new suggestions and their quality labels alongside exist-
ing memories, with “bad suggestion” labels reducing the ac-
ceptance probability of similar ineffective strategies.

Mutation Operation: The framework leverages the best-
performing individual and accumulated memories to guide
the LLMs in generating diverse variants. These new individ-
uals, combined with crossover-generated offspring, form the
population of the next generation.

During training, VeEvo iteratively executes these processes
to enhance population quality, using average objective values
across randomly generated instances as fitness metrics. In the
testing phase, the best-evolved heuristic is integrated directly
into Algorithm 1 (Line 7), eliminating the need for further
LLMs interaction during execution.

4 Experiments and Analysis
4.1 Experimental Protocol
Benchmark Datasets: To evaluate the efficacy of the pro-
posed NS4S algorithm, we conducted comprehensive ex-
periments across three classical scheduling problems: JSP,
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Algorithm Size Avg

15×15 20×15 20×20 30×15 30×20 50×15 50×20 100×20

SPT Obj 1546.1 1813.5 2067.0 2419.3 2619.1 3441.0 3570.8 6139.0 2952.0
Gap 25.89% 32.82% 27.75% 35.27% 34.44% 24.11% 25.54% 14.41% 27.53%

FDD/WKR Obj 1808.6 2054.0 2387.2 2590.8 3045.0 3736.3 4022.1 6620.7 3283.1
Gap 47.15% 50.57% 47.61% 45.02% 56.30% 34.77% 41.50% 23.39% 43.29%

MWKR Obj 1464.3 1683.6 1969.8 2214.8 2439.0 3240.0 3352.8 5812.2 2772.1
Gap 19.15% 23.35% 21.81% 23.91% 25.17% 16.86% 17.95% 8.31% 19.56%

MOPNR Obj 1481.3 1686.7 1968.3 2195.8 2433.6 3254.5 3346.9 5856.9 2778.0
Gap 20.53% 23.55% 21.71% 22.83% 24.94% 17.37% 17.68% 9.15% 19.72%

L2D Obj 1547.4 1774.7 2128.1 2378.8 2603.9 3393.8 3593.9 6097.6 2939.8
Gap 25.96% 30.03% 31.61% 33.00% 33.62% 22.38% 26.51% 13.61% 27.09%

RASCL Obj 1339.8 1509.3 1793.1 2038.1 2261.5 3030.8 3125.1 5578.9 2584.6
Gap 9.02% 10.58% 10.87% 13.98% 16.09% 9.32% 9.89% 3.96% 10.46%

EYRL Obj 1447.8 1645.8 1933.2 2189.1 2403.2 3217.3 3338.2 5845.0 2752.5
Gap 17.85% 20.59% 19.53% 22.39% 23.32% 16.03% 17.41% 8.91% 18.25%

NS4S(GPT3.5) Obj 1239.6 1389.5 1648.6 1820.0 2025.6 2773.8 2855.0 5443.3 2399.4
Gap 0.87% 1.81% 1.94% 1.70% 3.98% 0.00% 0.39% 1.45% 1.52%

NS4S(GPT4) Obj 1239.0 1388.2 1647.1 1814.9 2012.6 2773.8 2849.2 5446.2 2396.4
Gap 0.82% 1.70% 1.85% 1.41% 3.31% 0.00% 0.19% 1.50% 1.35%

Table 1: Summary of results on the TA benchmark in JSP.

Algorithm Size Avg

20×15 20×20 30×15 30×20 40×15 40×20 50×15 50×20

SPT Obj 4951.5 5690.5 6306.2 7036.0 7601.2 8538.1 8975.4 10132.8 7404.0
Gap 64.13% 64.57% 62.57% 65.91% 55.88% 63.00% 50.37% 62.20% 61.08%

FDD/WKR Obj 4666.3 5298.2 6016.5 6827.3 7420.0 8210.9 9150.2 9899.6 7186.1
Gap 53.57% 52.52% 54.12% 60.09% 51.42% 55.52% 52.53% 57.26% 54.63%

MWKR Obj 4909.9 5489.0 6252.9 6925.0 7484.2 8460.9 8906.0 9807.0 7279.4
Gap 62.15% 58.16% 60.95% 63.16% 52.87% 61.11% 48.93% 56.40% 57.97%

MOPNR Obj 4513.2 5052.3 5742.8 6491.9 7105.5 7870.7 8436.5 9408.0 6827.6
Gap 49.16% 45.17% 47.14% 51.97% 44.72% 49.22% 40.79% 49.61% 47.22%

L2D Obj 4215.3 4804.5 5557.9 5967.4 6663.9 7375.8 8179.4 8751.6 6439.5
Gap 38.95% 37.74% 41.86% 39.48% 35.38% 39.38% 36.20% 38.86% 38.48%

RASCL Obj 3610.0 4028.9 4522.0 5106.0 5731.9 6584.1 7242.1 7176.9 5500.2
Gap 19.36% 15.98% 16.35% 20.00% 17.49% 25.42% 21.54% 14.66% 18.85%

EYRL Obj 3839.7 4332.8 5012.5 5524.7 6108.8 6858.6 7479.1 8150.7 5913.4
Gap 26.56% 23.55% 28.69% 29.21% 24.46% 30.06% 24.93% 29.51% 27.12%

NS4S(GPT3.5) Obj 3117.3 3587.9 4077.9 4519.8 5120.1 5608.0 6313.4 6735.5 4885.0
Gap 2.89% 3.17% 4.63% 5.86% 4.61% 6.36% 5.63% 7.09% 5.03%

NS4S(GPT4) Obj 3106.9 3579.5 4047.9 4499.0 5099.2 5553.2 6288.3 6721.5 4861.9
Gap 2.57% 2.96% 3.91% 5.37% 4.21% 5.33% 5.23% 6.84% 4.55%

Table 2: Summary of results on the DMU benchmark in JSP.

FJSP, and FJSP-SDST. For JSP, we utilized the TA and DMU
benchmark instances, comprising 160 instances that represent
the most challenging publicly available test cases. For FJSP,
we employed the BR, HU, and Vdata benchmark suites, en-
compassing 169 diverse instances. For FJSP-SDST, we em-
ployed the SDST-Hudata benchmark set, containing 20 in-
stances of varying complexity.

Baseline Algorithms: Our comparative analysis encom-
passes three categories of baseline algorithms:

1) Priority Dispatch Rules (PDRs): Following Sels et
al. [2012], we selected widely-adopted heuristics includ-

ing Shortest Processing Time (SPT), Minimum Ratio of
Flow Due Date to Most Work Remaining (FDD/WKR),
Most Work Remaining (MWKR), Most Operations Remain-
ing (MOPNR), First In First Out (FIFO), and machine with
Earliest End Time (EET).

2) State-of-the-art Metaheuristics: We incorporated ad-
vanced algorithms including Improved Jaya Algorithm (IJA)
[Caldeira and Gnanavelbabu, 2019], Regular GA (RegGA)
[Rooyani and Defersha, 2019], Two Stage Genetic Algo-
rithm (2SGA) [Rooyani and Defersha, 2019], Self-learning
Genetic Algorithm (SLGA) [Chen et al., 2020], Iterative Flat-
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Algorithm Barnes Brandimarte Dauzere Hurink-rdata Hurink-edata Hurink-vdata

Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s)

IJA 2.40% 21.03 8.50% 15.43 6.10% 180.8 3.90% 19.72 4.60% 15.24 2.70% 17.85
RegGA – – 8.39% 280.1 – – – – – – 3.20% 191.4
2SGA – – 3.17% 57.6 – – – – – – 0.39% 51.43
SLGA – – 6.21% 283.28 – – – – – – – –

FIFO+EET 27.91% 0.019 28.98% 0.017 15.00% 0.036 17.38% 0.018 19.89% 0.016 7.14% 0.019
MWKR+EET 54.71% 0.018 39.50% 0.019 24.69% 0.036 26.60% 0.018 44.68% 0.018 8.96% 0.02
MOPNR+EET 50.66% 0.017 43.39% 0.018 32.17% 0.038 26.47% 0.019 43.67% 0.018 13.14% 0.019

EYRL 13.83% 0.391 13.24% 0.406 11.02% 0.808 12.09% 0.275 15.54% 0.271 5.37% 0.272
WSRL 17.88% 1.516 30.04% 1.305 8.88% 2.716 11.02% 1.421 16.66% 1.424 4.41% 1.405
LKRL 28.96% 2.048 13.59% 2.054 15.68% 3.917 16.51% 1.591 23.01% 1.558 6.96% 1.544

NS4S(GPT3.5) 1.26% 1.016 0.17% 1.027 0.66% 3.513 0.14% 1.704 0.07% 1.074 0.10% 1.154
NS4S(GPT4) 1.20% 2.026 0.05% 1.455 0.31% 5.117 0.00% 2.412 0.01% 1.448 0.09% 2.609

Table 3: Summary of results on the FJSP benchmarks.

tening Search (IFS) [Oddi et al., 2011], Tabu Search (TS)
[González et al., 2013], Genetic Algorithm (GA) [González
et al., 2013], and Memetic Algorithm (MA) [González et al.,
2013].

3) Learning-based Methods: We included contemporary
approaches such as Learning to Dispatch (L2D) [Zhang et
al., 2020], Reinforced Adaptive Staircase Curriculum Learn-
ing (RASCL) [Iklassov et al., 2023], and deep reinforcement
learning-based methods from [Yuan et al., 2024; Song et al.,
2022; Lei et al., 2022], denoted as EYRL, WSRL, and LKRL,
respectively.

Experimental Settings: Our implementation combines
Python for the VeEvo framework and C++ for the neighbor-
hood search algorithm, executed on a single CPU E5-2697v3.
To ensure fair comparison with Ye et al. [2024], we config-
ured VeEvo with a population size of 10 and the maximum
evaluations of 100. We imposed cutoff times of 10 seconds
for JSP and FJSP, and 30 seconds for FJSP-SDST.

To mitigate implementation-dependent variations, we
adopted the computer-independent CPU time normalization
methodology from Sels et al. [2024]. Reference results for
JSP were cited from Iklassov et al. [2023] and Yuan et al.
[2023], while FJSP and FJSP-SDST results were obtained
from Yuan et al. [2024] and Gonzalez et al. [2013].

For performance evaluation, we employed the relative per-
centage deviation (RPD), also known as the optimality gap,
following Yuan et al. [2023]:

RPD = (C
′

max − C∗
max)/C

∗
max × 100% (3)

where C
′

max represents the best makespan achieved by the
reference algorithm, and C∗

max denotes the optimal or best-
known solution. In the tables, the best performance across all
algorithms are indicated in bold, while asterisks (*) denote
new upper bounds established by our approach.

4.2 Experimental Results
JSP Performance Analysis: As evidenced in Table 1, our
approach demonstrates substantial improvement over exist-
ing methods. While RASCL achieves a notable average gap

of 10.46% on the TA instances, surpassing other rule-based
heuristics and deep learning methods, NS4S significantly re-
duces this gap to 1.35%. This improvement indicates the
effectiveness of our LLMs-based neighborhood approach in
navigating complex solution spaces.

The integration of LLMs capabilities proves particularly
effective, as demonstrated by the performance on DMU in-
stances (Table 2). The GPT-4-based variant achieves an av-
erage gap of 4.55%, substantially outperforming RASCL’s
18.85%. Notably, this improvement is achieved without
explicit weight update direction instructions in the initial
prompts, highlighting VeEvo’s ability to learn effective strate-
gies through self-verification and evolutionary refinement.

FJSP Performance Analysis: Results presented in Ta-
ble 3 reveal the balanced performance characteristics of our
approach. While genetic programming-based algorithms
achieve high solution quality at the cost of substantial com-
putation time, and rule-based heuristics offer rapid but subop-
timal solutions, NS4S strikes an optimal balance. It outper-
forms reinforcement learning approaches like EYRL, WSRL,
and LKRL in terms of solution quality while maintaining
comparable computational efficiency. The GPT-4 variant
demonstrates superior solution quality across all benchmark
sets, though with moderately increased computation time.

FJSP-SDST Performance Analysis: The results in Ta-
ble 4 underscore the robustness of our approach in handling
complex constraints. NS4S not only surpasses the Memetic
Algorithm (MA) in terms of both solution quality and compu-
tational efficiency but also establishes nine new upper bounds
across the benchmark instances1. Specifically, the GPT-3.5
variant established records on instances la06, la07, la09, la10,
and la12, while the GPT-4 variant achieved breakthroughs on
la06, la09, la11, la13, la14, and la15.

4.3 Analysis and Discussion
To evaluate the importance of each algorithmic component,
we conducted ablation studies on the four most challeng-
ing instances from the SVW benchmark. We compared

1https://github.com/Zoommy/NS4S
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Ins. LB IFS GA TS MA NS4S(GPT3.5) NS4S(GPT4)

Best Best Avg Best Avg Best Avg Time(s)Best Avg Time(s) Best Avg Time(s)

la01 609 726 801 817 721 724 721 724 6 721 721.0 2.16 721 721.5 9.87
la02 655 749 847 870 737 738 737 737 7 737 737.5 7.16 737 737.5 9.62
la03 550 652 760 789 652 652 652 652 7 652 652.0 0.40 652 652.0 0.37
la04 568 673 770 790 673 678 673 675 9 673 673.0 1.04 673 673.0 1.71
la05 503 603 679 685 602 602 602 602 8 602 602.0 1.76 602 602.0 0.84
la06 833 950 1147 1165 956 961 953 957 12 945* 946.2 10.66 945* 946.5 9.84
la07 762 916 1123 1150 912 917 905 911 18 902* 905.6 9.10 904 907.9 12.92
la08 845 948 1167 1186 940 951 940 941 15 940 942.4 14.32 940 941.4 13.02
la09 878 1002 1183 1210 1002 1007 989 995 22 984* 988.2 9.19 984* 986.0 14.36
la10 866 977 1127 1156 956 960 956 956 29 953* 955.4 3.39 956 956.0 0.61
la11 1087 1256 1577 1600 1265 1273 1244 1254 33 1236 1239.9 9.32 1232* 1235.6 8.93
la12 960 1082 1365 1406 1105 1119 1098 1107 26 1070* 1081.2 12.52 1077 1081.9 8.11
la13 1053 1215 1473 1513 1210 1223 1205 1212 24 1180 1182.6 15.73 1172* 1177.6 18.29
la14 1123 1285 1549 1561 1367 1277 1257 1263 27 1237 1244.6 12.15 1234* 1242.4 15.49
la15 1111 1291 1649 1718 1284 1297 1275 1282 29 1261 1266.9 10.49 1258* 1262.2 17.12
la16 892 1007 1256 1269 1007 1007 1007 1007 12 1007 1007.0 0.29 1007 1007.0 0.46
la17 707 858 1007 1059 851 851 851 851 12 851 851.0 2.79 851 854.0 2.37
la18 842 985 1146 1184 985 988 985 992 10 985 991.4 4.21 985 987.4 14.33
la19 796 956 1166 1197 951 955 951 951 16 951 953.0 11.81 951 951.5 9.07
la20 857 997 1194 1228 997 997 997 997 12 997 997.0 1.01 997 997.0 1.37

Table 4: Summary of results on SDST-HUdata benchmark in FJSP-SDST.

(a) SWV12 (b) SWV13 (c) SWV14 (d) SWV15

Figure 2: Evolution of the makespan by NS4S and others on four hardest instances in SWV benchmark.

NS4S against variants lacking specific components: verifi-
cation mechanism (w/o verification), LLMs-guided neighbor-
hood evaluation (w/o LNE), VeEvo framework (replaced with
ReEvo [Ye et al., 2024]), and expert-designed weight adjust-
ment heuristics (Human version).

As illustrated in Figure 2, the variant without LNE exhibits
significantly slower improvement rates, highlighting the cru-
cial role of LLMs-guided neighborhood evaluation in effi-
cient solution space exploration. While the variants with-
out verification, without VeEvo, and the Human version show
similar convergence patterns, they consistently achieve infe-
rior solutions compared to the complete NS4S framework.
The full NS4S implementation’s ability to obtain superior so-
lutions with reduced computational time validates the syner-
gistic benefits of integrating these components.

5 Conclusion
This paper presents a novel LLMs-based neighborhood
search method that leverages Large Language Models to ad-
dress classical scheduling problems including JSP, FJSP, and

FJSP-SDST. Our primary contributions encompass three key
innovations: First, we introduce an LLMs-guided neighbor-
hood evaluation strategy that employs dynamic weight adjust-
ments to effectively guide the search process through com-
plex solution spaces. Second, we develop a verification-
based evolutionary framework (VeEvo) that systematically
mitigates the impact of LLMs hallucinations through rigor-
ous validation of generated heuristics. Third, we demonstrate
how the integration of LLMs-generated weight adjustment
strategies can effectively steer the search towards promising
regions of the solution space.

Comprehensive experimental evaluation across three clas-
sical scheduling problems, encompassing 349 benchmark in-
stances, demonstrates the superiority of our approach over ex-
isting state-of-the-art methods. For the Job Shop Scheduling
Problem, our algorithm achieves a remarkable reduction in
average optimality gap from 10.46% to 1.35% on Taillard’s
instances. In the context of FJSP, we further reduce the aver-
age optimality gap from 13.24% to 0.05% on Brandimarte’s
instances. Most notably, for the FJSP-SDST, our approach
establishes nine new upper bounds.
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Camino Rodrı́guez Vela, and Ramiro Varela. An ef-
ficient memetic algorithm for the flexible job shop with
setup times. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling, volume 23,
pages 91–99, 2013.

[Guo et al., 2024] Haoxin Guo, Jianhua Liu, Yue Wang, and
Cunbo Zhuang. An improved genetic programming hyper-
heuristic for the dynamic flexible job shop scheduling
problem with reconfigurable manufacturing cells. Journal
of Manufacturing Systems, 74:252–263, 2024.

[Iklassov et al., 2023] Zangir Iklassov, Dmitrii Medvedev,
Ruben Solozabal Ochoa De Retana, and Martin Takac. On
the study of curriculum learning for inferring dispatching
policies on the job shop scheduling. In Proceedings of the
Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI, pages 5350–5358, 2023.

[Lei et al., 2022] Kun Lei, Peng Guo, Wenchao Zhao,
Yi Wang, Linmao Qian, Xiangyin Meng, and Liansheng
Tang. A multi-action deep reinforcement learning frame-
work for flexible job-shop scheduling problem. Expert
Systems with Applications, 205:117796, 2022.

[Li et al., 2024] Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue
Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen.
The dawn after the dark: An empirical study on factual-
ity hallucination in large language models. arXiv preprint
arXiv:2401.03205, 2024.

[Liu et al., ] Tennison Liu, Nicolás Astorga, Nabeel Seedat,
and Mihaela van der Schaar. Large language models to en-
hance bayesian optimization. In The Twelfth International
Conference on Learning Representations.

[Liu et al., 2024a] Fei Liu, Xialiang Tong, Mingxuan Yuan,
Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient auto-
matic algorithm design using large language mode. arXiv
preprint arXiv:2401.02051, 2024.

[Liu et al., 2024b] Hanchao Liu, Wenyuan Xue, Yifei Chen,
Dapeng Chen, Xiutian Zhao, Ke Wang, Liping Hou,
Rongjun Li, and Wei Peng. A survey on hallucina-
tion in large vision-language models. arXiv preprint
arXiv:2402.00253, 2024.

[Liu et al., 2024c] Tennison Liu, Nicolás Astorga, Nabeel
Seedat, and Mihaela van der Schaar. Large language mod-
els to enhance bayesian optimization. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

[Oddi et al., 2011] Angelo Oddi, Riccardo Rasconi, Amedeo
Cesta, and Stephen F Smith. Job shop scheduling with
routing flexibility and sequence dependent setup-times.
2011.

[Pan et al., 2021] Zixiao Pan, Deming Lei, and Ling Wang.
A bi-population evolutionary algorithm with feedback for
energy-efficient fuzzy flexible job shop scheduling. IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
52(8):5295–5307, 2021.

[Romera-Paredes et al., 2024] Bernardino Romera-Paredes,
Mohammadamin Barekatain, Alexander Novikov, Matej
Balog, M Pawan Kumar, Emilien Dupont, Francisco JR
Ruiz, Jordan S Ellenberg, Pengming Wang, Omar Fawzi,
et al. Mathematical discoveries from program search with
large language models. Nature, 625(7995):468–475, 2024.

[Rooyani and Defersha, 2019] Danial Rooyani and Fan-
tahun M Defersha. An efficient two-stage genetic
algorithm for flexible job-shop scheduling. IFAC-
PapersOnLine, 52(13):2519–2524, 2019.

[Sels et al., 2012] Veronique Sels, Nele Gheysen, and Mario
Vanhoucke. A comparison of priority rules for the job
shop scheduling problem under different flow time-and
tardiness-related objective functions. International Jour-
nal of Production Research, 50(15):4255–4270, 2012.

[Song et al., 2022] Wen Song, Xinyang Chen, Qiqiang Li,
and Zhiguang Cao. Flexible job-shop scheduling via graph
neural network and deep reinforcement learning. IEEE
Transactions on Industrial Informatics, 19(2):1600–1610,
2022.

[Sun et al., 2023a] Kexin Sun, Debin Zheng, Haohao Song,
Zhiwen Cheng, Xudong Lang, Weidong Yuan, and Jiquan

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Wang. Hybrid genetic algorithm with variable neighbor-
hood search for flexible job shop scheduling problem in
a machining system. Expert Systems with Applications,
215:119359, 2023.

[Sun et al., 2023b] Kexin Sun, Debin Zheng, Haohao Song,
Zhiwen Cheng, Xudong Lang, Weidong Yuan, and Jiquan
Wang. Hybrid genetic algorithm with variable neighbor-
hood search for flexible job shop scheduling problem in
a machining system. Expert Systems with Applications,
215:119359, 2023.

[Tian et al., 2024] Shichen Tian, Chunjiang Zhang, Jiaxin
Fan, Xinyu Li, and Liang Gao. A genetic algorithm with
critical path-based variable neighborhood search for dis-
tributed assembly job shop scheduling problem. Swarm
and Evolutionary Computation, 85:101485, 2024.

[Xie et al., 2023] Jin Xie, Xinyu Li, Liang Gao, and Lin Gui.
A hybrid genetic tabu search algorithm for distributed flex-
ible job shop scheduling problems. Journal of Manufac-
turing Systems, 71:82–94, 2023.

[Xu et al., 2024] Ziwei Xu, Sanjay Jain, and Mohan
Kankanhalli. Hallucination is inevitable: An innate
limitation of large language models. arXiv preprint
arXiv:2401.11817, 2024.

[Yao et al., 2024] Youjie Yao, Lin Gui, Xinyu Li, and Liang
Gao. Tabu search based on novel neighborhood struc-
tures for solving job shop scheduling problem integrating
finite transportation resources. Robotics and Computer-
Integrated Manufacturing, 89:102782, 2024.

[Ye et al., 2024] Haoran Ye, Jiarui Wang, Zhiguang Cao,
and Guojie Song. Reevo: Large language models as
hyper-heuristics with reflective evolution. arXiv preprint
arXiv:2402.01145, 2024.

[Yuan et al., 2023] Erdong Yuan, Shuli Cheng, Liejun Wang,
Shiji Song, and Fang Wu. Solving job shop scheduling
problems via deep reinforcement learning. Applied Soft
Computing, 143:110436, 2023.

[Yuan et al., 2024] Erdong Yuan, Liejun Wang, Shuli Cheng,
Shiji Song, Wei Fan, and Yongming Li. Solving flexi-
ble job shop scheduling problems via deep reinforcement
learning. Expert Systems with Applications, 245:123019,
2024.

[Zeng et al., ] Junhua Zeng, Chao Li, Zhun Sun, Qibin Zhao,
and Guoxu Zhou. tngps: Discovering unknown tensor net-
work structure search algorithms via large language mod-
els (llms). In Forty-first International Conference on Ma-
chine Learning.

[Zhang et al., 2020] Cong Zhang, Wen Song, Zhiguang Cao,
Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to
dispatch for job shop scheduling via deep reinforcement
learning. Advances in neural information processing sys-
tems, 33:1621–1632, 2020.

[Zhang et al., 2023] Jia-Dong Zhang, Zhixiang He, Wing-
Ho Chan, and Chi-Yin Chow. Deepmag: Deep rein-
forcement learning with multi-agent graphs for flexible job
shop scheduling. Knowledge-Based Systems, 259:110083,
2023.

[Zhang et al., 2024] Junjie Zhang, Zhipeng Lü, Junwen
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