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Abstract
Auditory attention detection (AAD) aims to iden-
tify the direction of the attended speaker in multi-
speaker environments from brain signals, such as
Electroencephalography (EEG) signals. However,
existing EEG-based AAD methods overlook the
spatio-temporal dependencies of EEG signals, lim-
iting their decoding and generalization abilities.
To address these issues, this paper proposes a
Lightweight Spatio-Temporal Enhancement Nested
Network (ListenNet) for AAD. The ListenNet has
three key components: Spatio-temporal Depen-
dency Encoder (STDE), Multi-scale Temporal En-
hancement (MSTE), and Cross-Nested Attention
(CNA). The STDE reconstructs dependencies be-
tween consecutive time windows across channels,
improving the robustness of dynamic pattern extrac-
tion. The MSTE captures temporal features at mul-
tiple scales to represent both fine-grained and long-
range temporal patterns. In addition, the CNA inte-
grates hierarchical features more effectively through
novel dynamic attention mechanisms to capture
deep spatio-temporal correlations. Experimental
results on three public datasets demonstrate the su-
periority of ListenNet over state-of-the-art methods
in both subject-dependent and challenging subject-
independent settings, while reducing the trainable
parameter count by approximately 7 times. Code is
available at: https://github.com/fchest/ListenNet.

1 Introduction
In multi-speaker environments, humans with normal hearing
have the ability to focus on a specific speaker while ignor-
ing interference from other sound sources, the phenomenon
known as the cocktail party effect [Cherry, 1953]. The mech-
anism behind it is commonly referred to as selective auditory
attention. This inherent ability plays a crucial role in human
communication and has attracted growing interest in auditory
attention detection (AAD), which aims to localize the attended
speaker using brain signals [Dai et al., 2018]. AAD could

∗Corresponding Author

potentially enhance the design of human-centered intelligent
interaction systems, such as hearing aids.

Neuroscientific studies have demonstrated a nonlinear rela-
tionship between auditory attention and brain activity [Choi
et al., 2013; Mesgarani and Chang, 2012], which involves
higher cognitive processing in the cerebral cortex. Electroen-
cephalography (EEG) signals are widely used due to their
non-invasive nature, ease of acquisition, and high tempo-
ral resolution [De Taillez et al., 2020; Fan et al., 2024a].
Spatio-temporal patterns of EEG reveal attentional regula-
tion during selective listening [Tune et al., 2021]. Findings
of the inter-subject correlation (ISC) suggest that EEG sig-
nals are synchronized across subjects during perception of the
same naturalistic visual and narrative speech stimuli [Dmo-
chowski et al., 2014; Shen et al., 2022]. Taking this perspec-
tive, EEG signals exhibit temporal correlations, spatial cor-
relations across channels, and spatio-temporal dependencies,
which could provide valuable information for discriminating
different attention states and advancing robust AAD methods.

Despite significant progress made by existing EEG-based
AAD methods, three major challenges still limit their perfor-
mance and practical application. Firstly, many existing meth-
ods have made substantial strides in spatio-temporal model-
ing, effectively capturing dynamic spatial patterns, leading
to improved detection performance. These methods typi-
cally treat space and time separately, as shown in Figure
1 (a) and (b). Spatial dependencies are captured indepen-
dently, and temporal dependencies are subsequently extracted.
However, these methods overlook the temporal context under
dynamic time conditions, as well as the spatio-temporal de-
pendencies across different channels during auditory stimu-
lus processing. Secondly, the individual differences and the
non-stationary characteristics of EEG signals lead to signifi-
cant performance degradation when applying AAD methods
across subjects. [Cai et al., 2024; Fan et al., 2024b] ef-
fectively leverage individual-specific features to demonstrate
strong performance in the subject-dependent setting, but they
lack good generalization ability, which makes it difficult to
develop subject-independent robust methods. Lastly, the
pursuit of accuracy in current methods [Jiang et al., 2022;
Ni et al., 2024] leads to large model sizes and high com-
putational complexity, which are often attributed to complex
feature extraction methods and transformer attention mecha-
nisms, making them impractical for low-power devices.
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(a) Single-Step Multi-Channel

(b) Multi-Step Single-Channel

C
hannels

Time

C
hannels

Time

C
hannels

(c) Ours: Multi-Scale , Multi-Step and Multi-Channel

L3

L1

Time

L2

L4

Figure 1: Spatio-temporal modeling methods for AAD. Existing
methods typically treat space and time separately, processing them
from (a) to (b). The proposed ListenNet introduces a multi-scale of
temporal patterns, as shown in (c), by considering cross-channel de-
pendencies, temporal dynamics, and spatio-temporal dependencies
for a more comprehensive modeling approach.

To address these issues, this paper proposes a Lightweight
Spatio-Temporal Enhancement Nested Network (ListenNet)
with low parameter count and computational complexity.
As shown in Figure 1 (c), it captures multi-channel spatio-
temporal dependencies and multi-scale dynamic temporal
patterns, ensuring high accuracy and strong generalization.
Specifically, the proposed ListenNet consists of three com-
ponents: (1) Spatio-temporal Dependency Encoder (STDE)
captures consecutive time steps and multi-channel features,
differing from previous studies that first focus on channel fea-
tures. It expands the input EEG signals within each channel
to capture temporal dependencies and extracts spatial features
both within and across channels, enhancing spatio-temporal
representation capacity. (2) Multi-scale Temporal Enhance-
ment (MSTE) captures temporal dependencies at multiple time
scales, adding dynamic temporal context to build robust tem-
poral embeddings. (3) Cross-Nested Attention (CNA) groups
spatio-temporal features in parallel, extracts sub-feature con-
text, and recalibrates weights by encoding global information,
enhancing deep spatio-temporal correlations. Finally, the ef-
fective features are passed to a classifier to predict the subject’s
attended speaker. The major contributions of this work are
summarized as follows:

• The proposed ListenNet overcomes the performance and
efficiency limitations of existing methods for AAD by ef-
ficiently capturing spatio-temporal dependencies in both
subject-dependent and subject-independent settings.

• A novel MSTE module is designed to efficiently extract
multi-channel dependencies across multiple scales and
time steps to integrate multi-level features, enhancing
and complementing robust temporal representations.

• Experimental results show that ListenNet achieves out-
standing accuracy while reducing the trainable param-
eter count by approximately 7 times. Specifically, it
surpasses the best baseline by 6.1% on the DTU dataset
under the subject-dependent setting and by 8.2% on the
KUL dataset under the subject-independent setting, all
within a 1-second decision window.

2 Related Works
For spatial dependency modeling, existing methods are di-
vided into physical and dynamic dependencies. [Cai et al.,
2021; Jiang et al., 2022] project differential entropy (DE) fea-
tures in the frequency domain onto 2D topological maps using
the known electrode positions to calculate spatial dependency
based on physical distance and achieve good performance. Al-
though physical dependency conforms to prior physiological
paradigms, the electrode positions relations between channels
cannot be directly equated to their functional connections [Liu
et al., 2024]. Currently, some researchers autonomously learn
spatial dependency relationships during training. [Fan et al.,
2024b] extracts DE features as nodes to construct graph neural
networks (GNN) and utilize an updated parameter matrix to
represent spatial dependency. [Su et al., 2021; Cai et al., 2023;
Cai et al., 2024] design channel-wise attention mechanisms
that learn to assign distinct weights to capture spatial patterns.
[Ni et al., 2024] utilizes a dual-branch approach to extract
features from the temporal and frequency domains in parallel.
For the frequency branch, it projects DE onto 2D maps and
uses their topological patterns. For the temporal branch, the
transformer encoder embeds a single cross-channel time step
as an input token to autonomously learn features. The current
state-of-the-art (SOTA) study [Yan et al., 2024] employs spa-
tial convolution operations across all channels to effectively
capture spatial dependencies, resulting in competitive AAD
performance.

For temporal dependency modeling, existing methods typi-
cally capture temporal dependencies using convolutional neu-
ral networks (CNN) and attention mechanisms. [Monesi et al.,
2020] independently uses long short-term memory (LSTM)
networks to capture dependencies within EEG signals and
achieve decent decoding performance. [Vandecappelle et al.,
2021] applies a simple one layer CNN model to directly pro-
cess EEG data, where the time series are reduced to a single
value. [Su et al., 2022] sequentially processes temporal in-
formation after spatial attention, multiplying attention maps
with EEG signals for adaptive feature refinement. [Wang et
al., 2023] utilizes a temporal attention mechanism after GNN
that assigns varying weights to a sequence of EEG signals,
enabling the capture of the complex temporal dynamics and
enhancing the detection of even subtle changes in attentional
states over time. Recently, [EskandariNasab et al., 2024] em-
ploys gated recurrent units (GRU) and CNN to consider both
historical and new temporal information when calculating the
current state value, thereby inferring the temporal dependen-
cies between time steps.

The methods mentioned above often focus separately on
spatial and temporal features, or adopt a two-step process-
ing strategy in which spatial dependencies are captured, fol-
lowed by the modeling of temporal dependencies. However,
these approaches tend to overlook the rich temporal contex-
tual information under dynamic time conditions, as well as
the spatio-temporal distribution characteristics of different
brain regions during the reception, processing, and response
to auditory stimuli. As a result, the failure to capture crit-
ical spatio-temporal dependencies significantly limits model
performance.
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(a) Spatio-temporal Dependency Encoder (STDE)
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Figure 2: The overall structure of our ListenNet for AAD consists of three modules: (a) STDE module, (b) MSTE module, where 𝑘𝑖
(𝑖 ∈ {1, 2, 3, 4}) represents the kernel size used in the dilated convolution, and (c) CNA module, where 𝐸 ′

𝑡 and 𝐸 ′
𝑠 are depth-aligned input

feature maps. The model inputs are normalized and Euclidean-aligned EEG signals, and the outputs are two predicted labels related to auditory
attention obtained through a classifier applied to the CNA output features.

3 The Proposed ListenNet Method
The proposed ListenNet is designed to comprehensively inte-
grate spatio-temporal dependencies in EEG signals, address-
ing the limitations of existing methods by modeling depen-
dencies across both multiple channels and time scales. Figure
2 illustrates the overall structure of ListenNet. The method
will be specified in the following subsections.

Given the EEG data split by a moving window, a series of
decision windows is obtained, each containing a short time
segment of EEG signals. Consider the original EEG data of
a decision window represented by 𝑋 = [𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑇 ] ∈
R𝐶×𝑇 , where 𝐶 is the number of EEG channels and 𝑇 is
the length of the decision window. Here, 𝑥𝑖 ∈ R𝐶×1 is the
EEG data at the 𝑖-th window of 𝑋 . We aim to learn a rep-
resentation 𝐹 (·), which maps 𝑥 to the corresponding label
𝑦 = 𝐹 (𝑥). Here, 𝑦 denotes the locus (i.e., left or right) of
auditory attention. Before inputting the EEG data into Listen-
Net, a Euclidean alignment (EA) method [Miao et al., 2022]
is employed, which standardizes the EEG data by calculating
the average covariance matrix to extract shared features from
the data across different brain states. 𝑋̃ ∈ R𝐶×𝑇 is obtained
by normalizing and aligning 𝑋 .

3.1 Spatio-temporal Dependency Encoder (STDE)
EEG signals are derived from different brain regions and
exhibit dynamic changes in connectivity patterns between
brain regions over time. Previous studies neglect the spatio-
temporal characteristics of EEG signals. Meanwhile, as net-
works become increasingly complex [Zhang et al., 2023;
Chen et al., 2023; Niu et al., 2024], the limited size of EEG
data makes these networks prone to overfitting. CNN-based
networks have demonstrated sufficient feature extraction ca-

pabilities in brain-computer interface (BCI) tasks [Lawhern
et al., 2018; Miao et al., 2023]. Considering these charac-
teristics, we design a spatio-temporal dependency encoder
to extract robust dynamic patterns using depthwise separable
convolutions, which consists of the temporal feature compo-
nent (STDE-T) and the spatial feature component (STDE-S),
as shown in Figure 2 (a).

Firstly, STDE-T extracts dynamic features from EEG sig-
nals through temporal convolution layers, capturing temporal
dependencies and constructing the temporal patterns 𝐸𝑡 . This
can be expressed as:

𝐸𝑡 = 𝐺𝐸𝐿𝑈 (𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑣( 𝑋̃))) (1)
where 𝐸𝑡 ∈ R𝑑depth×𝐶×𝑇 ′ , 𝐶𝑜𝑛𝑣(·) represents convolutional
filters with a 1 × 1 kernel size to perform spatio-temporal
reshaping on the input signals. 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(·) performs
convolution independently on each input channel along the
time dimension with a kernel size 1 × 𝑘0 and a group size
𝑑depth, followed by the 𝐺𝐸𝐿𝑈 (·) activation function.

Subsequently, STDE-S encodes the spatial distribution in-
formation across all channels through spatial convolution lay-
ers, capturing the spatial distribution features 𝐸𝑠 from EEG
signals, which facilitate a comprehensive understanding of
the brain’s activity patterns in response to various auditory
stimuli. This can be expressed as:

𝐸𝑠 = 𝐺𝐸𝐿𝑈 (𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑣(𝐸𝑡 ))) (2)
where 𝐸𝑠 ∈ R𝑑depth×1×𝑇 ′ , 𝐶𝑜𝑛𝑣(·) represents convolutional
filters with a 1× 1 kernel size for initial channel mapping and
achieving channel-wise feature fusion. 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(·)
performs convolution to capture inter-channel dependencies
with a 𝐶 × 1 and a group size 𝑑depth, with the 𝐺𝐸𝐿𝑈 (·) acti-
vation function. We integrate the spatial distribution features
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with the temporal patterns to form a comprehensive spatio-
temporal embedding 𝐸𝑠 .

3.2 Multi-scale Temporal Enhancement (MSTE)
The auditory system is sensitive to the temporal patterns
[Puffay et al., 2022]. Inspired by the concept of multi-scale
modeling [Wu et al., 2020; Fan et al., 2024c], we propose a
novel MSTE module. As shown in Figure 2 (b), the module
captures dynamic brain activity across multiple time scales,
offering a comprehensive representation of temporal patterns.

MSTE integrates dilated convolutions with the inception
strategy to capture temporal features across multiple scales,
thereby enabling a more comprehensive representation of
multi-level temporal dependencies and enhancing the mod-
eling of complex temporal patterns. The dilated convolution
filters use four different kernel sizes to capture patterns at
different time scales, with same dilation factor progressively
expanding the effective receptive field. This enables the mod-
ule to more efficiently capture both fine-grained and long-term
temporal dependencies without increasing the number of pa-
rameters. Formally, the Inception strategy is combined with
dilated convolutions to capture multi-scale temporal features.
Given the input from the temporal convolution layers, the
module applies four convolutional filters, each with a fixed
dilation factor, to extract multi-scale temporal features. The
outputs are truncated to match the size of the largest kernel,
concatenated along the channel dimension, and normalized
using batch normalization, ultimately generating the multi-
scale feature map. The above process can be formulated as:

𝑈 = [DilatedConv1×𝑘 (𝐸𝑡 ) | 𝑘 ∈ {𝑘1, 𝑘2, 𝑘3, 𝑘4}] (3)

where 𝑈 ∈ R𝑑depth×𝐶×𝑇𝑘
min , and 𝑇 𝑘

min represents the minimum
time dimension among the outputs. [·] represents concate-
nation operation, and DilatedConv1×𝑘 (·) is implemented as
a set of dilated convolutions with 𝑘 ∈ {𝑘1, 𝑘2, 𝑘3, 𝑘4}. For
each kernel size 𝑘 , a convolution is applied along the temporal
dimension with a fixed dilation factor 𝑑.

The skip connection is implemented using a depthwise con-
volution with a kernel size of 𝐶 × 1 and a group size 𝑑depth.
These transform spatial information while preserving channel
structure and standardize the sequence length for consistent
transmission to the output module. The features are resized
via bilinear interpolation to match the dimensions required by
the subsequent layer, resulting in 𝑆 ∈ R𝑑depth×1×𝑇 ′ , which is
then added to 𝐸𝑠 , producing a robust representation of spatio-
temporal dynamics 𝐸 ′

𝑠 ∈ R𝑑depth×1×𝑇 ′ .

3.3 Cross-Nested Attention (CNA)
The multi-head attention mechanism in transformer models
achieves significant results but incurs high computational cost.
Inspired by the parallel strategy for cross-dimensional spatial
information aggregation [Wang et al., 2020; Ouyang et al.,
2023], we propose a novel cross-nested attention module that
efficiently integrates hierarchical spatio-temporal features and
reduces computational cost.

CNA employs dual-branch decomposition and interac-
tive enhancement, extracting deep spatio-temporal features
through attention weighting. Prior to processing, the in-
put temporal feature 𝐸𝑡 is depth-aligned with 𝐸 ′

𝑠 to produce

𝐸 ′
𝑡 ∈ R𝑑depth×𝑑depth×𝑇 ′ . As shown in Figure 2(c), both 𝐸 ′

𝑡 and
𝐸 ′
𝑠 are divided into 𝐺 groups along the depth dimension,

where 𝐺 =
⌊
𝑑depth/2

⌋
, and ⌊·⌋ denotes the floor operation.

The dimension-adjusted features are denoted as 𝐹𝑡 and 𝐹𝑠 ,
respectively. Then, a dual-branch spatio-temporal module is
applied to decompose and capture global information in both
directions, producing two enhanced features, 𝐹1 and 𝐹2, as
formulated below:

𝐹1 = 𝐺𝑁 (𝐹𝑡 ⊙ 𝜎 (𝐴𝐴𝑃𝑆 (𝐹𝑡 )) ⊙ 𝜎 (𝐴𝐴𝑃𝑇 (𝐹𝑡 )))
𝐹2 = 𝐺𝑁 (𝐹𝑠 ⊙ 𝜎 (𝐴𝐴𝑃𝑆 (𝐹𝑠)) ⊙ 𝜎 (𝐴𝐴𝑃𝑇 (𝐹𝑠)))

(4)

where, 𝐺𝑁 (·) denotes the group normalization operation,
𝐴𝐴𝑃𝑆 (·) denotes the spatial adaptive average pooling opera-
tion, 𝐴𝐴𝑃𝑇 (·) denotes the temporal adaptive average pooling
operation, 𝜎(·) denotes the sigmoid activation function, and
⊙ denotes the element-wise multiplication operation.

To capture long-range dependencies and global context,
global average pooling and softmax are applied to each input
branch to produce attention vectors. These are reshaped and
used to compute cross-attention maps with features from the
opposite branch via matrix multiplication. The resulting maps
are concatenated and passed through a shared 1×1 convolution
for feature fusion and dimensionality reduction, yielding the
final attention weights 𝑊 ∈ R(𝐵×𝐺)×1×1×𝑇 ′ , with 𝐵 denoting
the batch size. Finally, the output deep spatio-temporal fea-
tures 𝐸 ∈ R𝑑depth×1×𝑇 ′ are obtained by applying element-wise
multiplication between 𝐹𝑠 and the sigmoid-activated 𝑊 .

3.4 Classifier
The classifier is designed to provide the final auditory atten-
tion results. Global average pooling is applied to reduce the
dimensions of the features output by the CNA module. Then,
the normalized feature maps are flattened into a 1D vector and
fed into a fully connected layer to produce the final result. In
the training stage, we apply the binary cross-entropy function
to update the parameters.

L = − 1
𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 · log𝑄𝑖 + (1 − 𝑦𝑖) · log(1 −𝑄𝑖)] (5)

where 𝑦𝑖 means the ground-truth label of 𝑖-th decision window,
𝑁 means the number of samples, and 𝑄𝑖 is the corresponding
possibility of predicted direction label with softmax function
processing.

4 Experiment
4.1 Datasets
We evaluate ListenNet on three publicly available datasets:
KUL [Das et al., 2019; Das et al., 2016], DTU [Fuglsang et
al., 2018; Fuglsang et al., 2017], and AVED [ZHANG et al.,
2024]. We summarize the details of the above datasets in
Table 1.

1) KUL: This dataset consists of 16 normal-hearing sub-
jects, with 64-channel EEG data recorded. Each subject was
instructed to attend to one of two competing voices from ei-
ther the 90◦ left or right. Each subject completed 8 trials, each
lasting 6 minutes.
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Dataset Scene Subjects Channels Stimulus Duration
Direction (minutes)

KUL audio-only 16 64 ±90◦ 48
DTU audio-only 18 64 ±60◦ 50

AVED audio-only 10 32 ±90◦ 40
audio-visual 10 32 ±90◦ 40

Table 1: Details of three EEG datasets used in experiments.

2) DTU: This dataset consists of 18 normal-hearing sub-
jects, with 64-channel EEG data recorded. Each subject was
instructed to perform a target speaker tracking task in an en-
vironment with reverberation and dynamic background noise
interference, attending to one of two competing voices from
speakers positioned at a 60◦ relative to the subject. Each
subject completed 60 trials, each lasting 50 seconds.

3) AVED: This dataset consists of 20 normal-hearing sub-
jects, with 32-channel EEG data recorded. Subjects were
evenly divided into two experimental conditions: audio-only
and audio-visual, with 10 subjects in each condition. Each
subject was instructed to attend to one of two competing voices
from either the 90◦ left or right. In the audio-visual condition,
subjects not only listened to the stories but also watched the
video of the narrator they were instructed to focus on. Each
subject completed 16 trials, each lasting 152 seconds.

4.2 Data Processing
To eliminate artifact noise and obtain cleaner EEG signals,
specific preprocessing steps are applied to the three datasets
to ensure consistency and comparability across experiments.
For the KUL dataset, EEG signals are band-pass filtered (0.1–
50 Hz) to remove irrelevant frequencies and downsampled to
128 Hz. For the DTU dataset, 50 Hz line noise and power
line interference are filtered out, followed by downsampling
to 128 Hz and high-pass filtering at 0.1 Hz. Eye artifacts are
removed using joint decorrelation, and data are re-referenced
to the average EEG channel response. For the AVED dataset,
50 Hz power line interference is removed, and the signals
are band-pass filtered (0.1–50 Hz) and downsampled to 128
Hz. Subsequently, ocular and muscle artifacts are eliminated
using independent component analysis (ICA). Finally, all EEG
channels were re-referenced.

To evaluate ListenNet, we compare it with other SOTA
AAD methods under both subject-dependent and the more
challenging subject-independent settings. Specifically, four
open-source models are selected as baselines: SSF-CNN [Cai
et al., 2021], MBSSFCC [Jiang et al., 2022], DBPNet [Ni et
al., 2024], and DARNet [Yan et al., 2024].

4.3 Implementation Details
We evaluate the performance of ListenNet on KUL, DTU, and
AVED datasets under both subject-dependent and subject-
independent settings. For the subject-dependent condition,
each subject’s data is split into training, validation, and test
sets in an 8:1:1 ratio. The batch size is set to 32, the maximum
number of epochs to 100, and an early stopping strategy is
employed. Moreover, the model is trained using an Adam
optimizer with a learning rate of 5e-4 and weight decay of

3e-4. For the subject-independent condition, the leave-one-
subject-out (LOSO) cross-validation strategy is used. Namely,
one subject’s EEG data constituted the testing data, and the
remaining subjects’ EEG data constituted the training data.
Here, the batch size is set to 128, with a maximum of 100
epochs. An Adam optimizer is also used with a learning rate
of 1e-3 and a weight decay of 3e-4.

The following describes the implementation details, includ-
ing the training settings and network configuration. The hy-
perparameters of ListenNet are consistently fixed across the
three datasets to ensure a fair comparison of its generalizabil-
ity. For STDE, the kernel size 𝑘0 is set to 8, and the group
size 𝑑depth is set to 16. For MSTE, the kernel sizes used in
the 2D dilated convolutional filter are 𝑘 ∈ {1, 2, 3, 5}, and
the dilation factor 𝑑 is set to 1. Consequently, the number
of groups 𝐺 in CNA is configured as 8. All experiments are
conducted using PyTorch on an RTX 4090 GPU.

5 Results
5.1 Comparison with Prior Art
In this work, we maintain the same subject-dependent setup as
most existing models and evaluate our model in a more chal-
lenging subject-independent setup to better align with real-
world applications, as detailed in Table 2.

Performance of Subject-Dependent
The comparison of subject dependence AAD performance be-
tween the ListenNet model and other baselines on the KUL,
DTU and AVED datasets is presented in Tables 2. Our method
significantly outperforms the current SOTA on both the KUL
and DTU datasets. Specifically, on the KUL dataset, Listen-
Net demonstrates higher accuracies by 3.3%, 2.1%, and 1.8%
for the 0.1-second, 1-second, and 2-second decision windows,
respectively. Similarly, on the DTU dataset, it achieves im-
provements of 4.8%, 6.1%, and 5.4% in the same decision
windows. On the AVED dataset, ListenNet performs slightly
worse than DARNet in the 1-second and 2-second decision
windows, but still achieves optimal performance in the very
short 0.1-second window. One possible explanation is that
DARNet’s transformer attention outperforming by capturing
long-range cross-modal dependencies in the AVED dataset.

We observe that ListenNet’s decoding accuracy increases
with the enlargement of decision windows, due to longer de-
cision windows providing more information. The proposed
ListenNet exhibits satisfactory performance at a temporal res-
olution of 1-second, which is approximately close to the time
lag necessary for humans to switch attention. Moreover, our
advantages are further enhanced under the highly challenging
short 0.1-second decision window length, thereby contribut-
ing to the subsequent realization of real-time decoding of
auditory attention.

Performance of Subject-Independent
Apart from excellent results in the subject-dependent setup,
the proposed ListenNet also demonstrates comprehensive
leading classification performance in the more challenging
subject-independent setup across three datasets for the com-
monly used two detection window sizes. ListenNet benefits
from better results by more comprehensively and effectively
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Dataset Scene Model Subject-Dependent Subject-Independent
0.1-second 1-second 2-second 1-second 2-second

KUL audio-only

CNN [Vandecappelle et al., 2021] 74.3 84.1 85.7 56.8 ± 5.58 59.5 ± 8.21
SSF-CNN [Cai et al., 2021] 76.3 ± 8.47 84.4 ± 8.67 87.8 ± 7.87 59.3 ± 6.69 60.8 ± 8.40

MBSSFCC [Jiang et al., 2022] 79.0 ± 7.34 86.5 ± 7.16 89.5 ± 6.74 62.7 ± 8.08 64.7 ± 8.62
EEGraph [Cai et al., 2023] 88.7 ± 6.59 96.1 ± 3.22 96.5 ± 3.34 - -
DGSD [Fan et al., 2024b] - 90.3 ± 7.29 93.3 ± 6.53 63.6 ± 8.00 -
DBPNet [Ni et al., 2024] 85.3 ± 6.22 94.4 ± 4.62 95.3 ± 4.63 61.1 ± 8.26 62.3 ± 7.37

DARNet [Yan et al., 2024] 89.2 ± 5.50 94.8 ± 4.53 95.5 ± 4.89 69.9 ± 11.82 71.9 ± 13.01
ListenNet (ours) 92.5 ± 5.24 96.9 ± 3.01 97.3 ± 2.62 78.1 ± 13.50 79.6 ± 14.60

DTU audio-only

CNN [Vandecappelle et al., 2021] 56.7 63.3 65.2 51.8 ± 3.03 52.9 ± 3.42
SSF-CNN [Cai et al., 2021] 62.5 ± 3.40 69.8 ± 5.12 73.3 ± 6.21 52.3 ± 3.50 53.4 ± 4.16

MBSSFCC [Jiang et al., 2022] 66.9 ± 5.00 75.6 ± 6.55 78.7 ± 6.75 52.5 ± 4.35 53.9 ± 5.80
EEGraph [Cai et al., 2023] 72.5 ± 7.41 78.7 ± 6.47 79.4 ± 7.16 - -
DGSD [Fan et al., 2024b] - 79.6 ± 6.76 82.4 ± 6.86 55.2 ± 4.07 -
DBPNet [Ni et al., 2024] 74.0 ± 5.20 79.8 ± 6.91 80.2 ± 6.79 55.5 ± 6.33 55.8 ± 6.11

DARNet [Yan et al., 2024] 74.6 ± 6.09 80.1 ± 6.85 81.2 ± 6.34 55.6 ± 4.13 55.6 ± 4.04
ListenNet (ours) 79.4 ± 7.00 86.2 ± 5.55 86.6 ± 4.82 56.8 ± 7.32 57.2 ± 5.83

AVED

audio-only

SSF-CNN [Cai et al., 2021] 53.4 ± 1.47 58.4 ± 3.79 58.9 ± 5.35 51.7 ± 0.85 52.5 ± 1.55
MBSSFCC [Jiang et al., 2022] 55.9 ± 1.80 70.2 ± 4.10 74.2 ± 7.24 52.2 ± 1.52 52.7 ± 1.87

DBPNet [Ni et al., 2024] 53.6 ± 2.65 58.9 ± 3.65 62.8 ± 5.93 52.1 ± 1.19 53.3 ± 1.88
DARNet [Yan et al., 2024] 49.7 ± 1.05 80.2 ± 14.67 83.6 ± 12.10 51.3 ± 0.21 52.1 ± 1.54

ListenNet (ours) 57.7 ± 1.71 74.6 ± 3.36 77.1 ± 5.31 52.8 ± 1.30 53.8 ± 1.98

audio-visual

SSF-CNN [Cai et al., 2021] 54.5 ± 1.79 59.2 ± 5.44 63.1 ± 6.55 52.4 ± 2.29 53.8 ± 2.27
MBSSFCC [Jiang et al., 2022] 57.5 ± 2.75 69.6 ± 5.57 75.5 ± 4.34 52.8 ± 1.57 54.1 ± 1.86

DBPNet [Ni et al., 2024] 56.1 ± 2.68 61.5 ± 4.33 64.1 ± 6.09 53.3 ± 2.39 54.0 ± 1.61
DARNet [Yan et al., 2024] 50.3 ± 0.77 83.6 ± 12.10 88.7 ± 13.15 51.4 ± 0.32 52.6 ± 0.29

ListenNet (ours) 57.9 ± 2.16 74.9 ± 4.63 76.5 ± 5.07 53.7 ± 1.60 54.1 ± 1.83

Table 2: Comparison of accuracy (%) on KUL, DTU and AVED datasets. The subject-dependent setup is conducted with three decision
windows (0.1-second, 1-second, 2-second), with the results for AVED being reproduced, and the remaining results replicated from the
corresponding papers. The subject-independent setup is conducted with two decision windows (1-second, 2-second), with DGSD from the
original paper and others reproduced. Best results are highlighted in bold.

integrating dynamic temporal patterns and spatio-temporal
dependencies, enabling the model to flexibly utilize subject-
invariant representations. The results further confirm this ca-
pability. Especially on the KUL dataset, ListenNet achieves
notable performance, demonstrating accuracy increases of
8.2% and 7.7% over the current SOTA model for the 1-second
and 2-second decision windows, respectively. Furthermore,
ListenNet outperforms baselines for DTU and AVED as well.

Compared to the widely-used KUL dataset, the DTU and
AVED datasets pose a more challenging AAD task. Specifi-
cally, DTU presents speech at a narrower angle, and its record-
ing environment includes reverberation and background noise,
whereas AVED introduces complex multi-modal stimulus ma-
terials. The results show that ListenNet outperforms the base-
line methods across diverse datasets, with lower variability in
its results, further highlighting the stability and reliability of
our approach across different decision windows. It learns the
common pattern of feature distribution from subjects, thereby
more effectively simulating real-world scenarios. These re-
sults highlight the robustness and generalization capabilities
of the proposed model, emphasizing its potential superiority
in EEG-based applications.

5.2 Ablation Analysis
Ablation studies are conducted on three datasets using a 1-
second window setting, which most closely aligns with hu-
man attention switching [Jiang et al., 2022; Fan et al., 2025].
ListenNet constructs robust spatio-temporal representations.

This enables the model to capture the full spatiotemporal infor-
mation in EEG signals, thereby improving the interpretation
of brain activity. Table 3 presents a comparison between the
full ListenNet model and these four variants across the three
datasets.

STDE-T and STDE-S are each removed to disrupt the in-
tegrity of STDE, thereby assessing the critical role of these
components in the model’s performance. Removing the
STDE-T module for spatio-temporal dependency encoding
has the most significant impact on the model’s performance.
The effectiveness of STDE-T can be attributed to the fact
that EEG signals, as high temporal-resolution time series,
exhibit strong temporal dependencies. Prioritizing the mod-
eling of temporal continuity allows for the extraction of more
effective and accurate spatio-temporal feature embeddings.
Removing the STDE-S module results in accuracy decline,
as full-channel spatial convolution captures inter-channel de-
pendencies and establishes a robust spatio-temporal feature
framework.

The removal of the MSTE module results in the loss of
multi-scale temporal information and disrupts potential de-
pendencies between temporal segments, thereby increasing
the risk of overlooking critical temporal features essential
for accurate recognition. Similarly, eliminating the CNA
module diminishes the model’s ability to dynamically assign
feature weights and enhance spatio-temporal representations,
weakening the extraction and integration of multi-level spatio-
temporal features and ultimately reducing overall accuracy.
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Dataset Model Subject-Dependent Subject-Independent

KUL

w/o STDE-T 91.1 ± 6.05 62.6 ± 11.10
w/o STDE-S 94.6 ± 6.18 76.0 ± 15.05
w/o MSTE 96.7 ± 3.46 77.8 ± 13.39
w/o CNA 96.3 ± 2.76 77.7 ± 14.74
ListenNet 96.9 ± 3.01 78.1 ± 13.50

DTU

w/o STDE-T 72.5 ± 5.53 52.3 ± 2.01
w/o STDE-S 84.3 ± 5.89 54.3 ± 8.36
w/o MSTE 84.9 ± 6.59 56.7 ± 7.91
w/o CNA 85.8 ± 5.75 56.5 ± 5.83
ListenNet 86.2 ± 5.55 56.8 ± 7.32

AVED
(audio-only)

w/o STDE-T 64.2 ± 6.62 51.1 ± 1.43
w/o STDE-S 66.2 ± 4.50 52.6 ± 1.71
w/o MSTE 71.8 ± 3.00 52.5 ± 1.48
w/o CNA 74.3 ± 3.36 52.5 ± 1.32
ListenNet 74.6 ± 3.36 52.8 ± 1.30

AVED
(audio-visual)

w/o STDE-T 64.9 ± 5.30 53.3 ± 3.03
w/o STDE-S 66.2 ± 5.27 53.2 ± 2.14
w/o MSTE 72.8 ± 3.40 53.6 ± 1.80
w/o CNA 74.6 ± 3.08 53.2 ± 2.53
ListenNet 74.9 ± 4.63 53.7 ± 1.60

Table 3: Ablation study on all three datasets. The subject-dependent
and subject-independent setups are conducted with 1-second decision
windows, and “w/o” means without.

Model Params (M) MACs (M)
MBSSFCC [Jiang et al., 2022] 83.91 89.15

DBPNet [Ni et al., 2024] 0.91 96.55
DARNet [Yan et al., 2024] 0.08 16.36

ListenNet (ours) 0.01 12.16

Table 4: The training parameter counts (Params) and multiply-
accumulates (MACs) comparison on the KUL dataset.

5.3 Computational Cost
Table 4 compares the parameter counts and MACs of Listen-
Net with those of MBSSFCC, DBPNet, and DARNet on the
KUL dataset. With only 0.01 M trainable parameters, Lis-
tenNet achieves remarkable parameter efficiency, requiring
approximately 8390 times fewer parameters than MBSSFCC,
90 times fewer parameters than DBPNet, 7 times fewer pa-
rameters than DARNet. Additionally, ListenNet’s computa-
tional demand is also markedly reduced, with its MACs only
12.16 M, approximately 86% lower than MBSSFCC, 87%
lower than DBPNet and 26% lower than DARNet. These sub-
stantial reductions in both parameter count and computational
complexity highlight ListenNet’s enhanced efficiency, making
it especially suitable for deployment on devices with limited
computational resources.

5.4 Visualization Analysis
To assess the effect of extracting subject-invariant features,
we randomly select 30 samples from each subject in the KUL
dataset and visualize them using t-SNE [Van der Maaten and
Hinton, 2008]. The resulting plots are shown in Figure 3.
Different colors represent subjects, with circles and squares
indicating attention to the left or right speaker, respectively.
In Figure 3 (a), the raw features are scattered with significant
overlap between subjects and labels, lacking clear structure
and separability. In Figure 3 (b), preprocessing improves
feature quality to some extent, but notable overlap and insuf-

(a) Original Data

(c) Features by STDE 

(b) Preprocessed  Data

(d) Final Features by ListenNet

Figure 3: The t-SNE visualization of different types of features on
the KUL dataset under the subject-independent condition. Different
colors represent different subjects. Circles and squares denote atten-
tion to the left or right speaker, respectively.

ficient separability still remain. In Figure 3 (c), features ex-
tracted using STDE form clearer attention-related subgroups.
By capturing spatio-temporal cross dependencies, the STDE
module learns dynamic patterns and enhances feature sepa-
rability, though some class boundaries remain indistinct. In
Figure 3 (d), features extracted by ListenNet exhibit more dis-
tinct clustering for attention labels across subjects, and the
distributions become more organized. This demonstrates that
ListenNet learns subject-invariant features while maintaining
clear boundaries between attention categories. These results
further confirm the effectiveness of our method in enhancing
the model’s ability to decode attention states accurately while
improving generalization across different subjects.

6 Conclusion
This paper introduces ListenNet, a lightweight, highly ac-
curate, and generalizable network for AAD. By combining
spatio-temporal convolution operations across time steps and
all channels, it effectively utilizes spatial information embed-
ded in temporal EEG signals. Additionally, it captures tempo-
ral patterns at multiple scales, previously overlooked, by us-
ing multi-scale dilated convolutions. It integrates hierarchical
spatio-temporal features through cross-nested attention mech-
anisms. Subject-dependent and subject-independent experi-
ments are conducted on three AAD datasets. Experimental
results show that our ListenNet exhibits competitive accuracy,
especially in the very short 0.1-second decision window and
across subjects. Furthermore, the compact size of our model
and the reduced computational costs open new possibilities
for deployment on low-power devices. For future work, we
intend to extend ListenNet to streaming architectures, inte-
grating incremental learning for real-time adaptation to AAD
scenarios.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgements
This work is supported by the STI 2030—Major Projects
(No.2021ZD0201500), the National Natural Science Foun-
dation of China (NSFC) (No.62201002, 6247077204), Ex-
cellent Youth Foundation of Anhui Scientific Committee
(No. 2408085Y034), Distinguished Youth Foundation of An-
hui Scientific Committee (No.2208085J05), Special Fund for
Key Program of Science and Technology of Anhui Province
(No.202203a07020008), Cloud Ginger XR-1.

References
[Cai et al., 2021] Siqi Cai, Pengcheng Sun, Tanja Schultz,

and Haizhou Li. Low-latency auditory spatial attention
detection based on spectro-spatial features from eeg. In
2021 43rd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), pages
5812–5815. IEEE, 2021.

[Cai et al., 2023] Siqi Cai, Tanja Schultz, and Haizhou Li.
Brain topology modeling with eeg-graphs for auditory spa-
tial attention detection. IEEE Transactions on Biomedical
Engineering, 2023.

[Cai et al., 2024] Siqi Cai, Ran Zhang, and Haizhou Li. Ro-
bust decoding of the auditory attention from eeg recordings
through graph convolutional networks. In ICASSP 2024-
2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 2320–2324. IEEE,
2024.

[Chen et al., 2023] Xiaoyu Chen, Changde Du, Qiongyi
Zhou, and Huiguang He. Auditory attention decoding with
task-related multi-view contrastive learning. In Proceed-
ings of the 31st ACM International Conference on Multi-
media, pages 6025–6033, 2023.

[Cherry, 1953] E Colin Cherry. Some experiments on the
recognition of speech, with one and with two ears. The
Journal of the acoustical society of America, 25(5):975–
979, 1953.

[Choi et al., 2013] Inyong Choi, Siddharth Rajaram, Lenny A
Varghese, and Barbara G Shinn-Cunningham. Quantify-
ing attentional modulation of auditory-evoked cortical re-
sponses from single-trial electroencephalography. Fron-
tiers in human neuroscience, 7:115, 2013.

[Dai et al., 2018] Bohan Dai, Chuansheng Chen, Yuhang
Long, Lifen Zheng, Hui Zhao, Xialu Bai, Wenda Liu, Yux-
uan Zhang, Li Liu, Taomei Guo, et al. Neural mechanisms
for selectively tuning in to the target speaker in a natural-
istic noisy situation. Nature communications, 9(1):2405,
2018.

[Das et al., 2016] Neetha Das, Wouter Biesmans, Alexander
Bertrand, and Tom Francart. The effect of head-related fil-
tering and ear-specific decoding bias on auditory attention
detection. Journal of neural engineering, 13(5):056014,
2016.

[Das et al., 2019] Neetha Das, Tom Francart, and Alexander
Bertrand. Auditory attention detection dataset kuleuven.
Zenodo, 2019.

[De Taillez et al., 2020] Tobias De Taillez, Birger Kollmeier,
and Bernd T Meyer. Machine learning for decoding lis-
teners’ attention from electroencephalography evoked by
continuous speech. European Journal of Neuroscience,
51(5):1234–1241, 2020.

[Dmochowski et al., 2014] Jacek P Dmochowski, Matthew A
Bezdek, Brian P Abelson, John S Johnson, Eric H Schu-
macher, and Lucas C Parra. Audience preferences are pre-
dicted by temporal reliability of neural processing. Nature
communications, 5(1):4567, 2014.

[EskandariNasab et al., 2024] MohammadReza Eskandari-
Nasab, Zahra Raeisi, Reza Ahmadi Lashaki, and
Hamidreza Najafi. A gru–cnn model for auditory attention
detection using microstate and recurrence quantification
analysis. Scientific Reports, 14(1):8861, 2024.

[Fan et al., 2024a] Cunhang Fan, Jinqin Wang, Wei Huang,
Xiaoke Yang, Guangxiong Pei, Taihao Li, and Zhao Lv.
Light-weight residual convolution-based capsule network
for eeg emotion recognition. Advanced Engineering Infor-
matics, 61:102522, 2024.

[Fan et al., 2024b] Cunhang Fan, Hongyu Zhang, Wei
Huang, Jun Xue, Jianhua Tao, Jiangyan Yi, Zhao Lv, and
Xiaopei Wu. Dgsd: Dynamical graph self-distillation for
eeg-based auditory spatial attention detection. Neural Net-
works, 179:106580, 2024.

[Fan et al., 2024c] Cunhang Fan, Jingjing Zhang, Hongyu
Zhang, Wang Xiang, Jianhua Tao, Xinhui Li, Jiangyan
Yi, Dianbo Sui, and Zhao Lv. Msfnet: Multi-scale fusion
network for brain-controlled speaker extraction. In Pro-
ceedings of the 32nd ACM International Conference on
Multimedia, pages 1652–1661, 2024.

[Fan et al., 2025] Cunhang Fan, Hongyu Zhang, Qinke Ni,
Jingjing Zhang, Jianhua Tao, Jian Zhou, Jiangyan Yi, Zhao
Lv, and Xiaopei Wu. Seeing helps hearing: A multi-modal
dataset and a mamba-based dual branch parallel network
for auditory attention decoding. Information Fusion, page
102946, 2025.

[Fuglsang et al., 2017] Søren Asp Fuglsang, Torsten Dau,
and Jens Hjortkjær. Noise-robust cortical tracking of at-
tended speech in real-world acoustic scenes. Neuroimage,
156:435–444, 2017.

[Fuglsang et al., 2018] Søren A Fuglsang, Daniel DE Wong,
and Jens Hjortkjær. Eeg and audio dataset for auditory
attention decoding. Zenodo, 2018.

[Jiang et al., 2022] Yifan Jiang, Ning Chen, and Jing Jin. De-
tecting the locus of auditory attention based on the spectro-
spatial-temporal analysis of eeg. Journal of Neural Engi-
neering, 19(5):056035, 2022.

[Lawhern et al., 2018] Vernon J Lawhern, Amelia J Solon,
Nicholas R Waytowich, Stephen M Gordon, Chou P Hung,
and Brent J Lance. Eegnet: a compact convolutional neural
network for eeg-based brain–computer interfaces. Journal
of neural engineering, 15(5):056013, 2018.

[Liu et al., 2024] Chenyu Liu, Xinliang Zhou, Jiaping Xiao,
Zhengri Zhu, Liming Zhai, Ziyu Jia, and Yang Liu. Vsgt:

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

variational spatial and gaussian temporal graph models for
eeg-based emotion recognition. In Proceedings of the
Thirty-Third International Joint Conference on Artificial
Intelligence, pages 3078–3086, 2024.

[Mesgarani and Chang, 2012] Nima Mesgarani and Ed-
ward F Chang. Selective cortical representation of at-
tended speaker in multi-talker speech perception. Nature,
485(7397):233–236, 2012.

[Miao et al., 2022] Zhengqing Miao, Xin Zhang, Carlo
Menon, Yelong Zheng, Meirong Zhao, and Dong Ming.
Priming cross-session motor imagery classification with
a universal deep domain adaptation framework. arXiv
preprint arXiv:2202.09559, 2022.

[Miao et al., 2023] Zhengqing Miao, Meirong Zhao, Xin
Zhang, and Dong Ming. Lmda-net: A lightweight multi-
dimensional attention network for general eeg-based brain-
computer interfaces and interpretability. NeuroImage,
276:120209, 2023.

[Monesi et al., 2020] Mohammad Jalilpour Monesi, Bernd
Accou, Jair Montoya-Martinez, Tom Francart, and Hugo
Van Hamme. An lstm based architecture to relate speech
stimulus to eeg. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 941–945. IEEE, 2020.

[Ni et al., 2024] Qinke Ni, Hongyu Zhang, Cunhang Fan,
Shengbing Pei, Chang Zhou, and Zhao Lv. Dbpnet: Dual-
branch parallel network with temporal-frequency fusion
for auditory attention detection. In Proceedings of the
Thirty-Third International Joint Conference on Artificial
Intelligence, pages 3115–3123, 2024.

[Niu et al., 2024] Yixiang Niu, Ning Chen, Hongqing Zhu,
Zhiying Zhu, Guangqiang Li, and Yibo Chen. Auditory
spatial attention detection based on feature disentangle-
ment and brain connectivity-informed graph neural net-
works. In Proc. Interspeech 2024, pages 887–891, 2024.

[Ouyang et al., 2023] Daliang Ouyang, Su He, Guozhong
Zhang, Mingzhu Luo, Huaiyong Guo, Jian Zhan, and Zhijie
Huang. Efficient multi-scale attention module with cross-
spatial learning. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5. IEEE, 2023.

[Puffay et al., 2022] Corentin Puffay, Jana Van Canneyt,
Jonas Vanthornhout, Hugo Van Hamme, and Tom Fran-
cart. Relating the fundamental frequency of speech with
eeg using a dilated convolutional network. arXiv preprint
arXiv:2207.01963, 2022.

[Shen et al., 2022] Xinke Shen, Xianggen Liu, Xin Hu, Dan
Zhang, and Sen Song. Contrastive learning of subject-
invariant eeg representations for cross-subject emotion
recognition. IEEE Transactions on Affective Computing,
14(3):2496–2511, 2022.

[Su et al., 2021] Enze Su, Siqi Cai, Peiwen Li, Longhan Xie,
and Haizhou Li. Auditory attention detection with eeg
channel attention. In 2021 43rd Annual International Con-
ference of the IEEE Engineering in Medicine & Biology
Society (EMBC), pages 5804–5807. IEEE, 2021.

[Su et al., 2022] Enze Su, Siqi Cai, Longhan Xie, Haizhou
Li, and Tanja Schultz. Stanet: A spatiotemporal at-
tention network for decoding auditory spatial attention
from eeg. IEEE Transactions on Biomedical Engineering,
69(7):2233–2242, 2022.

[Tune et al., 2021] Sarah Tune, Mohsen Alavash, Lorenz
Fiedler, and Jonas Obleser. Neural attentional-filter mech-
anisms of listening success in middle-aged and older indi-
viduals. Nature Communications, 12(1):4533, 2021.

[Van der Maaten and Hinton, 2008] Laurens Van der Maaten
and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(11), 2008.

[Vandecappelle et al., 2021] Servaas Vandecappelle, Lucas
Deckers, Neetha Das, Amir Hossein Ansari, Alexander
Bertrand, and Tom Francart. Eeg-based detection of the
locus of auditory attention with convolutional neural net-
works. Elife, 10:e56481, 2021.

[Wang et al., 2020] Qilong Wang, Banggu Wu, Pengfei Zhu,
Peihua Li, Wangmeng Zuo, and Qinghua Hu. Eca-net:
Efficient channel attention for deep convolutional neural
networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 11534–
11542, 2020.

[Wang et al., 2023] Ruicong Wang, Siqi Cai, and Haizhou Li.
Eeg-based auditory attention detection with spatiotemporal
graph and graph convolutional network. In Proceedings of
INTERSPEECH, pages 1144–1148, 2023.

[Wu et al., 2020] Zonghan Wu, Shirui Pan, Guodong Long,
Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with
graph neural networks. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery
& data mining, pages 753–763, 2020.

[Yan et al., 2024] Sheng Yan, Cunhang Fan, Hongyu Zhang,
Xiaoke Yang, Jianhua Tao, and Zhao Lv. Darnet: Dual at-
tention refinement network with spatiotemporal construc-
tion for auditory attention detection. In The Thirty-eighth
Annual Conference on Neural Information Processing Sys-
tems, pages 31688–31707, 2024.

[Zhang et al., 2023] Yuanming Zhang, Haoxin Ruan, Ziyan
Yuan, Haoliang Du, Xia Gao, and Jing Lu. A learnable
spatial mapping for decoding the directional focus of au-
ditory attention using eeg. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5. IEEE, 2023.

[ZHANG et al., 2024] Hongyu ZHANG, Jingjing ZHANG,
DONG Xingguang, LÜ Zhao, TAO Jianhua, ZHOU Jian,
WU Xiaopei, and FAN Cunhang. Based on audio-video
evoked auditory attention detection electroencephalogram
dataset. Journal of Tsinghua University (Science and Tech-
nology), 64(11):1919–1926, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


