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Abstract

Continual Anomaly Detection (CAD) enables
anomaly detection models in learning new classes
while preserving knowledge of historical classes.
CAD faces two key challenges: catastrophic for-
getting and segmentation of small anomalous re-
gions. Existing CAD methods store image distri-
butions or patch features to mitigate catastrophic
forgetting, but they fail to preserve pixel-level de-
tailed features for accurate segmentation. To over-
come this limitation, we propose ReplayCAD, a
novel diffusion-driven generative replay framework
that replay high-quality historical data, thus ef-
fectively preserving pixel-level detailed features.
Specifically, we compress historical data by search-
ing for a class semantic embedding in the con-
ditional space of the pre-trained diffusion model,
which can guide the model to replay data with fine-
grained pixel details, thus improving the segmenta-
tion performance. However, relying solely on se-
mantic features results in limited spatial diversity.
Hence, we further use spatial features to guide data
compression, achieving precise control of sample
space, thereby generating more diverse data. Our
method achieves state-of-the-art performance in
both classification and segmentation, with notable
improvements in segmentation: 11.5% on VisA and
8.1% on MVTec. Our source code is available at
https://github.com/HULEI7/ReplayCAD.

1 Introduction
Nowadays, unsupervised Anomaly Detection (AD) is crucial
in modern manufacturing [Liu et al., 2024b]. It automati-
cally identifies defects in samples at image and pixel levels,
enhancing production efficiency and product quality while re-
ducing reliance on manual inspections. However, in practical
industrial production, changes in the generation plan continu-
ously produce new class samples, requiring the model to learn
knowledge from new samples while retaining knowledge of
previous ones, i.e., Continual Anomaly Detection (CAD).

∗Corresponding author.

Input GTReplayCAD 
(Ours)

UCAD
(SOTA)

Figure 1: Compared to the SOTA method UCAD, our approach
achieves more accurate anomaly segmentation, since we better pre-
serves pixel-level detailed features through high-quality data replay.

The key challenge of CAD lies in two aspects: First, catas-
trophic forgetting, where models tend to catastrophically for-
get historical class knowledge when learning new class data.
Second, CAD requires not only the identification of image-
level anomalous samples but also the segmentation of pixel-
level anomalous regions. Since anomaly regions are usually
small (As illustrated in Figure 3), this requires the model to
remember more detailed pixel-level features from historical
samples to ensure accurate anomaly segmentation.

A straightforward approach to addressing these two chal-
lenges is to apply existing Continual Learning (CL) methods
(e.g. EWC [Kirkpatrick et al., 2017], MAS [Aljundi et al.,
2018]) to anomaly detection models. However, existing CL
methods do not focus on preserving the detailed features of
historical samples, making them ineffective for CAD [Tang
et al., 2025]. Advanced CAD methods [Li et al., 2022;
Liu et al., 2024a] aim to mitigate catastrophic forgetting
by compressing and storing features of historical samples.
Specifically, DNE [Li et al., 2022] stores the mean and vari-
ance of image features. However, DNE remembers only the
overall features of the distribution while ignoring the detailed
features of individual samples. UCAD [Liu et al., 2024a] di-
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(a)    Semantic 
Features

Screw Chewinggum Metal Nut

(b)    Spatial 
Features

Figure 2: Visualization of semantic and spatial features. (a) Seman-
tic features, samples from different classes exhibit distinct texture
and shape characteristics. (b) Spatial features, samples within the
same class are distributed across different spatial locations.

vides the image into multiple patches and encodes them into
features for storage, resulting in the loss of pixel-level details
from historical samples. In summary, these methods fail to
preserve the pixel-level detailed features of samples, which
negatively impacts segmentation performance.

To address this, we propose ReplayCAD, a novel CAD
framework that can replay real and diverse historical data,
thus preserving pixel-level detailed features. ReplayCAD
consists of two stages: (1) compressing historical data of
each class into conditional features; and (2) utilizing these
features to replay historical data, and using the replayed
data together with new class data for model training. Our
key contribution lies in enhancing first-stage data compres-
sion to generate more diverse and authentic historical data.
Specifically, in the first stage, we employ reverse engineer-
ing to learn a class semantic embedding in the conditional
space of a pre-trained diffusion model for each class’s his-
torical data. This class semantic embedding guides the dif-
fusion model to generate historical data with pixel-level de-
tailed features, significantly enhancing the segmentation per-
formance of anomalous regions. However, as illustrated in
Figure 2, samples contain not only semantic features but also
rich spatial features. Compressing data using semantic fea-
tures alone leads to replayed data lacking spatial diversity. To
address this issue, we utilize the sample’s mask as its spa-
tial features to guide the data compression process. This
approach enables controlled generation of spatial positions,
resulting in the replay of more diverse historical data. Our
method offers several advantages: Firstly, compared to cur-
rent CAD methods based on feature replay [Li et al., 2022;
Liu et al., 2024a] and regularization [Tang et al., 2025;
Li et al., 2025], the replay-based approach is more effective
in preserving the detailed features of samples, which leads
to better performance in anomaly segmentation. Secondly,
by considering both semantic and spatial features, we gen-
erate high-quality and diverse samples, which significantly
mitigates catastrophic forgetting. Finally, by guiding the pre-

(a)  Anomaly Image (b)  Anomaly Mask

Figure 3: Visualization of anomalous regions, illustrating their typi-
cally small areas.

trained diffusion model to perform reverse engineering, we
significantly reduce training time and cost compared to ex-
isting replay methods [Shin et al., 2017; Wang et al., 2021;
Gao and Liu, 2023; Li et al., 2024] that require training the
entire generator.

To sum up, our contributions are as follows:

• We propose a novel CAD framework ReplayCAD,
which effectively preserves fine-grained pixel details
through high-quality data replay, significantly enhancing
anomaly segmentation performance. To our best knowl-
edge, this is the first attempt to apply diffusion-driven
generative replay approach in CAD.

• To generate more diverse historical data, we employ
spatial features of samples to guide data compression,
thereby achieving spatially controlled data replay.

• Extensive experiments demonstrate that our method sig-
nificantly outperforms SOTA approaches, particularly in
segmentation performance, achieving improvements of
11.5% and 8.1% on VisA and MVTec, respectively.

2 Related Work
2.1 Unsupervised Anomaly Detection
Currently, unsupervised anomaly detection methods can be
classified into the following three types: Embedding-based
methods [Roth et al., 2022; Deng and Li, 2022; Liu et al.,
2023] model the feature distribution of normal samples and
detect anomalies by identifying deviations of anomalous sam-
ples from this distribution. Reconstruction-based meth-
ods [You et al., 2022; He et al., 2024; Zhang et al., 2024a;
Wu et al., 2024] train a model to reconstruct normal images
and detect anomalies by comparing the differences between
the input image and the reconstructed image. Synthesizing-
based methods [Hu et al., 2024; Li et al., 2021; Zavrtanik
et al., 2021a; Zuo et al., 2024] train a model by adding ar-
tificially synthesized anomalies to normal images, thereby
improving anomaly detection capability. However, in real-
world industrial scenarios where new classes of data fre-
quently emerge, and existing AD methods lack the capability
for continual learning, our goal is to equip existing anomaly
detection methods with continual learning capability.
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Input Image LDM 𝐸

𝑪𝑨

Denoising U-net

Latent Feature

𝑪𝑨

Add 
Noise 𝜖

𝜖𝜃

Spatial Encoder

SAM 𝐸 MLP

Mask
𝑒𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑒s𝑒𝑚𝑎𝑛𝑡𝑖𝑐

Conditions

𝑪𝑨

𝑣

"𝑎 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓 𝑎"

𝑇
Semantic Encoder

𝑇

𝑒𝑐

Latent Encoder

Text Encoder

Cross Attention

Frozen
Learnable

Figure 4: Overview of Data Compression. We compress the data from both semantic and spatial dimensions: (1) Semantic. In the semantic
encoder, we get the semantic feature by initializing a class semantic embedding v and combining it with a prompt p encoded by the text
encoder. (2) Spatial. In the spatial encoder, we first obtain the mask of the sample using SAM and learn the mapping of mask to spatial
features by optimizing a MLP layer. Finally, we use spatial and semantic features as conditions to guide the denoising process of LDM.

2.2 Continual Learning
The current methods for continual learning can be broadly
categorized into the following three types: Regularization-
based methods [Kirkpatrick et al., 2017; Pan et al., 2020;
Aljundi et al., 2018] prevent forgetting of previous tasks by
imposing constraints on model parameters. Replay-based
methods [Rebuffi et al., 2017; Liu et al., 2020; Riemer et
al., 2019] consolidate the retention of prior knowledge by re-
playing data or features from past tasks. Architecture-based
methods [Mallya and Lazebnik, 2018; Mallya et al., 2018;
Yoon et al., 2017] assign specific parameters to each task,
isolating them to minimize interference. However, existing
CL methods are not specifically designed to preserve detailed
features of historical samples in CAD, making them unsuit-
able for direct application to AD models.

2.3 Continual Anomaly Detection
Current CAD research can be broadly categorized into two
approaches: Feature replay-based [Li et al., 2022; Liu et
al., 2024a] and Regularization-based [Tang et al., 2025;
Li et al., 2025]. DNE [Li et al., 2022] and UCAD [Liu
et al., 2024a] store the feature embeddings of samples from
previous classes and locate anomalies by comparing the test
sample features with the stored embeddings. However, these
methods cannot save the pixel-level detailed features, result-
ing in poor performance of anomalous region segmentation.
IUF [Tang et al., 2025] and CDAD [Li et al., 2025]prevent
knowledge forgetting by restricting parameter updates for
previous classes, but its performance deteriorates in long
class sequences. To address these issues, we focus on the
data itself to remember detailed features, we propose a novel
CAD framework that can replay high-quality historical data.

3 Problem Definition
In this section, we provide a detailed introduction to the spe-
cific setting of the CAD. Unlike traditional AD task where all
classes are known during training, CAD requires the model
to continuously learn new classes, essentially falling un-
der the category of class-incremental learning. Specifically,

for an anomaly detection dataset with N classes, its train-
ing and testing sets are represented as {X1,X2, · · · ,XN }
and {Y1,Y2, · · · ,YN }, respectively. When learning the i-th
class, we can only access the training data Xi and cannot ac-
cess data from previous classes {X1,X2, · · · ,Xi−1}, during
testing, we need to perform testing on {X1,X2, · · · ,Xi}. Our
goal is to sequentially train on the training set of each class
and ultimately evaluate on the testing set {Y1,Y2, · · · ,YN }.

4 Methods
4.1 Overview
ReplayCAD consists of two stages: feature-guided data com-
pression stage and replay-enhanced anomaly detection stage.
In the first stage, we compress the data of historical classes
from both semantic and spatial dimensions, thereby extract-
ing corresponding conditional features, as shown in Figure
4. Specifically, for semantic features, we search for a class
semantic embedding within the conditional space of the pre-
trained LDM to guide the model in generating samples for the
corresponding class. For spatial features, we learn the map-
ping relationship between the mask and the spatial features,
where the mask is obtained through SAM [Kirillov et al.,
2023]. In the second stage, we use the conditional features
learned in the first stage to replay the historical class data,
and train the anomaly detection model together with the new
class data. The main contribution of this paper is to enhance
the data compression of the first stage from both semantic and
spatial dimensions, so as to generate more diversified and au-
thentic historical data. Therefore, in the following, we will
focus on how to use semantic and spatial features to guide
LDM to compress samples in the first stage.

4.2 Semantic-Aware Generative Replay
In this section, we will investigate how to accomplish the two
stages of generative replay using only semantic features.

Latent Diffusion Model (LDM) [Rombach et al., 2022]
generates data by denoising in a low-dimensional latent
space. Compared to directly working in high-dimensional
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pixel space, this approach significantly improves computa-
tional efficiency while preserving essential semantic informa-
tion, ensuring high-quality outputs. To further enhance con-
trollability, LDM incorporates a conditional guidance mech-
anism. This allows conditions such as text descriptions, im-
age masks, or class labels to guide the generation process,
ensuring that the results closely align with the given condi-
tions while maintaining diversity and flexibility. Specifically,
for the input image x , the LDM first encodes it using a la-
tent encoder E and then adds random noise ϵ to generate the
noisy image zt for denoising. Subsequently, the noisy im-
age zt and conditions c are fed into the denoising U-Net,
where the noise ϵθ is predicted using a cross-attention mech-
anism [Dai et al., 2023; Dai et al., 2024; Peng et al., 2024;
Hu and Huang, 2025]. The optimization function of LDM is
as follows:

LLDM = EE(x),ϵ∼N (0,1),t,c[∥ϵ− ϵθ(E(x), t, Ec(c))∥22], (1)

Instead of directly training the LDM, we learn the condi-
tional feature to guide it in generating samples for the cor-
responding class. Specifically, to represent semantic fea-
tures, we first randomly initialize a learnable embedding
v ∈ RK×C , which serves as the foundational representation.
In addition, we take a text prompt p (e.g., “a photo of a”), en-
code it using a frozen text encoder T , and then concatenate it
with the semantic embedding v to form the final semantic fea-
tures esemantic, guiding the LDM’s denoising process. The
optimization objective is as follows:

esemantic = {T (p), v}, (2)

v∗ = argmin
v

LLDM (x, t, esemantic), (3)

We store the learned semantic embedding v for each class.
When new class data appears, we use these semantic embed-
dings to guide LDM to replay the historical class data. After
replaying data from historical classes, we integrate this data
with new class data to train the AD model, effectively mitigat-
ing the catastrophic forgetting of the historical classes. Our
approach imposes no restrictions on anomaly detection mod-
els, in this study, we select the multi-class anomaly detec-
tion model InvAD [Zhang et al., 2024b] as the baseline. The
multi-class AD model combines samples from all classes dur-
ing training, eliminating the need to know sample classes be-
forehand during inference, thus addressing class uncertainty
in CAD. InvAD detects multiple types of anomalies by intro-
ducing a feature inversion mechanism and leveraging high-
quality feature reconstruction capabilities. Specifically, In-
vAD consists of an encoder E and a generator G. For a given
normal input sample x, its original feature F is first extracted
using a frozen encoder, and then its reconstructed feature F∗

are generated by the generator:

F = E(x), F∗ = G(F). (4)
Then, the abnormal region is obtained by calculating the

difference between the original feature F and the generated
feature F∗. The loss function is defined as follows:

LInvAD = EE,G,x[∥F − F∗∥22], (5)

mlp masks

Random
Augment

…
mlp

…
masks

…
Replay

…

Enhanced Masks

Stored Conditional Features Replayed Data

…
𝑣

…

Figure 5: Overview of Data Replay. We use stored semantic em-
beddings v, the mlp layer, and mask images to guide the LDM in
replaying data from historical classes. To enhance the diversity of
replay samples, we apply random augmentations to the masks.

4.3 Spatially-Enhanced Diverse Generation
However, the samples not only present semantic features, but
also various spatial features, as shown in Figure 2, focusing
solely on learning semantic features may cause the gener-
ated samples to overfit certain specific examples [Yang et al.,
2025; Hu et al., 2024; Liang et al., 2024], resulting in a lack
of spatial diversity. Therefore, we introduce spatial features
to guide the data compression process.

The spatial features of a sample include its coordinates
and angle, which are difficult to represent directly. To ad-
dress this, we use a mask image to denote the sample’s spa-
tial features. However, due to the lack of mask labels in
the training set, we utilize SAM’s [Kirillov et al., 2023]
powerful zero-shot segmentation capability to generate the
mask for each sample. As the diffusion model cannot di-
rectly interpret mask information, we optimize a mlp layer
to learn the mapping from the mask to spatial features, thus
guiding the diffusion model in denoising. Specifically, for
an input image x ∈ RH×W×3, we first generate its corre-
sponding object mask image by SAM. The mask image is
then encoded by a latent encoder E to produce feature rep-
resentations xmask ∈ RH

8 ×W
8 ×4, which are then reshaped

to match the input size required by the mlp layer, resulting
in x

′

mask ∈ RHW
16n ×n. Subsequently, a mlp layer W with

a size of (n,m) is applied to compute the spatial feature
xspatial ∈ RHW

16n ×m. Finally, xspatial is reshaped again to
align with the size of the semantic features, yielding the final
spatial features espatial ∈ RM×C .

We concatenate the extracted semantic features esemantic

and spatial features espatial to obtain the condition ec, which
is used to guide the denoising process of the LDM:

ec = {esemantic, espatial} ∈ R(K+M)×C , (6)

Our goal is to find the best semantic embedding v as well
as the mlp layer W for each class, the optimization objectives
are outlined as follows:

v∗,W∗ = argmin
v,W

LLDM (x, t, ec), (7)
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Method Venue
VisA MVTec

Image-AUROC Pixel-AP Image-AUROC Pixel-AP
Avg (↑) FM (↓) Avg (↑) FM (↓) Avg (↑) FM (↓) Avg (↑) FM (↓)

PatchCore CVPR 22 57.6 38.0 10.3 32.4 60.7 40.7 20.9 43.1
SimpleNet CVPR 23 58.9 33.4 7.3 30.2 62.4 36.9 17.7 32.6
MambaAD NeurIPS 24 59.5 32.4 8.8 27.6 60.6 37.6 12.7 43.8

InvAD arXiv 24 67.5 28.1 9.8 33.1 66.8 31.7 21.5 38.2
SimpleNet+EWC CVPR 23 59.6 35.3 9.0 28.2 69.0 29.8 21.6 28.1
MambaAD+EWC NeurIPS 24 60.6 32.0 8.2 29.3 65.1 33.0 13.5 43.4
SimpleNet+MAS CVPR 23 60.6 34.4 9.3 28.1 70.3 28.8 25.4 24.3
MambaAD+MAS NeurIPS 24 65.2 25.9 9.5 25.6 64.5 33.9 12.2 45.2

DNE MM 22 60.1 17.8 – – 87.6 4.7 – –
DNE + PANDA CVPR 21 46.0 36.8 – – 66.3 21.8 – –
DNE + CutPaste CVPR 21 61.3 18.9 – – 83.9 9.8 – –

UCAD AAAI 24 87.4 – 30.0 – 93.0 – 45.6 –
IUF ECCV 24 68.1 8.5 3.4 0.3 76.2 6.7 17.1 5.9

CDAD CVPR 25 62.8 22.2 8.3 21.7 74.3 20.1 28.0 26.1
ReplayCAD Ours 90.3 5.5 41.5 5.0 94.8 4.5 53.7 5.5

Table 1: Comparison with state-of-the-art methods. Bold indicates the best performance, while underline indicates the second-best perfor-
mance. The term ” Avg ” refers to the mean value obtained by testing across all classes after completing training on the final class.

After training is completed for each class, we save the se-
mantic embedding v and the mlp layer W for subsequent data
replay. In addition, M(M ∈ [1, 10]) randomly selected mask
images are stored to control the spatial positioning of the gen-
erated images. These stored components constitute the condi-
tional features for each class, requiring minimal storage space
while enabling precise control over both semantic and spatial
aspects during data replay.

In the second stage, to achieve real and diverse data re-
play, we use stored conditional features to achieve control-
lable generation in both semantic and spatial aspects, as illus-
trated in Figure 5. Semantically, we use semantic embedding
v to control the class of generated samples. Spatially, we
control the spatial position of samples through image masks
and the mlp layer W in the spatial encoder. In addition, we
randomly rotate and shift the stored masks to enhance their
spatial diversity. By achieving semantic and spatial control-
lable generation, we can generate real and diverse historical
data, thus preserving pixel-level details more efficiently.

5 Experiments
5.1 Experiments Setup
Datasets. We conducted experiments on two commonly used
industrial anomaly detection datasets: VisA [Zou et al., 2022]
and MVTec [Bergmann et al., 2019]. VisA comprises 12
sample classes, with 8659 training samples (all normal) and
2162 test samples (962 normal, 1200 anomalous). MVTec in-
cludes 15 sample classes, with 3629 training samples (all nor-
mal) and 1725 test samples (467 normal, 1258 anomalous).

Compared Methods. We compare our approach with
three methods: (1) CAD Methods. We compare our method

with SOTA CAD methods, including CDAD [Li et al., 2025],
IUF [Tang et al., 2025], UCAD [Liu et al., 2024a], and
DNE [Li et al., 2022]. Additionally, we migrate the frame-
work of DNE to PANDA [Reiss et al., 2021] and CutPaste [Li
et al., 2021]. (2) AD Methods. We apply current SOTA AD
methods directly to CAD, including PatchCore [Roth et al.,
2022], SimpleNet [Liu et al., 2023], MambaAD [He et al.,
2024] and InvAD [Zhang et al., 2024b], we fine-tune the old
model as new class data comes in. (3) AD+CL Methods. We
adapt CL methods, such as EWC [Kirkpatrick et al., 2017]
and MAS [Aljundi et al., 2018], to SimpleNet and MambaAD
to enhance their adaptability in CAD.

Metrics. Similar to previous methods, we assess the per-
formance of anomaly detection from both classification and
segmentation perspectives. For classification performance,
we use Area Under the Receiver Operating Characteristics
(AUROC) [Zhou and Paffenroth, 2017], while for segmen-
tation performance, we use Area Under Precision-Recall
(AP) [Zavrtanik et al., 2021b]. Moreover, we use Forgetting
Measure (FM) [Chaudhry et al., 2018] to evaluate the extent
to which the model forgets historical classes:

FM =
1

N − 1

N−1∑
i=1

max
γ∈{1, · · · ,N − 1}

(aγ,i − aN ,i), (8)

Here, N represents the total number of classes, i denotes the
class number, and a indicates the classification or segmenta-
tion score for that class.

Implementation Details. We set the number of tokens
K for the semantic embedding v to 20. For ViSA, we use
pre-trained Stable Diffusion 1.5 weights with a resolution of
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Figure 6: Visualization of anomalous region segmentation. From left to right are the test image, the heatmaps predicted by the comparison
methods, the heatmap predicted by our method, and the Ground Truth (GT). Areas with high anomaly scores are shown in red, while areas
with low anomaly scores are shown in blue.

Method VisA MVTec
UCAD 18.6 MB 23.3 MB
CDAD 2.7 GB 3.5 GB

ReplayCAD (Ours) 1.9 MB 3.0 MB

Table 2: Comparison of storage space with the SOTA method.

Model Semantic Spatial I-AUROC P-AP
T1 ✗ ✗ 66.8 21.5
T2 ✓ ✗ 92.4 49.5
T3 ✗ ✓ 86.9 42.5
T4 ✓ ✓ 94.8 53.7

Table 3: Effect of semantic and spatial features on MVTec.

(512, 512), where the dimension C of the semantic and spa-
tial features is 768, and the MLP layer size is (128, 196).
For MVTec, we use pre-trained LDM weights with a resolu-
tion of (256, 256), where the dimension C of the semantic
and spatial features is 1280, and the MLP layer size is (128,
200). We generate 800 samples for each class for training
the anomaly detection model. We use Invad [Zhang et al.,
2024b] as the baseline model for anomaly detection, keeping
all settings consistent with the original paper.

5.2 Experiment Performance
Quantitative Evaluation. As shown in Table 1, our method
achieves state-of-the-art performance on both image-level
and pixel-level metrics across two datasets. Specifically, we

Method Venue I-AUROC P-AP
PatchCore CVPR 22 93.7 54.7

RLR ECCV 24 94.0 50.6
MambaAD NeurIPS 24 95.3 53.1

InvAD arXiv 24 94.8 53.7

Table 4: Transferring to different AD models on MVTec.

improved pixel-level metrics by 11.5% on VisA and 8.1%
on MVTec compared to the previous state-of-the-art method.
Existing anomaly detection methods often suffer from catas-
trophic forgetting in continual learning scenarios. Although
some continual learning methods can mitigate this issue, there
remains a significant gap compared to our approach. We ob-
serve that although IUF performs poorly in terms of pixel-
level and image-level metrics, it demonstrates relatively low
FM scores. This is because IUF experiences severe feature
conflicts between new and historical classes when learning
data from new classes. This conflict causes the historical best
performance aγ,i (Eq. 8) of new classes to fall below their
actual potential, thus resulting in lower FM scores. Addition-
ally, although UCAD reported the FM metric in the original
paper, its historical best score aγ,i was achieved by storing a
larger number of patch features, which fails to reflect the true
FM metric. Therefore, we marked it as “-”.

Additionally, we compare our method’s storage space with
the SOTA methods. As shown in Table 2, different from
UCAD storage patch-level features and CDAD storage gra-
dient projection, our approach significantly reduces storage
space by storing semantic and spatial features of samples,
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Figure 7: The visual comparison of replayed data and real data on the MVTec and VisA datasets.

while also achieving superior experimental performance.
Qualitative Evaluation. Figure 6 shows the heatmaps of

anomaly regions predicted by our method and other SOTA
methods. We found that the AD methods, AD + CL meth-
ods, and IUF often result in a large area of error prediction.
This occurs because, when learning new classes, these meth-
ods conflict with the features of historical classes, leading
to catastrophic forgetting of previously acquired knowledge.
Although UCAD shows significant improvement compared
to previous methods, it still suffers from missed detections in
anomalous regions. Visualization results demonstrate that our
method achieves higher accuracy in anomaly segmentation.

Visualization of Replayed Data. As shown in Figure 7,
we present a comparison between the replayed data and the
real data. Since AD is conducted in an unsupervised setting,
the replayed data should closely resemble the real normal
data. The results indicate that the replayed data exhibit a high
degree of similarity to the real data, validating the effective-
ness of our framework based on generative replay.

5.3 Analysis
In this section, we analyze the impact of the two proposed
features and different AD models on MVTec.

Effect of semantic and spatial features. As shown in Ta-
ble 3, we analyze the effectiveness of the proposed seman-
tic features esemantic and spatial features espatial. T1 indi-
cates that we do not retain any features of historical samples
but instead directly train the AD model sequentially on sam-
ples from each class. In this case, the model suffers from
catastrophic forgetting, resulting in a sharp decline in per-
formance. T2 and T3 represent the processes of learning
and storing spatial features and semantic features of the sam-

ples, respectively, followed by replaying historical data us-
ing the learned features. The results indicate that both types
of features can significantly alleviate catastrophic forgetting.
T4 simultaneously learns both spatial and semantic features.
Compared to learning them individually, this approach sig-
nificantly improves classification and segmentation perfor-
mance, further demonstrating the critical role of these two
types of features in replaying historical data.

Transferring to different AD models. To validate the
generalization capability of the replayed data, we transfer it
to various anomaly detection models for training, including
Patchcore [Roth et al., 2022], RLR [He et al., 2025], Mam-
baAD [He et al., 2024], and InvAD [Zhang et al., 2024b], as
shown in Table 4. Our replayed data demonstrated strong per-
formance across four methods, confirming the superior gen-
eralization ability of the proposed method. Moreover, this in-
dicates that our method can be readily adapted to SOTA AD
methods at any time. Compared to other CAD methods that
can only adapt to a single AD method, our approach demon-
strates greater adaptability and sustainability.

6 Conclusion
In this paper, we introduce ReplayCAD, marking the first use
of generative replay based on a pre-trained diffusion model
in CAD. Compared to current state-of-the-art methods, our
approach more effectively preserves the detailed features of
historical samples, leading to significant improvements in
segmenting anomalous regions. Additionally, by incorporat-
ing semantic and spatial feature guidance into data compres-
sion, we achieve high-quality data generation. Experimental
results demonstrate that our method achieves SOTA perfor-
mance on both image-level and pixel-level metrics.
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