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Abstract
Vertical federated learning (VFL) enables feature-
level collaboration by incorporating scattered at-
tributes from aligned samples, and allows each
party to contribute its personalized input to joint
training and inference. The injection of adversarial
inputs can mislead the joint inference towards the
attacker’s will, forcing other benign parties to make
negligible contributions and losing rewards regard-
ing the importance of their contributions. However,
most attacks require server model queries, subsets
of complete test samples, or labeled auxiliary im-
ages from the training domain. These extra require-
ments are not practical for real-world VFL applica-
tions. In this paper, we propose PGAC, a novel and
practical attack framework for crafting adversarial
inputs to dominate joint inference, which does not
rely on the above requirements. PGAC advances
prior attacks by requiring only access to auxil-
iary images from non-training domains. PGAC
learns generalized label-indicative embeddings and
estimates class-transferable probabilities across do-
mains to generate a proxy model that closely ap-
proximates the server model. PGAC then augments
images by emphasizing salient regions with class
activation maps, creating a diverse shadow input set
that resembles influential test inputs. With proxy fi-
delity and input diversity, PGAC crafts transferable
adversarial inputs. Evaluation on diverse model ar-
chitectures confirms the effectiveness of PGAC.

1 Introduction
Federated learning (FL) has emerged as a promising tech-
nique for data silos, allowing multiple parties collaboratively
train a model without disclosing their private data [McMa-
han et al., 2017]. According to data distribution modes
among various parties, FL can be categorized into horizon-
tal federated learning (HFL) and vertical federated learning
(VFL) [Hard et al., 2018]. HFL involves clients with differ-
ent data samples but a same feature space, while VFL ap-
plies to clients with same samples but complementary fea-

∗Corresponding author: Peng Jiang

ture spaces [Wang et al., 2023a]. As the availability of
domain-specific image data increases and the need for col-
laboration at the feature level, VFL has gained prominence
in many real-world image classification applications such as
healthcare systems, e-commerce platforms, and IoT sens-
ing, due to its advantage of incorporating scattered attributes
from aligned samples [Poirot et al., 2019; Mammen, 2021;
Shi et al., 2022]. Suppose that a service provider, referred to
as the active party, owns image data and labels related to en-
tities and wishes to train a server model for image classifica-
tion. The active party may collaborate with other parties (i.e.,
passive parties) that possess complementary image features
of the same entities. Instead of sharing raw image data and
labels, the active party aggregates embeddings from passive
parties’ embedding models for joint training and subsequent
inference [Bai et al., 2023; Liu et al., 2024].

While VFL ensures that each party’s input contributes to
business services, it is still vulnerable to adversarial inputs
[Pang et al., 2022; Qiu et al., 2022], where subtle perturba-
tions to a partial input feature from an adversarial party cause
the server model to misclassify during joint inference. The
existence of adversarial inputs reveals security risks in de-
ploying VFL in real-world applications, enabling attackers to
steer predictions toward a desired class and monopolize re-
wards, as only their input features contribute meaningfully
to the joint inference [Sim et al., 2020]. Despite the advance-
ments in crafting adversarial inputs, they have to pre-set some
restricted assumptions. For example, in [Pang et al., 2022],
it is required to query the server model and fetch a subset of
complete test samples in advance. In practice, this resource-
intensive query budget is costly and inevitably alerts the ser-
vice provider. Additionally, acquiring input from other par-
ties is difficult due to privacy concerns and transmission lim-
itations. Another work [Qiu et al., 2022] relies on labeled
data sharing the same data distribution and class space as the
training data. This is not consistent with real-world images
which are usually with significant cross-domain disparities.

Motivated by above issues, we propose PGAC, a practical
adversarial attack framework against VFL. PGAC enables a
passive party to craft adversarial inputs that dominate joint in-
ference by exploiting labeled auxiliary image data, even when
it differs from the training data in both distribution and class
space. PGAC consists of two modules: Proxy Generation
and Adversarial Crafting. The proxy generation module pro-
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duces a high-fidelity proxy model that emulates the server
model’s behavior, enabling accurate gradient guidance to di-
rect perturbations toward the direction of minimum classifi-
cation loss for desired class. This is achieved by transferring
label knowledge from a labeled source domain (i.e., auxil-
iary images) to an unlabeled target domain (i.e., training im-
ages). Through adversarial learning of transferable features,
this module captures critical label-indicative characteristics
across images and then aligns the cross-domain distributions
within the shared class space while filtering out outlier classes
using class transferable probabilities. The adversarial craft-
ing module iteratively generates dominant perturbations that
negate the influence of test input features from any other party
during the server model’s joint inference. This is achieved by
constructing a diverse contribution-emphasized shadow input
set, enforcing adversarial perturbation optimization that sup-
presses influential test inputs in the proxy’s joint inference.
Simultaneously, the high fidelity of the proxy model and the
diversity of shadow inputs ensure crafted adversarial inputs
can be transferred to dominate the server model’s joint infer-
ence. Finally, we assess three potential countermeasures.

The main contributions of this paper are twofold.
• We propose PGAC, a novel adversarial attack frame-

work against VFL that requires no queries to the server
model, real test inputs from other parties, and labeled
images from the training domain. PGAC introduces a
high-fidelity proxy model and diverse influential shadow
inputs for joint inference, crafting transferable adversar-
ial inputs that effectively control the server model’s pre-
dictions and diminish benign parties’ contributions.

• We implement a PGAC prototype system based on the
dual-module architecture, and conduct experiments to
evaluate performance of PGAC. Extensive experiments
across models confirm that PGAC dominates the VFL
prediction, achieving 96.33% attack success rate, and
outperforming state-of-the-art attacks by up to 31.83%.
Results against three potential countermeasures also
show that PGAC generally survives existing defenses.

2 Problem Statement
2.1 VFL Training and Inference
Consider an image classification task with m parties P =
{P1, . . . ,Pm}, each holding a training dataset Di

train =
(U i

train,F i) and a test dataset Di
test = (U i

test,F i). Here U i is
the sample space, representing the set of images, and F i is the
feature space. Before training and inference, VFL determines
the global sample space U = {Utrain,Utest} as the intersection
of local sample spaces [Chen et al., 2017]: U =

⋂m
i=1 U i,

and aligns features from different F i for each sample.
In VFL, only one party holds the labels, referred to as the

active party, while the others act as passive parties [Li et al.,
2023a; Fu et al., 2022]. Each party Pi trains a local embed-
ding model to map the di-dimensional feature vector xi

utra
of a

training sample utra, from the feature space F i of Di
train, into

a latent embedding hi
utra

[Bai et al., 2023]: Mi
e(x

i
utra

; θi) :

Rdi → Rdi
∗ , where di = hei × wii × dei, with hei, wii, and

dei denoting the height, width, and depth of images owned by

Pi. Each party then uploads its embeddings hi
utra

to the server
model Ms, controlled by the active party. The embeddings
are concatenated as hcat = [h1

utra
, . . . ,hm

utra
]. The server model

maps hcat to htop: Ms(hcat; θtop) : Rd1
∗+···+dm

∗ → Rc, where
c is the number of classes. The output htop is used to compute
the loss, e.g., cross-entropy loss, to optimize the parameters
of all models. The VFL training objective is formulated as:

min
{θi}m

i=1,θtop

Eutra∈Utrain

[
ℓce
(
h1
utra

, . . . ,hm
utra

, yutra ; {θi}mi=1, θtop
)]

,

where ℓce(·) is the loss function, and yutra is the label of utra.
Each party then receives the gradient: giutra

= ∂ℓce/∂h
i
utra

, to
update its embedding model.

During inference, each party Pi computes the local em-
bedding Hi

utest
= Mi

e(X
i
utest

; θi) for the di-dimensional in-
put feature vector Xi

utest
of test sample utest in Di

test [Pang et
al., 2022]. The server model concatenates all embeddings
into Hcat and computes the prediction: p = Ms(Hcat; θtop),
where p is a probability vector over c classes. The predicted
label is determined as the class with the highest probabil-
ity: ŷs = argmax(p). For simplicity, we use xi, Xi denote
xi
utra∈Utrain

and Xi
utest∈Utest

in the following.

2.2 Adversarial Attacks in VFL
We assume that m parties have aligned their shared samples
beforehand and each party’s test inputs follow the distribution
of their training inputs [Li et al., 2023a; Qiu et al., 2022; Pang
et al., 2022]. Among the remaining m−1 passive parties, one
is an attacker A, following the normal protocol but attempting
to craft adversarial inputs that dominate the joint inference
toward desired class ltar.
Attacker’s Capability & Knowledge. We assume that A can
train a proxy version of server model Ms with auxiliary data
and arbitrarily perturb its controlled test inputs XA in DA

test.
A lacks access to Ms (including the architecture, parame-

ters and query-based predictions), other parties’ test inputs
XB, the embedding model MB

e , and any labeled training
data. A have its training dataset DA

train and test dataset DA
test,

optimized embedding model MA
e (including shared gradients

gA) and access to a non-training domain labeled auxiliary
dataset Daux. Daux differs in data distribution from DA

train and
encompasses DA

train’s class space Ct within its broader class
space Cs. The exact overlap of class spaces between Daux
and DA

train (i.e., the shared class space C = Cs ∩ Ct and the
outlier class space C̄s = Cs \ Ct) remains unknown to A.
This is realistic from large-scale data collection [Cao et al.,
2018]. For instance, when a training dataset includes specific
disease categories, auxiliary datasets could come from larger
medical institutions to encompass a wider range of diseases.
To launch attacks, A is aware that class ltar is included in C.
Definition of Adversarial Attacks. Conventional attacks
aim to misclassify a complete test input XA into a desired
class ltar [Zhou et al., 2020]. The optimization objective is
minimize loss function ℓ for ltar:

min
δ

EXA∈DA
test

[
ℓce(f(X

A + δ), ltar)
]
, s.t. ∥δ∥p ≤ Λ,

where f is the classification model, δ is the perturbation.
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Figure 1: Overview of PGAC.

In VFL, each party holds only a partial feature space of
test samples. Let XB ∈ DB

test denote the inputs from all be-
nign parties, i.e., XB1 ∈ DB1

test, . . . ,X
Bm−1 ∈ D

Bm−1

test . Dur-
ing inference, the server model Ms combines the attacker-
controlled input XA with benign inputs XB to generate pre-
dictions. To dominate joint inference towards ltar without
being affected by changes in the benign inputs, adversarial
inputs are crafted by minimizing the loss for ltar while re-
ducing the contributions of benign inputs, as measured by the
saliency score. The optimization objective is formulated as:

min
δ

EXB∈DB
test

[
ℓce

(
Ms

(
MA

e (XA + δ),MB1
e (XB1 ), . . . ,

MBm−1
e (XBm−1 )

)
, ltar

)
+ Saliency(XB)

]
, s.t. ∥δ∥p ≤ Λ.

Definition 1 (Saliency Score). Given a server model Ms’s
prediction: output = Ms(MA

e (X
A + δ),MB

e (X
B))), the

saliency score for XBi is defined as the l1-norm of the deriva-
tive of the output variance with respect to XBi :

Saliency(XBi ) =

∥∥∥∥ ∂

∂XBi
Var(output)

∥∥∥∥
1

.

3 PGAC: Detailed Construction
As shown in Figure 1, PGAC comprises two modules. The
proxy generation module creates a high-fidelity proxy model,
allowing the use of accurate gradients to produce perturba-
tions toward the direction of minimum loss to desired class.
The adversarial crafting module iteratively generates domi-
nant perturbations against diverse, contribution-emphasized
shadow inputs to minimize their influence on the proxy joint
inference, thereby crafting adversarial inputs.

3.1 Proxy Generation
Given the source (i.e., auxiliary) dataset Daux and the target
(i.e., training) dataset DA

train, inspired by domain adversarial
networks [Ganin et al., 2016], we extract transferable features
that mitigate domain shift. Specifically, the attacker’s embed-
ding model MA

e is employed as a feature encoder Df (.; θ) to
learn domain-invariant features, while a domain discriminator
Dd(.;ϕd) learns to distinguish between domains. Simultane-
ously, a proxy model Dc(.;ϕc) is trained to categorize data.
Generalized Embedding Learning. Considering that rely-
ing solely on encoder parameters for domain-invariant em-
bedding learning may inadequately shift distributions, we in-
corporate an attention layer into the encoder Df . This mech-
anism enforces Df to characterize label-indicative features

from raw images and learn the generalized critical embedding
to promote better alignment across domains.

Formally, the raw embedding produced by Df is denoted
as h = {hs,ht} ∈ Rd∗ , where d∗ is the dimension, and hs,
ht are the embeddings of source feature xaux of image uaux
in Daux and target feature xA in DA

train, respectively. (Here,
each uaux is pre-split to ensure alignment between the feature
dimensions of xaux and xA.) To emphasize category-specific
information, an attention score is computed to assess the im-
portance of h relative to each class:

αc = exp(hTωc/τ)∑
c′ exp(h

Tωc′/τ)
,

where ωc ∈ Rd∗ is a learnable query vector for class c ∈
|Cs| , and τ is a temperature coefficient. Using the attention
score αc, the embedding under class c is calculated as ĥc =
αch. The generalized critical embedding z is then obtained
by applying a convolution operation:

z = Conv([ĥ1, . . . , ĥ|Cs|];ϕh),

where ĥc ∈ Rd∗ is the latent vector for class c, and ϕh ∈
R|Cs|×1 represents the convolution layer parameters. The
learned critical embeddings z = {zs, zt} ∈ Rd∗ , with their
respective distributions Zs and Zt corresponding to hs and
ht, are subsequently utilized for adapting the proxy model.
Domain Knowledge Transfer. Since we can not know which
part of the source class space Cs is shared with the target class
space Ct, to avoid potential negative transfer caused by us-
ing a single domain discriminator to match the entire source
and target distribution, we employ a multi-task discrimina-
tor with shared bottom layers and |Cs| heads. Each head
D(k)

d (for k = 1, . . . , |Cs|) enables conditional alignment be-
tween the source and target embeddings associated with the
k-th source class. With the multi-task discriminator, we as-
sign each instance z to the correct alignment task by com-
puting the predicted probability distribution over the source
class space p̂ = Dc(z, z;ϕc), where Dc is a proxy model, z is
stacked as a double input to simulate a two-party VFL setting,
mapping R2×d∗ → R|Cs|. p̂ can characterize the probability
of assigning z to each of the |Cs| source classes [Saito et al.,
2017], thus we embed p̂ as an instance weight in the domain
discriminator loss for all |Cs| heads.

To mitigate the impact of outlier source classes k ∈ C̄s,
where the corresponding discriminator D(k)

d processes only
source data and provides irrelevant signals, we calculate the
transferable probability for each source class to appropriately
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down-weight the domain discriminator responsible for these
outlier classes. The class transferable probability is derived
from the predictions of the target data zt, considering that tar-
get data are unlikely to belong to these outlier classes. This is
formulated as w = Ezt∼Zt

[Dc(zt, zt;ϕc)]. Similar to CDAN
[Long et al., 2018], we further refine the discriminator fo-
cus on easily transferable data with certain predictions by ap-
plying a secondary weighting using an entropy-aware weight
we(z) = 1 + e−J(Dc(z,z;ϕc)), where J denotes the entropy
function. Final discriminator loss is formulated as:

LAT =
∑|Cs|

k=1 Ez∼Zs∪Zt

[
wk · we(z)p̂

kℓce(D(k)
d (z;ϕd), d)

]
,

where p̂k is the k-th entry of prediction for z, and wk is the
k-th entry of w, indicating the probability of source class k
falling into shared class space C. The domain discriminator
Dd determines whether z originates from the source or target
domain. d is the domain label (0 for target and 1 for source).

LAT relies on the prediction of proxy model Dc on both
source and target domain. To reduce the probability of pre-
dicting a label in the outlier source classes k ∈ C̄s, we em-
bed the class transferable probability w into the supervised
loss (with label y) of Dc to focus on the source data from
the shared class space C. To reduce the uncertainty of tar-
get predictions, we introduce a self-training loss to further
refine Dc [Xie et al., 2020]. We iteratively assign pseudo la-
bels ŷcself = argmax(Dc(zt, zt;ϕc)) to unlabeled target data
zt, and embed w into the self-training loss of Dc to confine
predictions also remain within C. We then introduce gradi-
ent similar loss ℓ2 to emphasize Dc’s fidelity to the server
model by minimizing discrepancy between the proxy gradient
gt and the original shared gAt for the raw input ht, formulated
as: ℓ2(g

A
t , gt) =

∥∥gAt − ∂ℓce(Dc(zt, zt;ϕc), ŷ
c
self)/∂ht

∥∥
2
.

Thus, the proxy model loss LCL is formulated as:
LCL = Ezs∼Zs

[wy · ℓce (Dc(zs, zs;ϕc), y)]

+ λ1Ezt∼Zt

[
wŷc

self
· ℓce(Dc(zt, zt;ϕc), ŷ

c
self) + ℓ2(g

A
t , gt)

]
.

Optimization. Integrating all losses, the objective of proxy
generation can be formulated as:

min
θ,ω,ϕh,ϕc

(
LCL − λ2 max

ϕd

{LAT }
)
.

Following [Ganin et al., 2016], we frame the problem as a
min-max optimization game to find the optimal parameters.

3.2 Adversarial Crafting
Given each complete image uaux in Daux, we simulate a latent
party B′ holding influential test inputs during joint inference.
Specifically, regions in uaux that contribute to classification
are emphasized, then duplicated and scaled to construct a di-
verse shadow input set S for B′. Building on the proxy model
Dc and S , adversarial perturbations are iteratively added to
XA, optimized to diminish the input contributions of B′.
Shadow Input Construction. We apply gradient-weighted
class activation mapping (Grad-CAM) [Selvaraju et al., 2017]
to compute CAM heatmap matrix Ly

f (uaux), identifying each
pixel’s contribution to label y:

Ly
f (uaux) = H

(
ReLU

(∑
n

βy
nFn

))
,

where Fn is the n-th channel of the feature map from the final
convolutional layer of the embedding model MA

e , H(·) per-
forms bilinear interpolation to align CAM dimensions with
the input, and βy

n = 1
i·j
∑

i

∑
j

∂y

∂F ij
n

represents the contribu-
tion weights for each feature map channel.

To emphasize salient regions, pixels below the q-th per-
centile of Ly

f (.) can be suppressed as:

Cy
q (.) = Ly

f (.) ·max
(

Sign
(
Qq(L

y
f (.))− Ly

f (.)
)
, 0
)
,

where Qq is a matrix of the same dimensions as input, with
each element set to the q-th percentile value of all pixels in
Ly
f (.). The masked heatmap Cy

q (uaux) is then fused with uaux

to produce contribution-emphasized data M c
q (uaux):

My
q (uaux) = (1− µ) · uaux + µ · Cy

q (uaux) + ξ,

where µ ∈ [0, 1] is the mixing ratio, and ξ is random noise
added for diversity. Since Cy

q (uaux) is generated based on x,
the original label is directly used for My

q (uaux).
To enhance the transferability of crafted adversarial input,

we duplicate and scale My
q (uaux) at varying levels to con-

struct the shadow set S . A percentile set Q is formulated as:

Q = {q | q mod ϵ = 0, q ∈ N, q < 100},

where q is the percentile threshold for masking, and ϵ de-
termines granularity. Let m1 and m2 denote the number of
percentile thresholds and scaling factors, respectively. The
shadow input set S =

⋃
Saux is constructed as:

Saux = {My
qi(uaux)/2

j | i ∈ [0,m1 − 1], qi ∈ Q, j ∈ [0,m2 − 1]}.

Dominant Perturbation Generation. With Dc and S , ad-
versarial perturbations are generated using a gradient-based
method [Madry et al., 2017] to dominate joint inference. The
optimization is constrained to make A’s test input XA dis-
regard the influence of other inputs, as quantified with their
saliency scores (Definition 1). As A lacks access to real par-
ties’ embedding models, the saliency score for B′ are esti-
mated via FDM [Ciesielski and Leszczynski, 2006], which
computes the derivative of output variance with respect to S .

Algorithm 1 outlines the adversarial input crafting process.
A penalty term ensures subtle perturbations constrained to
predefined ranges, while momentum [Dong et al., 2018] ac-
celerates updates toward optimal directions. The optimiza-
tion problem is solved with projected gradient descent (PGD)
[Goodfellow et al., 2015]. Leveraging the proxy fidelity and
input diversity, crafted adversarial input effectively transfer to
disrupt the server model Ms’s joint inference.

4 Evaluation
4.1 Setting
Datasets & VFL Configuration. We evaluate PGAC on
three cross-domain image classification datasets following
[Gu et al., 2021]. Office-31 contains 4,652 images of 31 cat-
egories, collected from three domains: Amazon (A), DSLR
(D), and Webcam (W) [Saenko et al., 2010]. We select im-
ages from the 10 categories shared by Office-31 and Caltech-
256 [Griffin et al., 2007] to build the VFL dataset, follow-
ing [Cao et al., 2018]. ImageNet-Caltech is created with
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Algorithm 1 Adversarial Input Crafting

1: function SALIENCY EST(XA,XB′
,Df ,Dc)

2: output← Dc(Df (X
A),Df (X

B′
))

3: outputδB ← Dc(Df (X
A),Df (X

B′
+ δB))

4: saliency ← Var(outputδB )−Var(output)
δB

▷ Var(·): variance; δB : a small perturbation.
5: return saliency
6: end function
7: function AI CRAFTING(XA,Df ,Dc, ltar,S)

▷ α, β, γ, σ: weights; Λ: constraint; V : mutation.
8: V ← 0, δ0 ← 0, t← 1
9: while t ≤ T do

10: for each My
qi(uaux)/2

j ∈ S do
11: δt ← argminδt α · SALIENCY EST(XA + V +

δt,M
y
qi(uaux)/2

j ,Df ,Dc)
+ β·ℓce(Dc(Df (X

A+V+δt),Df (M
y
qi(uaux)/2

j)), ltar)
+ γ∥δt∥2, s.t. ∥V + δt∥ ≤ Λ

12: δt ← σ · δt−1 + δt, V ← V + δt, t← t+ 1
13: end for
14: end while
15: return XA + V
16: end function

ImageNet (I) [Russakovsky et al., 2015] (1,000 classes) and
the Caltech-256 (C) (256 classes). We utilize the 84 shared
classes to build the VFL dataset. DomainNet composed of six
domains with 345 classes [Peng et al., 2019]. We adopt four
domains (Clipart (C), Painting (P), Real (R), and Sketch (S))
with 126 classes, and use the first 40 classes in alphabetical
order to build the VFL dataset [Saito et al., 2019].

Our default experiments adopt the common setting with
two parties, each owning half of the sample’s feature vector
within the VFL dataset [Qiu et al., 2022; Pang et al., 2022].
We sample the raw image dataset from domains with broader
class spaces as the attacker’s auxiliary data, selecting a de-
fault of 100 samples per class. Table 1 summarizes the VFL
dataset and auxiliary data for each image dataset.
Models. We adopt widely used architectures as the embed-
ding models, including VGG-16, VGG-19 [Simonyan, 2014],
ResNet-50, ResNet-152 [He et al., 2016], DenseNet-121, and
DenseNet-201 [Huang et al., 2017], all excluding their final
fully connected layers. By default, VGG-16 is used for each
party. The server model is implemented as a two-layer MLP,
while the proxy model Dc consists of three hidden layers with
32 neurons each. The domain discriminator Dd is a single-
layer MLP with 16 neurons. The proxy generation process
spans 200 epochs, with the loss weight λ1 set to 1, and λ2

linearly increasing each epoch as λ2 = t
200 , where t is the

current epoch. For shadow input construction, the percentile
parameter ϵ, number of scaling factors m2, and mix ratio µ
are set to 10, 5, and 0.6, respectively. We configure the craft-
ing process with a maximum perturbation budget of Λ = 15
and T = 20 iterations, inspired by [Xie et al., 2018].
Metrics. PGAC is evaluated with the attack success
rate (ASR) and fidelity. ASR measures the effective-
ness of dominating server’s joint inference, calculated as:
1
n

∑n
i=1 I

(
Ms(Df (X

A + V ),MB
e (X

B) = ltar
)
, where n is

the number of test samples, XB denote the inputs from
all benign parties, and I(·) is the indicator function. Fi-
delity quantifies the agreement between predictions from

the proxy model Dc and server model Ms, calculated as:
1
n

∑n
i=1 I (ŷ

c = ŷs) , where n is the number of test samples,
ŷc and ŷs are the prediction of Dc and Ms, respectively.
Baselines. We use real labeled training data to train a proxy
model and use test data from real parties for crafting inputs,
establishing the Real Data benchmark. We then compare
PGAC against state-of-the-art attacks. For [Pang et al., 2022],
we replace the real test data with our cross-domain auxiliary
data and train a proxy model on it without querying the server
model. For [Qiu et al., 2022], we replace the labeled training
data with our auxiliary data for proxy training while retaining
their poisoning process. Additionally, we benchmark PGAC
against transfer-based methods using pre-trained models, in-
cluding MIFGSM, SINIFGSM and DIFGSM [Dong et al.,
2018; Lin et al., 2020; Xie et al., 2018].

All experiments are conducted on a workstation equipped
with an Intel Core i7-10700K processor and running Ubuntu
20.04.1 LTS. Each experiment is repeated five times, and we
report the average ASR and fidelity.

4.2 Overall Performance
Table 2 reports ASR and fidelity, results show that the Real
Data benchmark achieves the highest performance, while
PGAC approaches this benchmark with deviations of at most
4.26% in ASR and 4.98% in fidelity. PGAC consistently out-
performs the state-of-art attacks, exhibiting improvements of
at least 25.78% in ASR and 43.98% in fidelity. This su-
periority stems from addressing cross-domain discrepancies
and mining salient regions for classification. PGAC also sur-
passes the transfer-based methods with at least 29.11% higher
ASR, indicating the importance of training proxy models that
closely approximate server models for attacks.

4.3 Parameter Analysis
Impact of Embedding & Server Models. We evalu-
ate PGAC’s performance by varying the embedding model,
server model for the active party and attacker, respectively.
As shown in Tables 3 and 4, PGAC consistently demonstrates
effectiveness across different model architectures.
Impact of Auxiliary Data Volume. Figure 2(a) shows that
increasing the auxiliary data improves both ASR and fidelity.
On the Office-31, with just 20 labeled samples per class,
PGAC achieves an ASR of 85.31% and fidelity of 82.04%.
However, the improvement gradually stabilizes when the
sample number exceeds 100 per class. Notably, with only
120 samples per class, far below the VFL dataset size, PGAC
achieves an ASR of 97.82% and fidelity of 94.71%.
Impact of Party Numbers. We expand typical multi-party
VFL settings from fewer than 16 benign passive parties to 32
[Qiu et al., 2022; Pang et al., 2022]. We fix the active party’s
feature ratio of 50%, and the remaining features are vertically
partitioned between the attacker and added passive parties.
Results and corresponding data setup are detailed in Table 5.
PGAC consistently achieves ASR and fidelity above 85.18%
and 82.12% on Office-31, even with up to 32 parties.

4.4 Adaptation Analysis and Ablation Study
We evaluate PGAC’s adaptation in proxy generation and
component utility with experiments on the Office-31 dataset.
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Dataset Feature Partition Auxiliary Dataset→ VFL Dataset Auxiliary Class Space→ VFL Class SpaceActive Party Attacker
Office-31 50% 50% A → W, D → W, W → D, A → D, D → A, W → A Full 31 classes→ 10 classes shared with Caltech-256

ImageNet-Caltech 50% 50% I → C, C → I Full 256 classes→ 84 classes shared by ImageNet and Caltech-256
DomainNet 50% 50% C→P, C→R, C→S, P→C, P→R, P→S, R→C, R→P, R→S, S→C, S→P, S→R Full 345 classes→ First 40 classes in alphabetical order

Table 1: VFL configuration. Feature partition refers to the proportion of vertical dimensions of an image assigned to each party.

Dataset Real Data PGAC [Pang et al., 2022] [Qiu et al., 2022] MIFGSM SINIFGSM DIFGSM
ASR Fidelity ASR Fidelity ASR Fidelity ASR Fidelity ASR ASR ASR

Office-31 99.85±0.73 95.96±0.51 95.60±1.13 91.84±0.77 63.77±1.67 43.28 ±1.37 65.60±1.30 44.13±2.00 51.60±2.33 56.60±1.94 60.07±1.05

ImageNet-Caltech 97.73±0.55 92.39±0.64 93.83±0.77 87.81±0.80 62.94±1.04 42.28 ±1.50 68.05±1.30 43.83±1.32 50.11±2.51 54.15±1.19 61.15±1.20

DomainNet 92.85±1.08 88.17±0.51 89.44±1.50 83.78±0.53 62.72±1.70 39.10 ±1.28 61.89±0.78 38.04±1.10 52.11±2.70 55.60±1.18 60.33±1.14

Table 2: PGAC’s performance compared with baselines.

MA
e

MB
e VGG-16 VGG-19 Res-50 Res-152 Dense-121 Dense-201

Dataset ASR Fidelity ASR Fidelity ASR Fidelity ASR Fidelity ASR Fidelity ASR Fidelity

VGG-19
Office-31 92.95±1.03 89.33±1.23 96.33±1.10 92.42±1.45 90.30±1.15 86.21±1.41 91.71±1.05 87.70±1.27 93.56±1.34 90.05±1.17 92.00±1.35 87.98±1.02

ImageNet-Caltech 90.75±1.27 85.13±1.39 94.67±1.23 88.43±1.38 88.10±1.22 82.91±1.57 89.36±1.19 83.43±1.35 91.36±1.27 86.65±1.18 90.80±1.41 83.78±1.08

DomainNet 86.55±1.43 80.01±1.59 90.47±1.38 82.02±1.27 83.88±1.32 77.10±1.63 85.16±1.28 77.84±1.41 87.16±1.34 80.10±1.24 86.60±1.50 77.99±1.07

Res-50
Office-31 90.96±1.12 86.33±1.57 91.70±1.22 87.61±1.05 96.00±1.10 92.15±1.25 92.11±0.85 87.70±1.30 92.49±1.74 88.25±1.57 90.54±1.55 86.05±1.35

ImageNet-Caltech 88.75±1.28 82.54±1.82 89.57±1.36 83.44±1.20 94.12±1.32 88.11±1.49 90.36±0.93 83.45±1.26 89.87±1.63 83.09±1.62 88.13±1.58 82.83±1.37

DomainNet 84.92±1.21 78.12±1.96 85.62±1.56 79.77±1.43 90.89±1.48 83.74±1.61 86.51±1.02 80.39±1.34 86.72±1.85 79.02±1.74 84.75±1.64 78.81±1.44

Dense-121
Office-31 91.85±1.06 88.00±1.19 90.45±1.08 86.56±1.40 90.93±1.18 87.05±1.38 90.07±1.02 86.45±1.22 96.30±1.12 92.00±1.20 94.67±1.12 90.02±1.29

ImageNet-Caltech 89.65±1.22 82.88±1.41 88.50±1.21 82.17±1.58 88.91±1.33 82.00±1.50 87.80±1.14 82.23±1.35 94.37±1.14 88.58±1.26 92.31±1.15 85.75±1.45

DomainNet 85.71±1.34 79.13±1.56 84.14±1.10 78.03±1.62 84.75±1.22 78.31±1.61 83.87±1.01 78.51±1.49 90.58±1.15 82.58±1.35 88.16±1.23 80.81±1.53

Table 3: PGAC performance with varying embedding models.MB
e andMA

e are models used by the active party and attacker, respectively.

Dc

Ms 2-layer MLP 3-layer MLP 4-layer MLP 5-layer MLP 6-layer MLP 7-layer MLP

Dataset ASR Fidelity ASR Fidelity ASR Fidelity ASR Fidelity ASR Fidelity ASR Fidelity

2-layer MLP
Office-31 96.17±1.91 93.14±1.89 94.50±2.07 90.44±2.08 93.91±2.12 90.33±2.34 95.42±2.11 91.13±2.33 93.47±2.10 88.20±2.19 96.24±2.07 91.18±2.25

ImageNet-Caltech 95.75±1.79 89.40±2.10 92.00±2.13 86.44±1.78 91.22±2.09 86.12±2.28 92.57±2.03 87.55±2.21 90.62±2.29 84.36±1.83 93.16±2.08 87.33±2.22

DomainNet 91.58±2.05 82.73±2.16 88.12±1.87 80.44±2.11 87.47±1.88 79.81±2.05 89.42±2.01 80.81±1.96 87.22±2.16 79.93±2.10 89.86±1.74 82.83±1.78

4-layer MLP
Office-31 94.03±1.85 91.46±1.98 96.28±1.77 91.08±1.92 96.01±1.95 90.02±2.12 93.11±1.95 93.05±1.87 93.68±1.50 88.10±1.45 94.11±1.80 89.86±1.92

ImageNet-Caltech 93.70±1.53 87.44±1.71 94.12±1.55 87.18±1.65 95.68±1.67 86.37±1.89 91.11±1.58 89.35±1.53 91.56±1.77 85.68±1.85 92.45±1.78 86.52±1.26

DomainNet 89.32±1.64 81.04±1.79 90.63±1.58 81.38±1.70 91.10±1.72 78.97±1.57 87.46±1.62 82.57±1.87 87.56±1.74 79.57±1.76 88.03±1.70 80.31±1.88

6-layer MLP
Office-31 95.30±1.89 90.28±2.01 93.45±1.83 89.72±1.98 92.11±1.92 89.12±2.07 94.73±1.88 90.04±1.99 95.78±2.05 92.05±1.66 93.56±1.78 87.32±1.94

ImageNet-Caltech 93.38±1.95 86.81±2.07 91.01±1.76 85.72±1.93 90.11±1.87 85.01±1.84 92.32±1.79 86.44±1.91 93.55±1.97 88.50±1.89 91.60±1.51 83.44±1.98

DomainNet 89.12±1.92 81.08±2.11 87.25±1.68 80.02±1.89 87.91±2.05 79.56±2.14 88.12±1.76 81.52±1.60 90.14±1.88 81.87±1.92 87.17±1.40 78.63±1.46

Table 4: PGAC performance with varying server models.Ms and Dc are models used by the active party and attacker, respectively.

Performance Feature Partition
Dataset # pa. ASR Fidelity ori.acc. Active Party Passive Party1, . . . ,# pa. Attacker

Office-31

2 92.31±1.87 88.63±1.51 92.38±0.88 50% 16.6% 16.6%
4 92.01±1.92 88.07±1.69 92.11±1.00 50% 10% 10%
8 90.95±1.78 86.28±1.70 91.95±0.77 50% 5.55% 5.55%

16 87.50±1.85 83.51±1.88 92.33±0.98 50% 2.94% 2.94%
32 85.18±2.01 82.12±1.74 91.86±1.12 50% 1.51% 1.51%

Table 5: PGAC’s performance and corresponding data setup. ori. acc: main task accuracy. # pa.: number of benign passive parties.

Class Transferable Probability. Figure 2(b) shows that the
estimated transferable probabilities for shared classes (yel-
low bars) are higher than those for outlier classes (cyan bars).
This difference highlights that PGAC prioritizes and trans-
fers relevant knowledge by assigning higher probabilities to
shared classes and filtering out outlier classes.
Visualization. Figure 3 presents the t-SNE visualization of
learned embeddings after adaptation. Key observations in-
clude: (i) PGAC generates more generalized embeddings,
showing that samples are dispersedly distributed in the space.
(ii) PGAC effectively separates each class of samples in both
the source and target domains. (iii) PGAC correctly aligns
the source and target embeddings within shared classes.
Ablation Study. We assess components in PGAC, including
Generalized Embedding Learning (GEL), Domain Knowl-
edge Transfer (DKT), and Shadow Input Construction (SIC),
by designing PGAC variants to test performances. As shown

Figure 2: (a) Impact of labeled data volume. (b) Estimated class
transferable probability w.

in Table 6, all components contribute to the attacks.

4.5 Results against Countermeasures
We investigate three potential countermeasures: (i) Noisy
Gradients. Adds Laplacian noise to the gradients before shar-
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Figure 3: Visualization of source (blue) and target embeddings (red).

GEL DKT SIC ASR Fidelity
✓ ✓ ✓ 95.60± 1.13 91.84± 0.77
✗ ✗ ✗ 52.71± 1.21 42.11± 1.98
✓ ✗ ✗ 65.85± 1.70 60.84± 0.92
✓ ✓ ✗ 83.77± 1.20 91.84± 0.77

Table 6: Performance of PGAC and its variants.

ing them with parties to obscure gradient information and re-
duce the embedding model’s expressiveness. (ii) Gradient
Compression. Shares only a subset of gradients that have the
largest absolute values to limit the amount of gradient infor-
mation available. (iii) Private Training. During each itera-
tion, selects a single gradient, adds noise, and retains it only
if the noisy gradient exceeds a predefined threshold τ . This
process continues until a specific fraction θu of gradient val-
ues is retained. We evaluate defense methods against PGAC
under both configurations on the Office-31 dataset.
Results. (i) Noisy Gradients. Figure 4(a) reveals that low
levels of noise in gradients have minimal effect in mitigating
PGAC. However, adding sufficient noise scale may flip the
signs of gradients and counter PGAC. (ii) Gradient Compres-
sion. Figure 4(b) shows that gradient compression does not
significantly deter PGAC’s effectiveness. This is because it
typically removes smaller gradients, which may not include
those related to labels. (iii) Private Training. Figure 4(c)
shows that setting θu to 0.25 or lower counters PGAC. How-
ever, this stringent setting reduces classification accuracy for
the main task to 61.38%.

5 Related Work
Conventional Adversarial Attacks. One type of attack is
to enhance the transferability of AEs: Momentum-based ap-
proaches improve the stability of update directions during
iterations, avoiding poor local maxima. MIFGSM [Dong
et al., 2018] first incorporated momentum into iterative at-
tacks, followed by enhancements such as adaptive momen-
tum variance [Li et al., 2023b], variance tuning [Wang and
He, 2021], multi-step gradient accumulation [Jang et al.,
2022], and exploring gradient relevance between inputs and
their neighborhoods [Zhu et al., 2023]. Input transformation-

Figure 4: Defense performance of three methods: (a) noisy gradi-
ents, (b) gradient compression, and (c) private training.

based approaches apply transformations to the input. Tech-
niques include random patch transformations [Zhang et al.,
2022], pasting grid masks on the original image [Hong et
al., 2022], merging with translated versions of the same or
other images [Wang et al., 2021], scaling different areas of
the input image at varying percentages (e.g., SINIFGSM [Lin
et al., 2020]), randomly transforming image blocks [Wang
et al., 2023b], and applying combined feature enhancement
transformations on clean image copies during iterative up-
dates [Ren et al., 2023]. Ensemble-based approaches at-
tack multiple models concurrently. [Liu et al., 2017] con-
firmed the effectiveness of this strategy, with works like
DIFGSM [Xie et al., 2018], and [Wang and He, 2021;
Xiong et al., 2022] solidifying its advantages. However, this
type of method requires access to pre-trained models from
libraries, which may not be available in many real-world
tasks. Another type focuses on training a proxy model that
closely approximates the victim model [Papernot et al., 2017;
Orekondy et al., 2019], enabling crafted AEs to transfer natu-
rally to the victim model. However, this approximation train-
ing relies on real labeled training data, which is hard to ac-
quire due to privacy or transmission reasons.
Adversarial Attacks in VFL. There is limited literature on
adversarial attacks against VFL. ADI was proposed to per-
turb attacker-controlled features to explicitly diminish other
parties’ input contributions and dominate the VFL’s predic-
tion [Pang et al., 2022]. However, it relies on querying the
server model and accessing test input features from other par-
ties. In [Qiu et al., 2022], zeroth-order optimization (ZOO)
was used to craft optimal perturbations on controlled embed-
dings, while a poisoning process during VFL training was
applied to amplify the embedding’s influence on prediction
by enforcing associations with the target class. However, it
requires labeled training data to build a proxy model. In this
paper, we propose PGAC, which operates exclusively during
the joint inference phase, using auxiliary images from non-
training domains to craft adversarial inputs.

6 Conclusion
In this paper, we proposed PGAC, the first adversarial attack
framework against VFL under a more relaxed setting. Unlike
prior attacks, PGAC does not rely on knowledge of the server
model, real test inputs from other parties, and auxiliary data
from the training domain. PGAC generates a high-fidelity
proxy for joint inference and a diverse set of salient contri-
bution shadow inputs. This simulation enables the crafting of
highly transferable contribution-monopoly adversarial inputs,
thereby hogging the rewards provided to incentivize VFL par-
ties contributing important features. Extensive experiments
demonstrate that PGAC achieves notable performance across
various settings and significantly outperforms state-of-the-art
methods within the same threat model.

Acknowledgments
This work is supported by NSFC (Grant No. 62272038,
U2241213), Beijing Natural Science Foundation (Grant No.
M23018), National Key R&D Program of China (Grant No.
2022YFB2702903).

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Bai et al., 2023] Yijie Bai, Yanjiao Chen, Hanlei Zhang,

Wenyuan Xu, Haiqin Weng, and Dou Goodman.
{VILLAIN}: Backdoor attacks against vertical split learn-
ing. In USENIX Security 23, pages 2743–2760, 2023.

[Cao et al., 2018] Zhangjie Cao, Lijia Ma, Mingsheng Long,
and Jianmin Wang. Partial adversarial domain adaptation.
In ECCV 2018, pages 135–150, 2018.

[Chen et al., 2017] Hao Chen, Kim Laine, and Peter Rindal.
Fast private set intersection from homomorphic encryp-
tion. In CCS 2017, pages 1243–1255, 2017.

[Ciesielski and Leszczynski, 2006] Mariusz Ciesielski and
Jacek Leszczynski. Numerical treatment of an initial-
boundary value problem for fractional partial differential
equations. Signal Process., 86(10):2619–2631, 2006.

[Dong et al., 2018] Yinpeng Dong, Fangzhou Liao, Tianyu
Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li.
Boosting adversarial attacks with momentum. In CVPR
2018, pages 9185–9193, 2018.

[Fu et al., 2022] Chong Fu, Xuhong Zhang, Shouling Ji,
Jinyin Chen, Jingzheng Wu, Shanqing Guo, Jun Zhou,
Alex X. Liu, and Ting Wang. Label inference attacks
against vertical federated learning. In USENIX Security
2022, pages 1397–1414, 2022.

[Ganin et al., 2016] Yaroslav Ganin, Evgeniya Ustinova,
Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-
adversarial training of neural networks. Journal of ma-
chine learning research, 17(59):1–35, 2016.

[Goodfellow et al., 2015] Ian J. Goodfellow, Jonathon
Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In ICLR 2015, 2015.

[Griffin et al., 2007] Gregory Griffin, Alex Holub, Pietro
Perona, et al. Caltech-256 object category dataset. Tech-
nical report, Technical Report 7694, California Institute of
Technology Pasadena, 2007.

[Gu et al., 2021] Xiang Gu, Xi Yu, Yan Yang, Jian Sun, and
Zongben Xu. Adversarial reweighting for partial domain
adaptation. In NeurIPS 2021, pages 14860–14872, 2021.

[Hard et al., 2018] Andrew Hard, Kanishka Rao, Rajiv
Mathews, Françoise Beaufays, Sean Augenstein, Hubert
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