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Abstract
Multivariate time series (MTS) data in real-world
scenarios are often incomplete, which hinders ef-
fective data analysis. Therefore, MTS imputation
has been widely studied to facilitate various MTS
tasks. Existing imputation methods primarily ini-
tialize missing values with zeros in order to perform
effective incomplete MTS encoding, which impede
the model’s capacity to precisely discern the miss-
ing distribution. Moreover, these methods often
overlook the global similarity in time series but are
limited in the use of local information within the
sample. To this end, we propose a novel multivari-
ate time series imputation network model, named
MMNet. MMNet introduces a Missing-Aware Em-
bedding (MAE) approach to adaptively represent
incomplete MTS, allowing the model to better dis-
tinguish between missing and observed data. Fur-
thermore, we design a Memory-Enhanced Encoder
(MEE) aimed at modeling prior knowledge through
memory mechanism, enabling better utilization of
the global similarity within the time series. Build-
ing upon this, MMNet incorporates a Multi-scale
Mixing architecture (MSM) that leverages infor-
mation from multiple scales to enhance the final
imputation. Extensive experiments on four pub-
lic real-world datasets demonstrate that, MMNet
yields a more than 25% gain in performance, com-
pared with the state-of-the-art methods.

1 Introduction
Multivariate time series(MTS) represent a crucial type of data
in the real world, providing valuable insights for decision-
making across various fields [Yi et al., 2023b], includ-
ing energy [Pérez-Lombard et al., 2008], healthcare [Este-
ban et al., 2017], weather [Bright et al., 2015], and trans-
portation [Li et al., 2018]. However, in practical scenar-
ios, multivariate time series are typically incomplete due
to various factors, such as sensor malfunctions [Miao et
al., 2021], unstable system environments [Wu et al., 2022;
Wu et al., 2023b], or privacy concerns [Wu et al., 2023c;
Wu et al., 2022]. For instance, the average missing rate of
public real-world medical dataset PhysioNet exceeds 80%

[Silva et al., 2012], which significantly hinders time series
analysis. Consequently, addressing the problem of imputing
missing values in incomplete multivariate time series data has
become a critical challenge.

Early approaches for MTS imputation typically relied on
statistical or machine learning methods, such as mean aver-
aging, ARIMA [Nelson, 1998], and KNN [Peterson, 2009].
While these methods are generally effective in capturing the
linear characteristics of time series, they struggle to model
the complex and nonlinear temporal dependencies. In recent
years, imputation methods based on deep neural networks
have achieved remarkable success in both deterministic and
probabilistic imputation. These approaches commonly em-
ploy autoregressive models to process incomplete MTS data.

Nevertheless, to effectively encode missing data, these
methods often require a preliminary step of fully filling in the
missing components. Currently, most deep learning methods
[Ma et al., 2019; Du et al., 2023; Bansal et al., 2021] primar-
ily initialize missing values with zeros, and a missing mask
matrix is used to mark the locations of the missing data. How-
ever, this approach will unavoidably introduce noise, com-
plicating the model’s ability to differentiate between missing
and observed data, while also failing to capture variations in
missingness across multiple time series.

Moreover, the inherent non-stationarity and variability of
time series data pose significant challenges for accurately im-
puting historical observations. Although a relationship exists
between the observed and missing components, this relation-
ship is complex and further exacerbated in incomplete scenar-
ios. In the presence of missing data, the available information
for time series imputation is sparse. Existing methods [Chen
et al., 2023; Li et al., 2018; Luo et al., 2019] typically rely
on limited local information within the sample for imputa-
tion. However, these methods overlook the fact that similar-
ity in time series data is not limited to local samples, but also
extends globally, as similar time segments can be identified
beyond the sample.

In this paper, we propose a Missing-Aware and Memory-
Enhanced NetWork named MMNet for incomplete multivari-
ate time series imputation. Specifically, MMNet introduces a
missing-aware embedding (MAE) module, which uses learn-
able vectors to represent missing components, enabling the
model to differentiate between missing and observed data
while adapting to varying missing patterns. To capture global
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patterns in MTS, MMNet introduces a memory-enhanced en-
coder (MEE) that leverages persistent memory vectors to in-
tegrate global prior information while modeling temporal and
variable dependencies. Moreover, MMNet employs a multi-
scale mixing (MSM) architecture for more robust imputation.
MSM encodes incomplete multivariate time series data across
multiple scales, progressively merging coarse-fine informa-
tion, thereby integrating both macroscopic and detailed data
to improve imputation performance. We conduct extensive
evaluations on four real-world MTS datasets. The results
show the superior performance of our proposed method by
comparison with current SOTA models. Our main contribu-
tions are summarized as follows:

• We propose MMNet, a Missing-Aware and Memory-
Enhanced Network for multivariate time series imputa-
tion. MMNet adaptively learns the missingness in MTS
and utilizes a memory mechanism to effectively capture
and leverage the global information in the time series.

• We propose a MAE module for incomplete MTS embed-
ding, utilizing learnable vectors to adaptively represent
missing components in incomplete MTS, thus avoiding
uncontrollable noise.

• We introduce a MEE module that captures temporal and
variable dependencies while utilizing persistent memory
vectors to model global similarities in time series data.

• Extensive experiments using four real-life MTS datasets
demonstrate that, MMNet substantially outperforms the
state-of-the-art methods.

2 Related Work
Multivariate time series imputation has attracted increasing
attention, driven by the growing availability of time series
data and its diverse applications. In the early stages, statis-
tical methods were widely employed to address missing val-
ues in multivariate time series data. These approaches typi-
cally substitute missing values with statistical estimates, such
as zero, the mean, or the last observed value, or utilize sim-
ple statistical models like ARIMA [Nelson, 1998], ARFIMA
[Hamzaçebi, 2008], and SARIMA [Hamzaçebi, 2008]. How-
ever, the reliance on linear assumptions limit their ability to
capture the dynamic and nonlinear features of time series
data. Recently, various deep learning-based methods have
been developed to address the limitations of traditional ap-
proaches in time series imputation, which can be broadly
categorized into two classes: forecasting-based methods and
generating-based methods.

Forecasting-based methods provide consistent imputa-
tion results but often overlook the inherent uncertainties in
the data. RNN-based methods have become integral to time
series analysis, demonstrating their effectiveness in handling
missing data, e.g., GRU-D [Chung et al., 2014], M-RNN
[Yoon et al., 2019], Brits [Cao et al., 2018]. CNN-based
methods have also gained prominence in MTS imputation
tasks, offering robust performance with TimesNet [Wu et al.,
2023a] and ModernTCN [Luo and Wang, 2024] being no-
table examples. GNN-based methods utilize graph structures
to model MTS [Yi et al., 2023a; Zhu et al., 2023], leveraging

learned node representations to reconstruct missing values,
e.g., GRIN [Cini et al., 2022], SPIN [Marisca et al., 2022].
Transformer-based methods [Wen et al., 2023] are also used
to model time series, leveraging self-attention mechanisms to
effectively capture complex dependencies, e.g., CDSA [Ma
et al., 2019], DeepMVI [Bansal et al., 2021], SAITS [Du et
al., 2023], OFA [Zhou et al., 2023].

Generating-based methods utilize generative models to
simulate and generate missing data. These methods are no-
table for their ability to produce diverse outputs for miss-
ing observations, quantifying computational uncertainty as
probability distributions by learning the distribution from the
observed values. VAE-based methods typically employ an
encoder-decoder structure to approximate the true data dis-
tribution, optimizing the evidence lower bound (ELBO) to
achieve this goal, e.g., GP-VAE [Fortuin et al., 2020], V-RIN
[Mulyadi et al., 2022], supnotMIWAE [Kim et al., 2023].
GAN-based methods leverage a min-max game between the
generator and discriminator: the generator simulates the real
data distribution, while the discriminator distinguishes be-
tween real and generated data, e.g., GRUI-GAN [Luo et al.,
2018], E2GAN [Luo et al., 2019], SSGAN [Miao et al.,
2021]. Diffusion model use Markov chain process to capture
complex data distribution, e.g., CSDI [Tashiro et al., 2021],
SSSD [Alcaraz and Strodthoff, 2022], CSBI [Chen et al.,
2023], Score-CDM [Zhang et al., 2024].

However, current deep learning methods exhibit certain
limitations. A major drawback is that they often require
the initialization of missing values, which may degrade the
performance of imputation precision. In addition, they fre-
quently fail to effectively capture global patterns in time se-
ries data and incorporate prior knowledge.

3 Problem Definition
Given a MTS dataset D = {X1, · · · ,XN}, each sample X
with d variables and L time steps can be formally denoted
as X = (x1, · · · ,xd)

⊤ = (x:1, · · · ,x:L) ∈ Rd×L, where
xi can be represented as (xi1, · · · , xiL). Specifically, xij is
the value of the i-th variable at the j-th time step in X, and
this value may be missing in the incomplete multivariate time
series dataset.

Incomplete multivariate time series. To encode the
missing information in each sample, a mask matrix M =
(m1, · · · ,md)

⊤ = (m:1, · · · ,m:L) ∈ {0, 1}d×L is intro-
duced to indicate whether a value in X is missing. Here,
mi = (mi1, · · · ,miL), and mij equals 0 or 1, indicating
that xij is either missing or observable.

Multivariate time series imputation. Given an incom-
plete multivariate time series sample X, the goal of incom-
plete multivariate time series imputation is to construct an
imputation model Mθ parameterized by θ, which can accu-
rately estimates the missing values in the data. The imputed
time series X̂ can be defined as:

X̂ = M⊙X+ (1−M)⊙ X̄, (1)

where ⊙ denotes element-wise multiplication, and X̄ =
Mθ(X) is the reconstructed time series.
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Figure 1: The overall framework of the MMNet. It consists of three main modules: the missing-aware embedding (MAE) module, the multi-
scale mixing (MSM) module, and the memory-enhanced encoder (MEE) module. Firstly, the MAE Module is used to project incomplete
multivariate time series data X ∈ Rd×L into a hidden representation H ∈ Rd×L×D . Secondly, the multi-scale mixing architecture, which
incorporates the MEE module at each scale, is applied to H to obtain the multi-scale encoding set. Finally, a coarse-to-fine mixing strategy
is employed to combine encoding across multiple scales, followed by a linear layer to impute missing values.

4 Methodology
In this section, we present the proposed model, MMNet,
with its architecture depicted in Figure 1. The model con-
sists of two key components: the missing-aware embedding
(MAE) module and the multi-scale mixing (MSM) module,
both specifically designed for incomplete MTS. First, the in-
complete multivariate time series data are processed through
the MAE module to generate an incomplete time series em-
bedding. This embedding is then passed to the MSM module,
where each scale’s encoder incorporates a memory-enhanced
encoder (MEE) to effectively capture both variable and tem-
poral dependencies via a memory-enhanced mechanism. Fi-
nally, a coarse-to-fine mixing approach integrates the encod-
ings across multiple scales, and a linear layer is applied to the
mixed encoding to impute the missing values.

4.1 Missing-Aware Embedding
The missing-aware embedding (MAE) module of MMNet
aims to project incomplete MTS into hidden representations,
allowing the model to explicitly distinguish between missing
and observed values. To achieve this, it first normalizes the
data to mitigate the impact of non-stationarity. Subsequently,
the self-learning missing embedding is introduced to adap-
tively encode the normalized incomplete MTS.
Incomplete Time Series Normalization. To address the
impact of inherent non-stationarity in time series on the
model, we first normalize the input incomplete time series
sample X using Z-score scaling prior to data embedding [Pa-
tro and Sahu, 2015]. This normalization helps mitigate the
distribution shift effects within incomplete multivariate time
series data. Specifically, for each incomplete time series
xi ∈ X and its corresponding mask vector mi, the model
first computes the mean µi and standard deviation σi based
on the observed data:

µi =

∑L
j=1 xij ·mij∑L

j=1 mij

, σ2
i =

∑L
j=1 (xij − µi)

2 ·mij∑L
j=1 mij

. (2)

Next, the normalized time series ẍi ∈ Ẍ can be defined

as: ẍi =
(

xi1−µi

σi
, · · · , xiL−µi

σi

)
. To preserve the non-

stationarity of the time series, the model applies inverse nor-
malization on the output data. Specifically, the predicted time
series is restored to its original scale using the stored mean
and standard deviation.

Self-Learning Missing Embedding. Subsequently, to pre-
vent pre-filled values from interfering with the model and in-
troducing noise, we propose a self-learning missing embed-
ding method to adaptively represent the missing values in
multivariate time series. Regarding the observed data, the
model employs a trainable linear projection to generate its
embedded representation. Furthermore, for each time series
xi, a unique missing embedding vector [MASK]i is learned
to represent the missing components in the sequence. In this
way, the model can more effectively represent and distinguish
the missing states of different time series. Additionally, a
positional encoding is utilized to capture the temporal order,
with the specific formula provided below:

hij =

{
Wo · ẍij +Wpos

j mij = 1,
[MASK]i +Wpos

j mij = 0,
(3)

where Wo ∈ RD×1 represents the learnable projection ma-
trix, Wpos

j ∈ RD represents the absolute positional embed-
ding for position j, and [MASK]i ∈ RD denotes the learnable
missing embedding vector for the i-th time series. Finally, the
model produces a 2D vector array H = (h1, · · · ,hd)

⊤ =
(h:1, · · · ,h:L) ∈ Rd×L×D, where hij represents the embed-
ded observable or missing data for the i-th time series at the
j-th timestamp.

4.2 Memory-Enhanced Encoder
Given an incomplete multivariate time series as input, self-
attention operations, commonly used in Transformers, are ca-
pable of capturing both temporal and inter-variable dependen-
cies, thereby enabling more effective imputation. Notably,
the basic self-attention mechanism focuses primarily on local
relationships within the input sample, as the attention weights
are determined solely on the pairwise similarities between the
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linear projections of the input. Nevertheless, the similarity in
time series lies not only within the sample itself but also is
reflected in the global similarity across samples.

To fully exploit the global similarity inherent in time series,
we introduce a memory-enhanced attention (MEA), which
encodes global prior knowledge of time series by incorpo-
rating additional learnable memory vectors into the attention
computation. It can be formally defined as:

MEA(X) = MSA(WqQ(X),WkK(X),WvV (X)),

Q(X) = X,K(X) = V (X) = [X∥Mem],
(4)

where Wq,Wk,Wv are learnable attention weights in the at-
tention mechanism, and Mem ∈ Rnm×D is a matrix con-
taining nm learnable memory vectors. The symbol ∥ de-
notes concatenation. Intuitively, by adding additional learn-
able memory vectors, the attention mechanism becomes ca-
pable of retrieving and capturing global relationships beyond
the individual sample.

Based on this, we propose a memory-enhanced encoder
(MEE) to capture both temporal and inter-variable relation-
ships in MTS. The encoder is composed of multiple stacked
two-stage memory-enhanced attention layers, each receiving
a two-dimensional vector matrix Z = (Z1, · · · ,Zd)

⊤ =
(Z:1, · · · ,Z:l) ∈ Rd×l×D as input, where l and d represent
the dimension of the time and variable, respectively.

To capture the temporal dependencies of each time series,
the model applies the memory-enhanced attention layer to the
time dimension of each time series Zi (1 ≤ i ≤ d), i.e.

Āi = LN(Zi +MEA(Zi)), 1 ≤ i ≤ d,

Z̄i = LN(Āi +MLP(Āi)), 1 ≤ i ≤ d,
(5)

where LN denotes layer normalization, MLP(·) refers to a
multi-layer perceptron, and MEA(·) denotes the memory-
enhanced attention layer. The output of the above process
is denoted as Z̄. Next, to capture the inter-variable rela-
tionships, the model applies the memory-enhanced attention
mechanism along the variable dimension of the output Z̄:i

(1 ≤ i ≤ l), as formulated in the following equations:

Â:i = LayerNorm(Z̄:i +MEA(Z̄:i)), 1 ≤ i ≤ l,

Ẑ:i = LayerNorm(Â:i +MLP(Â:i)), 1 ≤ i ≤ l,
(6)

Then the output Ẑ fully integrates information from both
inter-variable and temporal dimension. Additionally, by
leveraging the memory-enhanced mechanism, the model can
implicitly capture global similarities in the time series, result-
ing in more informative representations.

4.3 Multi-scale Mixing
Time series exhibit distinct characteristics at different scales,
making multi-scale modeling essential for capturing their in-
herent patterns. In MTS imputation, coarse scales capture
general trends, while fine scales reconstruct finer details.

Building on the memory-enhanced encoder, MMNet uti-
lizes a multi-scale mixing(MSM) architecture to extract and
integrate multi-scale features from incomplete multivariate
time series. The encoder at each scale transforms the input
into a hidden representation, capturing features specific to

that scale. For an architecture with S scales, the input and
output of the encoder at each scale can be defined as:

Zin,i =

{
H i = 1,
DownSample(Zout ,i−1) i ∈ (1, S],

Zout,i = MEE(Zin,i) i ∈ [1, S],

(7)

where DownSample(·) denotes the downsampling layer im-
plemented by using a convolution operation in the time di-
mension (kernel=3, stride=2, and padding=1). MEE(·) de-
notes the memory-enhanced encoder. Zin,i and Zout,i respec-
tively represent the input and output of the encoder at the i-th
scale, and H denotes the output of the MAE. We can obtain a
multi-scale encoding set [Zout,1,Zout,2, · · · ,Zout,S ].

Considering that coarse-scale time series provide clearer
macro-level information compared to fine-scale time series,
the model adopts a coarse-to-fine mixing strategy to combine
the encoding of S scales, leveraging macro knowledge from
coarser scale to guide the imputation modeling at finer scale:

for s : (S − 1) → 1 do:

Zout,s = Zout,s + UpSample
(
Zout,s+1

) (8)

where UpSample(·) is the upsampling layer implemented by
a deconvolution operation in the time dimension.

Finally, a linear head is applied to the mixed encoding
Zout,1 to obtain the reconstructed multivariate time series. By
combining the observable values of the original sample with
the reconstructed series, the imputed time series is obtained
and formally expressed as:

X̄ = WzZout,1,

X̂ = M⊙X+ (1−M)⊙ X̄,
(9)

where Wz ∈ R1×D is a learnable linear projection matrix,
⊙ denotes element-wise multiplication, X and M represent
the input sample data and its missing matrix, respectively.
X̄ ∈ Rd×L and X̂ ∈ Rd×L denote the reconstructed and
the imputed time series, respectively.

4.4 Overview Training Process
To train the imputation model more effectively on incomplete
multivariate time series, we employs multi-task training opti-
mization referring to SAITS [Du et al., 2023].

In general, the objective of MMNet contains two types
of loss: i) masked reconstruction loss, which aims to re-
construct the masked values within the incomplete historical
multivariate time series. and ii) observed reconstruction loss,
which focuses on accurately reconstructing the observed val-
ues. Here, masked reconstruction loss encourages the model
to impute missing values accurately, while observed recon-
struction loss ensures the model aligns with the distribution
of observed data. The final objective can be formalized as:

L =
||(X− X̄)⊙ M̄||22

||M̄||22
+ λ

||(X− X̄)⊙ (M− M̄)||22
||(M− M̄)||22

,

(10)
where || · ||2 represents the L2 norm function, ⊙ denotes
element-wise multiplication, and λ is a hyper-parameter.
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Specifically, during model training, we randomly mask γ per-
cent of the time series. To encode the artificial masking infor-
mation, an artificial mask matrix M̄ ∈ Rd×L is used, where
m̄ij equals 0 (resp. 1) means xij is unmasked (resp. masked).
This objective function is used to train the multivariate time
series imputation model in an unsupervised manner. Eventu-
ally, the MMNet is trained by minimizing L to obtain the op-
timal imputation model M̄θ. The training pipeline is shown
in Algorithm 1.

Algorithm 1: MMNet Algorithm Flow
Input: Incomplete multivariate time series X, missing

mask matrix M, number of scales S, training
epochs epochs

Output: Optimized time series imputation model Mθ

1: for epoch = 1 to epochs do
2: Mask the observable values in X with a ratio γ
3: Normalize the masked data
4: obtain the incomplete data embedding H

/* Multiscale Encoding */
5: Zin,1 = H
6: for s = 1 to S do
7: Zout,s = MEE(Zin,s)

8: Zin,s+1 = DownSample(Zout,s)

/* Multiscale Mixing */
9: for s = S-1 to 1 do

10: Zout,s = Zout,s + Upsample(Zout,s+1)

11: Obtain the reconstructed sequence X̄ and the
imputed sequence X̂ using Equation 9

12: Calculate the training loss using Equation 10
13: Update parameters θ using the ADAM optimizer

with ∇θL.
14: return Optimized imputation model Mθ

5 Experiment
In this section, we evaluate the performance of MMNet and
eight state-of-the-art methods for multivariate time series im-
putation . All approaches were implemented in Python. The
experiments were conducted on an Intel Core 2.80GHz server
with TITAN Xp 12GiB (GPU) and 192GB RAM, running
Ubuntu 18.04 system.

5.1 Experiment Setup
Dataset. (i) PhysioNet 2012 Mortality Prediction Challenge
Dataset(PhysioNet) [Silva et al., 2012] contains 12,000 mul-
tivariate clinical time series samples with 37 measurements
collected from ICU (Intensive Care Unit) patients. Each sam-
ple represents data recorded during the first 48 hours follow-
ing a patient’s admission to the ICU. The dataset contains
80.67% missing values. (ii) Beijing Multi-site Air Quality
Dataset(Air-Quality) [Zhang et al., 2017] includes hourly air
pollutant data from 12 monitoring stations in Beijing, col-
lected between March 1, 2013, and February 28, 2017 (48
months). For each station, 11 continuous time series variables

(e.g., PM2.5, PM10, SO2) were measured. The dataset con-
tains 1.6% missing values. (iii) Electric Transformer Temper-
ature Dataset(ETT) [Zhou et al., 2021] records hourly elec-
tricity consumption from 370 clients across two regions in
China. Each data sample includes 7 features, including tem-
perature and 6 different types of external power load char-
acteristics. This dataset consists of four subsets (ETTh1,
ETTh2, ETTm1, ETTm2), with the ETTh1 subset used in
our experiments. (iv) Italy Air Quality Dataset (Italy-Air)
[De Vito et al., 2008] provides hourly average response val-
ues from five metal oxide sensors, alongside hourly average
pollutant concentration data from certified analyzers. The
train/val/test splits for all four datasets follow the same setup
as in [Du et al., 2024]. The sequence length for each sample
across all four datasets is 48, 24, 48, and 24, respectively.

Baselines. In the experiments, we compare MMNet with
eight baseline time series imputation methods. These include
one static imputation method (Last) and seven advanced deep
learning algorithms: SAITS [Du et al., 2023], Brits [Cao et
al., 2018], GPVAE [Fortuin et al., 2020], CSDI [Tashiro et
al., 2021], TimesNet [Wu et al., 2023a], Trans[Vaswani et
al., 2017] and ModernTCN [Luo and Wang, 2024].

Evaluation metrics. We apply the mean absolute error
(MAE) [Chai and Draxler, 2014] and mean square error
(MSE) [Jeffery et al., 2006] to evaluate the effectiveness
of imputation models. Smaller metric values indicate bet-
ter imputation performance. For datasets without missing
values (ETT and Italy-Air), 50% of the observed values are
randomly removed before model training. To compute the
evaluation metrics, 20% of the observed values in both the
validation and test datasets are randomly masked, and these
masked values are treated as ground truth to assess imputation
performance. In downstream experiment, classification accu-
racy is evaluated using ROC-AUC, PR-AUC, and F1-score,
with higher values reflecting better performance.

Implementation details. All experiments were imple-
mented using PyTorch [Paszke et al., 2019]. To ensure a fair
comparison, the number of training epochs was uniformly set
to 500 across all models, with an early stopping strategy em-
ployed using a patience value of 10. Additionally, hyperpa-
rameter optimization was performed on key parameters of the
deep learning-based imputation algorithms. For MMNet, to
balance efficiency and accuracy, the number of scales S is set
to 3, the number of layers in the encoder at each scale is set
to 2, the number of memory vectors nm is set to 12, the loss
weight factor λ is set to 1, the artificial masking rate γ for
self-supervised training is set to 20%, and the hidden layer
dimension is set to 64. To ensure the reliability of the results,
all reported metrics represent the average performance across
five runs with different random seeds.

Missing patterns. In the experiments, we inspect six
missing mechanisms simulated using PyGrinder1. The foun-
dational classification scheme proposed by Rubin [Straw-
derman, 1989] delineates missing data mechanisms into
three specific categories: Missing Completely At Random
(MCAR), Missing At Random (MAR), and Missing Not
At Random (MNAR). Despite this, in real-world scenarios,

1https://github.com/WenjieDu/PyGrinder
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Models Physionet Air Quality ETT Italy-Air
MAE MSE MAE MSE MAE MSE MAE MSE

Last 0.400 ± 0.000 0.651 ± 0.000 0.192 ± 0.000 0.276 ± 0.000 0.271 ± 0.000 0.183 ± 0.000 0.262 ± 0.000 0.321 ± 0.000
SAITS 0.223 ± 0.002 0.344 ± 0.005 0.160 ± 0.001 0.130 ± 0.004 0.275 ± 0.010 0.173 ± 0.012 0.205 ± 0.004 0.128 ± 0.006
Brits 0.273 ± 0.001 0.417 ± 0.026 0.162 ± 0.003 0.144 ± 0.019 0.359 ± 0.005 0.284 ± 0.003 0.291 ± 0.008 0.222 ± 0.012

GPVAE 0.440 ± 0.004 0.583 ± 0.032 0.293 ± 0.001 0.276 ± 0.004 0.494 ± 0.017 0.525 ± 0.030 0.415 ± 0.010 0.492 ± 0.013
CSDI 0.229 ± 0.002 0.332 ± 0.040 0.085 ± 0.001 0.110 ± 0.001 0.225 ± 0.006 0.111 ± 0.010 0.182 ± 0.007 0.126 ± 0.008

TimesNet 0.284 ± 0.002 0.387 ± 0.029 0.155 ± 0.003 0.230 ± 0.025 0.223 ± 0.001 0.101 ± 0.002 0.183 ± 0.001 0.131 ± 0.002
ModernTCN 0.305 ± 0.002 0.382 ± 0.004 0.182 ± 0.001 0.135 ± 0.001 0.333 ± 0.004 0.202 ± 0.003 0.297 ± 0.002 0.194 ± 0.003

Trans 0.229 ± 0.001 0.350 ± 0.026 0.139 ± 0.001 0.118 ± 0.003 0.254 ± 0.007 0.144 ± 0.009 0.245 ± 0.002 0.159 ± 0.001
MMNet 0.210 ± 0.001 0.329 ± 0.019 0.079 ± 0.002 0.106 ± 0.005 0.150 ± 0.002 0.055 ± 0.002 0.075 ± 0.001 0.051 ± 0.001

Table 1: Imputation performance comparison under different datasets

missing values in time series often exhibit continuity, where
a missing point is typically followed by a sequence of consec-
utive missing points, termed as “block” missing. To account
for this characteristic, we extend the three fundamental miss-
ing mechanisms by incorporating block missing, resulting in
six distinct missing mechanisms: MCAR, MCAR B, MAR,
MAR B, MNAR and MNAR B. To ensure fairness, the miss-
ing rate Rm, representing the proportion of dropped values in
the test, validation, or training data, is set to 50% by default
for all generated datasets under various missing mechanisms.

5.2 Comparison Study
Table 1 reports the experimental results of multivariate time
series imputation methods over four datasets. The best-
performing results are highlighted in bold, while the second-
best results are underlined. It can be observed that MM-
Net consistently outperforms all baseline methods across all
datasets and metrics. Specifically, the imputation perfor-
mance of MMNet, measured by MSE and MAE, is on aver-
age 26.87% and 28.62% better than the best baseline method
CSDI, and it even increases up to 58.79% and 59.52% on the
Italy-Air dataset. This is because MMNet adopts an effective
imputation model with the missing-aware embedding and the
memory-enhanced encoder, while improving the imputation
accuracy by incorporating a multi-scale mixing strategy. Ad-
ditionally, we observe that among the baseline methods, static
imputation algorithms (Last) generally perform worse than
most deep learning-based models. Among the deep learning-
based approaches, the diffusion-based method CSDI achieves
the best performance on most datasets, whereas the VAE-
based model GPVAE performs significantly poorer compared
to other methods. Therefore, the Last impuation and GPVAE
imputation methods will be excluded from the subsequent
parts of the experiments.

5.3 Downstream Result
In this experiment, we evaluate the performance of down-
stream classification analysis using imputed datasets, which
indirectly reflects the performance of each imputation
method. The classification task is performed on the Phy-
sioNet dataset, where each sample is labeled to indicate
whether the patient has died. Specifically, the imputation
methods are first employed to infer missing values in origi-
nal incomplete datasets. The imputed datasets are then used
to train a simple RNN classifier optimized with cross-entropy
loss. All hyperparameters are set as follows: the learning rate
is set to 0.005, the hidden state dimension is set to 128, the

Models PR-AUC ROC-AUC F1-score
SAITS 0.463 ± 0.009 0.822 ± 0.004 0.447 ± 0.011
Brits 0.422 ± 0.012 0.807 ± 0.005 0.415 ± 0.016
CSDI 0.466 ± 0.006 0.821 ± 0.004 0.439 ± 0.005

TimesNet 0.394 ± 0.005 0.765 ± 0.004 0.387 ± 0.012
ModernTCN 0.436 ± 0.010 0.813 ± 0.006 0.418 ± 0.012

Trans 0.448 ± 0.007 0.810 ± 0.004 0.415 ± 0.009
MMNet 0.468 ± 0.006 0.831 ± 0.005 0.451 ± 0.005

Table 2: Downstream classification evaluation on Physionet Dataset

number of training epochs is set to 100, and early stopping is
employed with a patience of 20 epochs.

The experimental results are shown in Table 2. It can
be observed that datasets with better imputation results tend
to exhibit superior performance in downstream classification
tasks. Notably, the classifier trained on the dataset imputed
by MMNet achieved the best results across all evaluation
metrics. Compared to the suboptimal performance, it im-
proved by 0.42%, 1.09%, and 0.89% in PR-AUC, ROC-AUC,
and F1-Score, respectively. These findings further highlight
that MMNet provides the best imputation quality among all
methods and that accurate imputation can improve the per-
formance of downstream classification tasks on incomplete
multivariate time series datasets.

5.4 Parameter Evaluation
Effect of Missing Rate. When varying the missing rate Rm

(i.e., the proportion of additional observed values in multi-
variate time series data are dropped) from 10% to 90%, the
corresponding experimental results, measured by MAE, are
depicted in Figure 2. As observed, the accuracy of all im-
putation algorithms consistently declines as the missing rate
increases, reflected by a continuous rise in MAE. This is be-
cause higher missing rates reduce the amount of available in-
formation for inference, thereby diminishing the effectiveness
of imputation algorithms. Among these algorithms, MMNet
consistently outperforms all others in every case and main-
tains more stable accuracy as the missing rate increases. In
other words, MMNet is more robust with the increasing miss-
ing rate Rm than others. The underlying reason is that MM-
Net incorporates a memory-enhanced encoder, enabling it to
capture global information beyond the sample, thereby better
addressing data sparsity issue.

Effect of Missing Mechnisam. In this set of experiments,
we evaluate the effect of different missing mechanisms (i.e.,
MCAR, MAR, MNAR, MCAR B, MAR B, and MNAR B) on
the imputation algorithm performance. The results, mea-
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Models Physionet Air-Quality ETT Italy-Air
MAE MSE MAE MSE MAE MSE MAE MSE

MMNet-no-MAE 0.274 ± 0.002 0.386 ± 0.016 0.101 ± 0.002 0.116 ± 0.003 0.169 ± 0.003 0.069 ± 0.002 0.097 ± 0.004 0.074 ± 0.001
MMNet-no-MEE 0.218 ± 0.001 0.338 ± 0.013 0.084 ± 0.003 0.114 ± 0.005 0.157 ± 0.001 0.059 ± 0.001 0.085 ± 0.004 0.069 ± 0.001
MMNet-no-MSM 0.221 ± 0.002 0.342 ± 0.011 0.087 ± 0.001 0.117 ± 0.007 0.161 ± 0.004 0.062 ± 0.001 0.090 ± 0.003 0.061 ± 0.003

MMNet 0.210 ± 0.001 0.329 ± 0.019 0.079 ± 0.002 0.106 ± 0.005 0.150 ± 0.002 0.055 ± 0.002 0.075 ± 0.001 0.051 ± 0.001

Table 3: The ablation study of MMNet
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(d) Italy Air
Figure 2: The performance of multivariate time series imputation algorithms vs. Rm

sured by MAE, over the ETT dataset are shown in Figure 3.
The results indicate that the performance of imputation al-
gorithms is relatively insensitive to different missing mecha-
nisms. Furthermore, “block” missing patterns (i.e., MCAR B,
MAR B, and MCAR B) leads to a further decrease in impu-
tation performance compared to the “value” missing patterns
(i.e., MCAR, MAR, and MCAR). This is because the ”block”
pattern hinders the model’s ability to infer missing points
from adjacent ones, while also lead to more substantial in-
formation loss over extended periods, thereby affecting the
model’s imputation performance. Additionally, as expected,
it is evident that MMNet consistently attains the optimal im-
putation performance in every scenario, further validating its
robustness. Specifically, MMNet surpasses the best baseline
CSDI with an average improvement of 24.81%, and even in-
creases up to 33.33% on the MCAR missing mechanism.

SAITS
BRITS

ModernTCN
CSDI

TimesNet
Trans

MMNet

MCAR MCAR-B MAR MAR-B MNAR MNAR-B
0.0

0.5

1.0

M
A

E

Figure 3: The performance of different missing mechanisms

Effects of Scales. We investigate the impact of the number
of scales on the model’s imputation performance, with the re-
sults presented in Table 4. The results clearly show that as the
number of scales increases, the imputation performance im-
proves overall, further validating the importance of integrat-
ing information from multiple scales to enhance accuracy.

5.5 Ablation Study
We investigate the influence of different components of MM-
Net on the imputation performance. The corresponding ex-
perimental results are shown in Table 4. MMNet-no-MAE

S Physionet Air-Quality ETT Italy-Air
1 0.221± 0.002 0.087± 0.001 0.161± 0.004 0.090± 0.004
2 0.218± 0.003 0.081± 0.002 0.154± 0.001 0.079± 0.003
3 0.210± 0.001 0.079± 0.002 0.150± 0.002 0.075± 0.001
4 0.211± 0.001 0.078± 0.003 0.151± 0.003 0.072± 0.001

Table 4: The performance (MAE) of different number of scale

refers to the variant of MMNet without the missing-aware
embedding module, where zero-filling is used instead. MM-
Net-no-MEE refers to the variant of MMNet without using
memory-enhanced attention, and MMNet-no-MSM refers to
the variant of MMNet without multi-scale mixing. It can be
observed that each module in the MMNet model do con-
tribute positively to imputation performance. Specially, the
average imputation accuracy (i.e. MSE and MAE) decreases
by 24.70%, 11.17%, and 10.12% without the missing-aware
embedding, multi-scale mixing and memory-enhanced atten-
tion, respectively. Among these, the missing-aware embed-
ding module has the most significant impact on MMNet. This
proves that simple pre-filling strategies indeed interfere with
the model’s ability. The MMNet model, by introducing MAE
module, allows the model to better learn the missing distribu-
tions across multiple time series while avoiding noise.

6 Conclusion
In this paper, we propose a Missing-Aware and Memory-
Enhanced Network, named MMNet, for multivariate time se-
ries imputation. Specifically, MMNet employs the missing-
aware embedding (MAE) module to adaptively represent
incomplete multivariate time series data. The memory-
enhanced encoder (MEE) is designed to capture both tem-
poral and variable dependencies while modeling the prior
knowledge within the time series. Building on these mod-
ules, the multi-scale mixing (MSM) architecture is employed
to combine information across multiple scales to enhance im-
putation performance. Extensive evaluations on four real-
world datasets demonstrate the effectiveness of the proposed
model, highlighting its superiority in addressing incomplete
multivariate time series data.
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[Pérez-Lombard et al., 2008] Luis Pérez-Lombard, José Or-
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