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Abstract

The past decades witness the significant advance-
ments in time series forecasting (TSF) across var-
ious real-world domains, including e-commerce
and disease spread prediction. However, TSF is
usually constrained by the uncertainty dilemma of
predicting future data with limited past observa-
tions. To settle this question, we explore the use
of Cross-Future Behavior (CFB) in TSF, which oc-
curs before the current time but takes effect in the
future. We leverage CFB features and propose
the CRoss-Future Behavior Awareness based Time
Series Forecasting method (CRAFT). The core idea
of CRAFT is to utilize the trend of cross-future
behavior to mine the trend of time series data to
be predicted. Specifically, to settle the sparse and
partial flaws of cross-future behavior, CRAFT em-
ploys the Koopman Predictor Module to extract the
key trend and the Internal Trend Mining Module
to supplement the unknown area of the cross-future
behavior matrix. Then, we introduce the External
Trend Guide Module with a hierarchical structure
to acquire more representative trends from higher
levels. Finally, we apply the demand-constrained
loss to calibrate the distribution deviation of predic-
tion results. We conduct experiments on real-world
dataset. Experiments on both offline large-scale
dataset and online A/B test demonstrate the effec-
tiveness of CRAFT. Our dataset and code are avail-
able at https://github.com/CRAFTinTSF/CRAFT.

1 Introduction

Time series forecasting (TSF) is the crucial infrastructure of
various real-world domains, including e-commerce [Wen et
al., 2017], traffic [Hu et al., 2024], disease spread predic-
tion [Mossop and Rahman, 20231, and stock price predic-
tion [Shetty and Ismail, 2023].

However, accurate TSF is a challenging task given the
need to model complex, non-linear temporal patterns over
long periods of time [Rasul et al., 2024]. To this end, re-
searchers explore various backbone networks such as con-
volutional neural networks (CNNs) [Chen et al., 20201, re-
current neural networks (RNNs) [Yin ef al., 2022], and
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Figure 1: Illustration of Cross-Future Behavior (CFB).

Transformer [Zhou et al., 2021]. Additionally, they work
on incorporating richer features into TSF and study issues
related to multivariate TSF [Zhao and Shen, 2024; Li et
al., 2024] and feature decomposition [Zeng et al., 2023;
Liu et al., 2024b]. With the advancement of sensing technol-
ogy, such as Internet data in e-commerce and population mo-
bility information in disease spread prediction, various pri-
ori information for TSF can be recorded. In this paper, we
defined these priori information as Cross-Future Behavior
(CFB): features that occur before the current time but take
effect in the future. CFB positively affects TSF. As shown
in Figure 1, if only relying on the trend of the label, the fu-
ture trend may be predicted as a downward trend. With the
guidance of CFB, the prediction result will be more precise.
In fact, existing work is also attempting to introduce more
features into TSF. [Zeng et al., 2023] attempts to extract more
information from the acquired data and decomposes the time
series into trend and remainder parts. [Wen et al., 2017]
classifies covariate features in TSF into dynamic historical,
known future, and static variables. CFB, we proposed in this
paper, can be treated as the known future variable and has
many excellent properties. CFB contains true information re-
lated to future events. The future trend of the prediction tar-
get, even the abnormal trend caused by sudden events, can be
reflected in the trend of CFB. However, as the existing TSF
models primarily focus on exploring the correlation between
the historical series and future trends [Chen er al., 2020;
Yin et al., 2022; Zhou et al., 2021], it is difficult to achieve
TSF that integrates CFB through existing models. Taking the
e-commerce scenario as an example, CFB-based TSF faces
two main challenges. 1) CFB is sparse and partial. Con-
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sumers can book items at any time, causing CFB to remain
fully observed until the last minute. Thus, if CFB is simply
incorporated into the model, the prediction model may be un-
able to apply CFB features correctly and even make incorrect
predictions due to CFB. 2) The trend of CFB is unobvious.
Compared with the sales trend in a business district, the sales
trend in an individual hotel is unobvious. CFB has the same
nature, and the trend in an individual hotel is much unobvious
compared with that in a high-level business district. Conse-
quently, devising a method to utilize the sales trend in high
level to inform the auxiliary forecast for an individual hotel
presents another significant challenge.

Therefore, jointly considering the above challenges, we
propose CRAFT, a Cross-Future Behavior Awareness based
Time Series Forecasting method, for the first time to utilize
Cross-Future Behavior to realize time series forecasting. The
core idea of CRAFT, as shown in Figure 1, is to utilize the
trend of CFB to mine the trend of time series data to be pre-
dicted. CRAFT is composed of three main parts: the Koop-
man Predictor Module (KPM), the Internal Trend Mining
Module (ITM), and the External Trend Guide Module (ETG).
KPM can extract the key trends of the label and CFB, predict-
ing the label in the prediction window. ITM supplements the
unknown area of CFB, making the final prediction of the label
in the prediction window. ETG, with a hierarchical structure,
can acquire more representative trends from higher levels. Fi-
nally, we apply the demand-constrained loss to calibrate the
distribution deviation of prediction results. We conduct ex-
periments on real-world dataset. Experiments on both offline
large-scale dataset and online A/B test demonstrate the effec-
tiveness of CRAFT. We summarize the main contributions of
this paper as follows:

* We define CFB and apply CFB to TSF for the first time.
CFB is a feature discovered from our extensive real case
studies and has superior characteristics: the trend of
CFB can reflect the prediction target and even the ab-
normal trend of the target.

We propose a novel framework, namely CRAFT, to re-
alize CFB-based time series forecasting. CRAFT can
utilize the trend of CFB to mine the trend of prediction
targets. CRAFT is composed of three main modules,
including KPM, ITM, and ETG. KPM and ITM can ad-
dress the sparse and partial flaws of CFB, and ETG can
address the unobvious trend flaws of CFB.

Extensive offline experiments on the real-world dataset
and online A/B tests show the superiority of CRAFT to-
wards SOTA baselines. CRAFT improves application
performance significantly, with an improvement rate of
41.35% on the IW R metric. Currently, CRAFT has
been successfully deployed on the reality application.

2 Related Work

Backbone for time series forecasting. Recently, Trans-
former has reshaped the landscape of TSF across numer-
ous fields [Wen et al., 2023]. PatchTST [Nie et al., 2024]
designs a channel-independent Transformer for time series
forecasting. To address the channel-independent limita-
tions of Transformer, CARD [Wang e al., 2024] proposes a

channel-aligned attention structure that can acquire both tem-
poral correlations and dynamical dependence among multi-
ple variables over time. Informer [Zhou et al., 2021] ex-
tends Transformer using ProbSparse based on KL divergence
to solve Long Sequence time series forecasting. TFT [Lim
et al., 2021] introduces a novel attention-based architecture
that combines high-performance multi-horizon forecasting
with interpretable insights into temporal dynamics. Auto-
former [Wu et al., 2021] proposes a Decomposition Archi-
tecture and Auto-Correlation Mechanism based on stochastic
process theory to realize the series-wise connection and break
the bottleneck of information utilization. Pyraformer [Liu et
al., 2021] proposes a new Transformer based on a pyrami-
dal attention module to simultaneously capture temporal de-
pendencies of different ranges in a compact multi-resolution
fashion. Besides Transformer, a variety of other network
architectures are widely investigated. CNNs-based time se-
ries forecasting models such as WaveNet [Oord et al., 2016],
TCN [Bai et al., 1803], and DeepTCN [Chen et al., 2020]
use causal convolution to learn sequences and use dilated
convolution and residual block to memorize historical pat-
terns. Graph WaveNet [Zonghan et al., 2019] enhances the
WaveNet framework by using an adaptive and learnable adja-
cency matrix to automatically infer graph structures, enabling
the prediction of spatiotemporal sequences. Moreover, due to
the sequential nature of time series data, RNNs-based time
series forecasting is particularly widely suited, mainly mod-
eling the temporal dependence of time series [Salinas ef al.,
2020; Wang et al., 2019; Liu ef al., 2020].

Multivariate time series forecasting. Multivariate TSF
utilizes multiple time-dependent variables to realize predic-
tion. Compared with univariate TSF, multivariate TSF can
understand the interactions between different components of
a complex system better, which is crucial for strategy formu-
lation and decision-making [Mendis et al., 2024]. There are
two commonly used strategies in multivariate TSF, i.e., the
channel-dependent (CD) and channel-independent (CI) meth-
ods. CI method only models cross-time dependence, and the
CD method models both cross-time dependence and cross-
variate dependence [Zhao and Shen, 2024; Yang et al., 2024].
While the CI method is characterized by simplicity and low
risk of overfitting, the CD method has inevitably become the
mainstream of research. Recently, [Zhao and Shen, 2024] uti-
lizes the channel dependence between variates and proposes a
plug-and-play method named LIFT, which exploits the lead-
lag relationship between variates by estimating leading indi-
cators and leading steps, refreshing multivariate TSF’s per-
formance.

Feature decomposition in time series forecasting. Dif-
ferent from multivariate TSF utilizing multiple variates and
the dependence between variates to realize prediction, fea-
ture decomposition in TSF does not introduce new vari-
ates. The core idea of feature decomposition is to extract as
much information as possible from existing variates. Dlin-
ear [Zeng et al., 2023] decomposes time series into trend se-
ries and remainder series and uses two single-layer linear net-
works to model them, bringing performance improvements.
Koopa [Liu et al., 2024b] solves non-stationary time series
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prediction problems from the perspective of modern dynam-
ics Koopman theory.

3 Preliminaries

Time series forecasting (TSF) with Cross-Future
Behavior (CFB) can be defined as Yyyi.44p =
H(Y:—r+14, X1, Cr). Yi 41 S R and
Yit144p € RP are time series data (i.e., label) at the
L-length look-back window and P-length prediction window
at time t respectively. Xr is covariate features, Cr is the
CFB feature and H is the prediction function to be learned.
The covariate features [Wen et al., 20171 Xt contains
three categories: 1) historical features like month-on-month
sales features, etc; 2) known future features like holidays,
weekends, etc; 3) static features like hotel brands, business
diStI'iCtS, etc. C'J[‘ = {Ct—L+1:t7 Ct+1:t+P}’ where Ct_LJ’_l:t
is CFB in the look-back window and C;1..4 p is CFB in the
prediction window. It is worth noting that C; 1.4+ p in the
prediction window is partial as this is a not fully observable
variate. Consumers can book items in the prediction window
at any time until the last minute. More detailed introduc-
tion to CFB feature C; refers to Appendix A in our full
paper [Zhang et al., 2025].

In the following section, we omit the subscripts of some
symbols for simplicity. Specifically, we denote time series
at the look-back window Y;_rt1.¢ as Y, time series at the
prediction window Y;11..4+p as Y p, CFB feature in look-
back window C;_;1.+ as Cp, CFB feature in prediction
window C;1..4p as Cp. In addition, as Cp is partial ob-
served, we define a new notion Crp to indicate the ground
truth of CFB in prediction window.

4 Methodology

Figure 2 depicts the overview of the proposed CRAFT
method. CRAFT uses DLinear [Zeng et al., 2023] to decom-
pose the time series data Y, Cy, in the look-back window
into the trend Y2, CT and residual YE =Y, — YZ CE =
C. — C¥ components. The moving average kernel with
a certain kernel size is used in the decomposition process.
CRAFT’s core idea lies in how to use the trend of partial CFB
to mine the trend of label. We prove the consistency between
partial CFB, CFB, and label theoretically in Appendix D.1
and D.2 in our full paper [Zhang et al., 2025]. CRAFT is
composed of three submodules: Koopman Predictor Module
(KPM), Internal Trend Mining Module (ITM), and External
Trend Guide Module (ETG). KPM employs the Koopman
operator to linearly map the CFB features from the look-back
window to the prediction window, after projecting the raw
data into the mapping space. Subsequently, it supervises the
initialization of the label sequence within the prediction win-
dow. ITM completes linear mapping between the look-back
window and prediction window and adopts an adaptation op-
erator to instruct the evolution of the time series of the label
sequentially. Due to higher-level temporal sequences hav-
ing lower noise and stronger regularity compared to lower-
level temporal sequences, ETG module makes forecast re-
sults more robust by structuring the reconciliation matrix and
calibrating the predicted outcomes of root nodes. To avoid

computational problems caused by excessively large hierar-
chical matrices, the concept of hierarchical sampling is intro-
duced.

4.1 Koopman Predictor Module

KPM module aims to transfer the future trend information
from CFB feature Ct = {C,Cp} to labels Yp. The
simplified framework of KPM is shown in Figure 2 and the
specific framework refers to Appendix C.1 in our full pa-
per [Zhang et al., 2025]. KPM employs an encoder-decoder
framework with the input of CFB Cp, and label Y, in the
look-back window and output of partial CFB Cp in the pre-
diction window. Concretely, we first construct an encoder
R — RP as a data-driven measurement function. The
encoder module is Multi Layer Perception (MLP) [Zhu et
al., 2023] and it can also be replaced to other structure:
ZCT = Encoder(CY),ZCp = Encoder(Cp),ZY} =
Encoder(YT), where ZCY ZCp,ZY} are the embed-
dings of the trend of CFB in the look-back window, CFB
in the prediction window, and the trend of labels in the
look-back window. In particular, the encoder is shared for
7ZCT 7Cp, ZY%. Secondly, based on the Koopman The-
ory [Koopman, 1931], we use finite linear matrix K¢ to ap-
proach infinite koopman matrix /C to simulate the evolution
process between time periods, that is:

ZCp = K¢ x ZCT, (1)

where Ko € RP*P is the Koopman matrix for CFB, which
contains the future sales trend information. Its value can be
approximated by ridge regression as:

Ko = (2CT' % 2CT + AE)"! x 2CT ' x ZCp. ()

Then, we use K to convert the future trend information from
CFB embedding to label embedding:

ZY; . =Ke x ZYT. 3)

Finally, we construct a decoder R” +— R” to obtain the pre-
liminary prediction result of label. Same as encoder, decoder
can adopt various model structures, and this paper uses the
MLP layer [Zhu et al., 2023]. In particular, the decoder is

shared for Cp, Y?m-ti CP = DeCOdGT(ZbP)aY}Fmt =

Decoder(ZY?Mt). Specifically, to ensure that K is mean-
ingful, we construct a recovery loss Ly to constrain the
decoder to restore the original data based on the embedding
output by the encoder, so that the embedded latent variable
enables to obtain the potential attributes from raw data and
preserve the original information as much as possible. Lpe_x
is designed based on the MSE loss:

2 P i » B ..
Lyer = ﬁ Zizo Zj:O(CP[Z’j] - CP[Zvj])za “)

we choose Cp to calculate loss because we emphasize more
on tendency characterization at the prediction window. It
should be noted that we only focus on the known parts, i.e.,
j <1, and the loss of the masked data will not be calculated.
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Figure 2: The overview of the proposed Cross-Future Behavior Awareness based Time Series Forecasting method (CRAFT). The left
decomposition part is based on DLinear. CRAFT is composed of three main parts, the Koopman Predictor Module (KPM), the Internal
Trend Mining Module (ITM), and the External Trend Guide Module (ETG). KPM is used to extract the key trends of the trend of label and
CFB, predicting the label in the prediction window. ITM is used to supplement the unknown area of the CFB. ETG is used to acquire more

representative trends from higher levels.

4.2 Internal Trend Mining Module

ITM module aims to complete the CFB feature. After KPM,
we attained preliminary insufficient prediction Yfmt In the
ITM module, we first adopt a complete network to patch
the mapping of CFB from the look-back window to the pre-
diction window and then employ an adaptation network to
fulfill the adaptive migration of data distribution from CFB
to the label. The simplified framework is in Figure 2 and
the specific framework is in Appendix C.2 in our full pa-
per [Zhang et al,, 2025]. We utilize another pair of en-
coder REFP s RP and decoder RP +— RI*+F to learn
the common embedding for entire known information. Un-
like KPM, ITM takes all known information as input, i.e.,
data in the train and prediction window. Regarding the la-

bel, we pad preliminary predicted values Y}‘Fm-t at the predic-

tion window: ZCT = Encoder(concat(CL,Cp)),ZY" =
Encoder(concat(YT, YT .,)). To settle the forecast win-
dow puzzle, we use the complete network to extend known
curves into unknown regions, which is designed as a linear
network:

ZC;P = Complete_network(ZCT). Q)

Additionally, despite there being a certain correlation be-
tween CFB and label, their distributions are not entirely iden-
tical. Based on this fact, we employ an adaptation network
to adjust the label adaptively, with the ETG module (4.3)
following closely behind. Since both the complete network
and adaptation network operate on the hidden variable ZY”
based on the original attributes of labels, we merge them into
the ITM module to distinguish it from the ETG module. Af-
ter traversing from the ITM & ETG module, we acquire the

O.T
desired latent variable ZY p:
ZY = Adaptation_network(Complete_network(ZYT)),

7Y 5 = ETG-module(ZY).
(6)

- T T
Finally, the latent vector ZCrp and ZYp are con-
verted into target predicted values with decoder: CL, =

~ T ~ ~ T
Decoder(ZCrp), YL = Decoder(ZY p).

The final result is calculated by adding these two val-
ues with the reminder predicted values (acquired with
the linear mapping of YZ CI in Figure 2, C&, =
Linear(CE), Y = Linear(YE)):

Crp=Clp+Clp, Yp=Yir+YE %)
To ensure the effectiveness of complete network, we intro-
duce the prediction bias loss Ly y:

2 k k R
Loy =132 D . (Crrli.jl = Creli.)*. 8

4.3 External Trend Guide Module

ETG module is designed to settle the trend unobvious chal-
lenge, which uses aggregated spatial dimension to improve
prediction results. Aggregated spatial dimension has stronger
regularity, less noise, and is easier to estimate. Table 1 shows
that the sample size of the hotel is approximately 400k, which
is too extensive for direct model train. Therefore, refer-
ring to [Lu et al., 2022], we introduced a hierarchical sam-
pling strategy to construct samples. This strategy assumes
the global reconciliation matrix P is sparse, indicating that
only child nodes belonging to the same parent node have cali-
bration relationships with each other. This assumption aligns
well with the geographic attributes of hotels. We aggregate
hotels into business districts based on their geographic loca-
tion and then to higher levels of urban granularity. First, we
randomly pick a business district. Then, we sample m hotels
from this district, with the likelihood of selection increasing
with each hotel’s historical label value. These m hotels’ la-
bels are combined to create a virtual parent node. Together,
the m + 1 nodes form a sampled hierarchy that serves as
model input. This hierarchical sampling maintains the sum
constraint through virtual parent nodes, and label weighted
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sampling aligns the virtual sequence more with the real par-
ent sequence. Moreover, these strategies reduce the reconcil-
iation matrix’s parameter count from O(n?) to O(mn), sig-
nificantly easing the model’s computational load.

The framework of ETG is detailed in Figure 2 and Ap-
pendix C.3 in our full paper [Zhang et al., 2025]. The input of
ETG is ZY (Eq. (6)). z;/;/1 = ZY[i/j/k] are the elements

of ZY . According to the hierarchical sampling, we can adjust
its shape from [Bt, -] to [g,m, - - - |, where Bt = g x m, in-
dicating the number of original nodes, the number of nodes in
high-level and in low-level. All subsequent actions are oper-
ated within the virtual hierarchical group. We obtain the key
and query to calculate the reconciliation matrix B between
nodes in the same hierarchical structure, where B(i, j) indi-
cates the reconciliation relationship between the ith and jth
nodes in the hierarchical structure:
. exp(eij)
€ij = Wyz; ©Wpz, Bl j] = =—————
) q= © k=g [ 7]] ZkeMi ewp(eik)v (9)

where W, € R4 W, € R?*? are the query and key pa-
rameter of model, M is the set of nodes in the current hierar-
chy of i. Then, we use the reconciliation matrix B to calibrate
each sequence:

5 = Zke% B[i, k] x W, X 2, (10)

where W, € R%*? is the model’s value parameter. Given the
lower noise and greater regularity of parent nodes compared
to child nodes, we refrain from applying representation cal-
ibration to parent nodes using masking techniques, aligning
with the reconciliation process. During the model training
process, we introduce reconciliation loss to implement hier-
archical constraints:

1 - mooo
Lirecon = 972 Zj:O(YP[ZH] - Zj:O YP[Za.]DQ' (11)

where Y p [i1] is the estimated result of parent node. L, ccon
indicates the difference between the direct estimation of the
parent node and sum of underlying estimation results, ensur-
ing the sum of the calibrated estimated results of the underly-
ing nodes approach parent node’s estimated results.

4.4 Algorithm Inference

To fully utilize demand information related to cross-future
behavior, we constructed the demand-constrained loss. In
practice, we have found that there are invisible boundaries on
the amount of user demand. Inspired by [Avati er al., 2020;
Gao er al., 2022], we are conscious that the boundary is in-
formative for the model. Thus, we construct upper and lower
limits based on the demand in transaction scenarios and de-
sign a demand-constrained loss to digest this boundary in-
formation. The principle is shown in Figure 3. From the
perspective of likelihood estimation, we make assumptions
about the distribution of labels when using the common MAE
or MSE as a loss function. Taking the MSE loss function used
in this paper as an example, the MSE loss function is based
on the assumption that the predicted target follows a Gaus-
sian distribution, and what our model infers is the mean of
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Figure 3: Demand-Constrained Loss.

the Gaussian distribution. The actual observation may not
necessarily be the mean of true Gaussian distribution. With
the assistance of upper and lower limits, we can support the
model hover the true distribution.

In the check-in scenario of the hotel, we regard the truth
value as label y (i.e., Y) and regard the value for the day of
reservation as the lower demand bounds y;, excluding entire
CFB actions. We also consider the page view of the order
page as the upper bound y,,, including the unconverted po-
tential user data. The demand-constrained loss is as follows:

G—y)*+ 8@ —w)?  I<u
fa(@, vy yu) = S (0 —y)?, u <9<y,
(g_y)2+ﬁ(g_yu)27 qu<§;

(12)

where [ is hyperparameter. We define the main loss as L,
indicating the forecast bias of Y p:

Ly=faXp,Yp, Y5, YP). (13)

where Y5 is the lower bound matrix, and Y% is the up-
per bound matrix. Through the aforementioned submodules,
CRAFT enables the future trend of cross-future behavior to
approach consummation and migrate it to the tendency cog-
nition of label, aggregating to higher-level label to perceive
more distinct and precise inclination subsequently. During
the process, we obtain C p which is transferred from encoder
to decoder to constrain the representation of koopman em-
bedding, the intact matrix expression of prediction window
of cross-future behavior CTP, and ultimate desired predic-
tion results Y p. To achieve better model outcome, the loss
of CRAFT consists of four parts, where a,,,n € 1,2,3 are
hyper parameters used to balance multiple losses:

£:£y + O‘l»cbe,k + a2£’be,y + a3£recon~ (14)
Lve ks, Loey> Lrecons Ly are shown in Eq. (4), Eq. (8),
Eq. (11), and Eq. (12) which corresponding to the recovery
loss of Cp in the KPM module, the prediction error of Crp

in the ITM module, the reconstruction drift of Y p atthe ETG
module and the forecast deviation of label Y p respectively.

5 Experiments

5.1 Experimental Settings

Dataset
We conduct offline experiments on real-world dataset col-
lected in May 2023 at Fliggy. To reflect the model effects
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Hierarchy | # of city | # of business | # of hotel
Volume | 0.4k | 5k | 400k

Table 1: Dataset Statistics.

on different data distributions objectively, the prediction win-
dow we cover to verify the model’s effectiveness contains
both holidays and daily events. In addition, we set different
forecast lengths K € {7, 14, 30}, corresponding to look-back
lengths T' € {30,90,180}. The dataset statistics are shown
in Table 1. The hotels we use for verification are located in
over 400 cities, covering more than 5000 business districts.
The total sample size is around 400k.

Baseline Methods and Evaluation Metrics

The baseline methods for comparison include MQ-
RNN [Wen et al., 2017], Informer [Zhou et al., 2021],
DLinear [Zeng er al., 2023], Koopa [Liu et al., 2024b],
TFT [Lim et al, 2021], Autoformer [Wu et al., 2021],
Fedformer [Zhou et al., 2022] and iTransformer [Liu et al.,
2024al.

Weighted Mean Absolute Percentage Error (WM APE) is
adopted to measure the models’ performance in offline exper-
iments:

wMAPE = M,
>y

where y denotes the ground truth and ¢ denotes the predicted
value. In hotel booking situations, the data distribution is a
significant imbalance, adopting wM APFE as a performance
metric can effectively alleviate zero values issues. In addi-
tion, wM APFE allows assigning different weights to differ-
ent ground truth, thus increasing the evaluation robustness.
In addition, M AE and RM SE, two widely used metrics in
time series forecasting, are adopted to evaluate the models’
performance.

15)

Implementation

All experiments are implemented with Python 3.8.5 and Py-
torch 1.12.1 We conduct them on the cloud servers with two
NVIDIA Tesla T4 GPUs with 16GB VRAM each. We initial-
ize the network parameters with Xavier Initialization [Glo-
rot and Bengio, 2010]. Each parameter is sampled from
N (0, u2), where gt = —+/2/(Nin + Nout ). Min» Nout denote
the number of input and output neurons, respectively. In actu-
ality, the \ of ridge regression for solving the koopman matrix
in the ITM module is 0.1, the number of child nodes m at the
virtual hierarchy is set as 15 during hierarchical sampling. In
addition, we train all models by setting the mini-batch size
to 256 and using the Adam optimizer with a learning rate of
0.001. Except for MQRNN with the quantile loss at 0.5, all
other models choose MSE as the training loss. The number
of training epochs is 2 on the dataset, and the value of each
experimental result is the average of 5 repeated tests.

5.2 Offline Experiments

Comparison with Baselines
The comparative results are shown in Table 2. For fairness,
we compared both the original baseline methods and the im-

Only label With CFB as covariate

Model ‘ Length P ‘
‘ ‘ MAE RMSE

wMAPE MAE RMSE  wMAPE

7 days 09319 29374 07030 09631 29132  0.7265
Autoformer 14 days 1.0017 23737 09830 0.9799 23566  0.9624
30 days 0.9658 22737 09910 1.2101 27625  1.2414

7 days 0.9280 29147  0.7000  0.9191 29100  0.6933
Fedformer 14 days 0.8744 23333 0.8605 0.9071 24167  0.8923
30 days 0.9109  2.1718  0.9347  1.6507 4.7499  1.6933

7 days 0.9584 29184 0.7195 0.9535 29043 0.7215
TFT 14 days 0.8643 22745 0.8535 0.8524 22730  0.8468
30 days 0.8294 23346  0.8494  0.8301 22945  0.8693

7 days 0.9825 29539  0.7412  0.9822 29566  0.7410
DLinear 14 days 0.8555 23279 0.8418  0.8571 23572  0.8427
30 days 0.8125  1.9499 08337 0.8089 1.9634  0.8298

7 days 0.9731 29251  0.7341 09365 29169  0.7065
Informer 14 days 0.8034  2.2653  0.7906  0.8203 22969  0.8065
30 days 0.7699  1.9618 0.7899  0.8063  1.9844  0.8271

7 days 0.9057 29261  0.6832  0.9096 29086  0.6862
iTransformer 14 days 0.7755 22896 0.7632  0.7891 23134  0.7758
30 days 0.8062  2.0475 0.7694  0.7720  2.0144  0.7364

7 days 0.9007  3.0013  0.6895 0.9064 3.0185  0.6830
MQ-RNN 14 days 0.7403  2.5217  0.7478  0.7415 24554  0.7381
30 days 0.6958  2.1756  0.7142  0.7029 22161  0.7215

7 days 0.9024 29047 0.6943  0.8927 2.8948  0.6818
Koopa 14 days 0.7440  2.3485  0.7326  0.7475  2.4327  0.7350
30 days 0.7045  2.1943  0.7276  0.6984 23456  0.7176

7 days 0.8480  2.8654  0.6706
CRAFT 14 days 0.7237  2.2696  0.7121
30 days 0.6895 2.0121  0.7078

Table 2: Comparative results with prediction window length of
P € {7,14, 30} respectively, correspond one-to-one with the look-
back window L € {30,90,180}. The unit of length is days. The
best results are highlighted in bold and the second best results are
highlighted with a underline.

proved versions with CFB. CRAFT achieves the best perfor-

mance, significantly outperforming the other baselines. We

obtain the following observations from Table 2:

* Compared to the original model, directly integrating CFB
into the existing framework does not yield significant per-
formance enhancements. In some cases, it even leads to
performance degradation. The experimental results con-
firm that, despite its indispensable role, effectively apply-
ing CFB presents considerable challenges.

* Compared with the optimal baseline, CRAFT improves by
at least {0.0447, 0.0166, 0.0063} and {0.0112, 0.0205,
0.0064} in M AE and wM APFE metrics in the prediction
window of {7, 14, 30}. In RM SE metric, CRAFT ranks
the best and the second best when the length of prediction
window is 7 and 14. To sum up, CRAFT performs better
than baseline models in various prediction lengths, demon-
strating stable superiority. The reason behind the excellent
results is that CRAFT utilizes the KPM and the ITM mod-
ule to fully explore the CFB, adopts the ETG to transfer the
trend of high-level time series to low-level time series, and
employs demand-constrained loss to correct the prediction
distribution deviation.

» Experimental results indicate that CRAFT achieves the
best results at the prediction length of 7. The reason be-
hind this phenomena is that when the prediction length in-
creases, the sparsity and unknown properties of the CFB
become more obvious.

* In the experimental results, the longer the prediction win-
dow, the smaller the prediction error. The reason is that the
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Figure 4: Case study on (a)-(d) four different cases, where blue line
is the truth value and the orange line is the prediction of CRAFT.

KPM | ITM | ETG | DemandLoss | MAE | RMSE| wMape
v X X x 09440 | 3.1507 | 07122
v v X x 09090 | 29416 | 0.6857
v v v x 0.8557 | 27555 | 0.6455
v v v v 0.8480 | 27480 | 0.6397

Table 3: Ablation study of CRAFT.

prediction windows consist of daily data and holiday data,
and holiday patterns are more difficult to predict. As the
length of the prediction window increases, the proportion
of holiday data decreases and the overall prediction error
reduces.

Ablation Study

To verify the effectiveness of each module in CRAFT, we
conduct an ablation study on the setting of the prediction
window’s length is 7, as CRAFT achieves the best results
on this condition. The experiment results of the ablation
study are listed in Table 3. According to Table 3, we can
know that the ITM, ETG module, and the constrain-demand
loss all have positive impact on improving the performance
of CRAFT. Among them, ITM and ETG module achieve
the most obvious improvement with 0.035,0.053 on M AF,
0.2091,0.1861 on RM SE, 0.0265,0.0402 on wM APE.

Case Study
To verify that the model is effective in capturing future trends,
we selected samples from the dataset with different trends
for validation. As shown in Figure 4, the trend varies from
sample to sample event for the same event impact: some
hotels reached their peak in the early stages of the holiday
and showed an overall downward trend (Figure 4 (a), (c));
some hotels had high traffic in the middle holiday period and
showed an overall mountain shape (Figure 4 (b), (d)). The
predicted trend of CRAFT is also not constant but changes
with the actual trend of the sample, which indicates the relia-
bility of CRAFT.

In addition, we present the hyperparameter analysis and
complexity analysis in Appendix E in our full paper [Zhang
et al., 2025].

5.3 Online A/B Test

To further verify the performance of CRAFT in the real on-
line environment, we apply CRAFT to holiday inventory ne-
gotiations. In the real application, we need to predict the ho-
tel sales before holidays, and business developers (BD) will
check whether the inventory is sufficient based on the predic-
tion results of our model. If not, they will negotiate with the

Holiday ‘ IWR* PHDIT
| MQ-RNN  CRAFT MQ-RNN  CRAFT
2023 Mid-autumn | 0.0513 0.0306 0.3659 0.2983
2023 National Day |  0.0534 0.0311 0.3694 0.2990
2024 New Year’s Day |  0.0601 0.0354 0.3661 0.3093
2024 Spring Festival | 0.0583 0.0337 0.3655 0.3047

* IWR means inventory waste rate. T PHDI means the proportion of hotels with depleted
inventory.

Table 4: Online A/B test result during holiday.

hotel in advance based on the prediction results to give more
inventory. We select the MQ-RNN as the baseline and utilize
IW R and PH DI metrics to measure the overall impact of
different models. The definition of /W R and PH DI refers
to Appendix B.4 in our full paper [Zhang et al., 2025]. IW R
and PHDI are defined according to specific scenarios and
are the most concerned metrics in BD negotiations. More-
over, as we cannot equally assign daily traffic to each model,
such as testing personalized recommendation systems, we
randomly divided the hotels into two groups for the MQ-RNN
and CRAFT models.

For both the /W R and PH DI metrics, the smaller the
value, the better the model performance. The online A/B test
results are shown in Table 4. Compared with MQ-RNN, CR-
FAT achieves significant improvement on these two metrics.
Indeed, based on the data from four holidays, CRAFT method
has an average improvement of 0.0231 and an improvement
rate of 41.35% on the /W R metric. On the PH DI metric,
the improvement value and improvement rate are 0.0639 and
17.42%, respectively. The results above illustrate the effec-
tiveness of CRAFT in the real application.

6 Conclusion

In this paper, inspired by real-world application, we define
Cross-Future Behavior (CFB). CFB is a kind of features
that occur before the current time but take effect in the fu-
ture, containing true information related to future events. For
the application of CFB in the TSF, we propose an improved
method, named Cross-Future Behavior Awareness based
Time Series Forecasting method (CRAFT). CRAFT re-
gards the trend of CFB as prior information to predict the
trend of target time series data. We conduct experiments on
real-world dataset. Experiments on both offline and online
tests demonstrate the effectiveness of CRAFT. Howeyver, this
paper only conduct experiments on our dataset as the current
public available dataset (e.g., ETT [Zhou et al., 2021], ECL!,
Weather?) does not contain the CFB feature or similar fea-
ture. In the future, we will further collect related data to form
a series benchmark dataset. Moreover, we will continue to
generalize the definition of CFB to enable CRAFT method to
be applied more broadly.

'ECL dataset was acquired at https:/archive.ics.uci.edu/ml/
datasets/ElectricityLoadDiagrams20112014.

“Weather dataset was acquired at https://www.ncei.noaa.gov/
data/local-climatological-data/.
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