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Abstract

Multi-view clustering (MVC) has emerged as
an important unsupervised multi-view learning
method that leverages consistent and complemen-
tary information to enhance clustering perfor-
mance. Recently, tensorized MVC, which pro-
cesses multi-view data as a tensor to capture their
cross-view information, has received considerable
attention. However, existing tensorized MVC
methods generally overlook deep structures within
each view and rely on post-processing to derive
clustering results, leading to potential informa-
tion loss and degraded performance. To address
these issues, we develop Tensorial Multi-view
Clustering with Deep Anchor Graph Projection
(TMVC-DAGP), which performs deep projection
on the anchor graph, thus improving model scal-
ability. Besides, we utilize a sparsity regulariza-
tion to eliminate the redundancy and enforce the
projected anchor graph to retain a clear clustering
structure. Furthermore, TMVC-DAGP leverages
weighted Tensor Schatten p-norm to exploit the
consistent and complementary information. Exten-
sive experiments on multiple datasets demonstrate
TMVC-DAGP’s effectiveness and superiority.

1 Introduction

Multi-view clustering (MVC) improves clustering perfor-
mance by exploiting the consistent and complementary in-
formation from multiple perspectives to uncover the intrin-
sic data clustering structure [Fu et al., 2020], which receives
significant attention in various applications like bioinformat-
ics [Yang et al., 2022; Gao et al., 2020b]l. MVC methods
can be roughly categorized into subspace learning methods,
graph-based methods, co-training methods, and multi-kernel
learning methods. Among them, subspace learning tech-
niques project multi-view data into a common latent subspace
for clustering [Zheng et al., 2023; Liu et al., 2021]; graph-
based methods construct similarity graphs to represent sam-
ple relationships to capture the geometric structure and then
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apply spectral clustering on the graph [Wei et al., 2017]; co-
training approaches iteratively train models on each view and
exchange information to enhance clustering results, making
them particularly effective when views provide complemen-
tary information [Jiang et al., 2013]; multi-kernel learning
methods integrate diverse views by constructing a unified ker-
nel space, enabling flexible representation learning and im-
proving clustering accuracy [Tzortzis and Likas, 2012].

However, traditional approaches face several challenges,
including inefficiency in handling high-dimensional or large-
scale data [Li et al., 2020b]. Moreover, most methods achieve
view fusion by minimizing the differences between individ-
ual view embeddings and a shared global embedding, which
often fails to fully leverage the complementary information
across different views [Gao et al., 2020b]. To address ef-
ficiency issues, several works introduce the anchor tech-
nique [Li ef al., 2015; Li et al., 2024c; Qin et al., 2024],
which selects a subset of representative samples as anchors
and constructs an n X m anchor graph for clustering instead
of the raw data, where m is anchor number [Wang er al.,
2021b]. In this way, these methods significantly improve
model efficiency. Some methods further represent multi-view
data as high-order tensors to capture complementary informa-
tion across views, which well preserves spatial structures and
inter-view dependencies [Guo et al., 2022]. The above meth-
ods generally rely on post-processing to obtain the final clus-
tering labels, which increases computational complexity and
may limit clustering performance. Some efforts have focused
on directly projecting anchor graphs into the label space via
bipartite graphs to avoid post-processing [Lei er al., 2024;
Zhao et al., 2024]. Among them, AGFS-OMVC [Zhao et
al., 2024] combines feature selection with anchor graph con-
struction by using sparse constraints to remove noisy anchors
and projecting the anchors directly into the label space, and
obtains clustering results without post-processing. However,
this method adopts single-layer projection, which is not fea-
sible for extracting the hierarchical structures within multi-
view data.

To mitigate these problems, we propose a novel ten-
sorized MVC method, i.e., Tensorial Multi-view Clustering
with Deep Anchor Graph Projection (TMVC-DAGP). The
proposed method guarantees efficiency by utilizing anchor
graphs and addresses the deep feature extraction problem by
introducing a deep multi-layer projection strategy. Specif-
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ically, inspired by the MVC method based on deep non-
negative matrix factorization (NMF) [Zhao er al., 2017], we
design a multi-layer projection structure that is capable of ex-
tracting the deep and hierarchical latent features. Besides,
it incorporates a sparsity constraint on projection matrices to
enhance robustness by focusing on significant features. Ad-
ditionally, tensor-based fusion with Schatten p-norm regu-
larization is employed to capture inter-view complementary
information, ensuring effective use of correlations between
views. The main contributions of this work are as follows:

* We develop a novel deep multi-layer anchor graph pro-
jection method that directly maps anchor graphs into the
label space via deep projection, effectively extracting
deep information from multi-view data.

* This method employs a {3 ,-norm based sparse regular-
ization on the projection matrices, which eliminates the
negative impact of noises and redundancy and thus does
not rely on post-processing for accurate clustering.

* We conduct extensive experimental validation on mul-
tiple multi-view datasets, demonstrating the superiority
of TMVC-DAGP over existing approaches in clustering
performance and computational efficiency.

2 Related Work

2.1 Tensor-Based Multi-view Clustering

Most of the existing MVC methods perform view fusion
by minimizing the difference between view embeddings and
global embeddings, and this fusion strategy does not fully uti-
lize the view complementary information of different views
of multi-view data [Zhao et al., 2024]. To overcome this lim-
itation, tensor-based MVC methods have gained increasing
attention due to their ability to capture structural dependen-
cies and complementary information across views [Gao et
al., 2020b]. Tensor nuclear norm minimization, particularly
when combined with tensor singular value decomposition (t-
SVD), has emerged as a powerful tool to model higher-order
correlations and preserve the spatial structure of multi-view
data [Xia et al., 2021]. For instance, low-rank tensor-based
proximity learning jointly optimizes multi-view affinity ma-
trices and consensus graphs within a unified framework, ef-
fectively capturing deeper cross-view relationships [Chen et
al., 2022]. EMVC-NTLC applies low-rank constraints to an-
chor maps of different views using tensor sp norm to extract
complementary information from multi-view data [Li ef al.,
2023]. Orth-NTF extends the matrix factorization to the ten-
sor factorization and proposes a nonnegative tensor factoriza-
tion method for MVC, which directly constructs multi-view
data into tensors for decomposition and effectively improves
clustering results [Li et al., 2024b].

2.2 Multi-view Projection for Clustering

Feature projection aims to map high-dimensional data into
lower-dimensional spaces, effectively reducing noise and
redundancy while preserving essential structure [Li ef al.,
2024a]. Traditional projection-based clustering methods pri-
marily focus on dimensionality reduction and feature selec-
tion to enhance clustering performance. Gao et al. [2020al

proposed a framework that combines dimensionality reduc-
tion with manifold learning, ensuring an effective balance be-
tween data representation and computational efficiency. Sim-
ilarly, Wang er al. [2021a] introduced sparse regularization
based on /3 1-norm to improve the constructed graph, pro-
viding enhanced noise resistance and clustering accuracy. To
further improve clustering quality and address the limitations
of traditional approaches, recent studies have explored tensor-
based projection techniques. Li er al. [2024a] proposed a
label learning method based on tensor projection (LLMTP),
which projects the anchor graph directly into the label space
using an orthogonal projection matrix, thus enabling one-step
clustering without the need for post-processing. By extending
the projection from matrices to tensors, the approach effec-
tively captures the spatial structure and complementary in-
formation across views. Additionally, the incorporation of
the tensor Schatten p-norm regularization helps ensure con-
sistency across views. Despite these advancements, exist-
ing projection-based methods often adopts single-layer pro-
jection and thus neglect the deep latent information within
each individual view, leaving room for further improvements
in representation learning and clustering robustness.

3 Methodology

3.1 Motivations and Problem Statement

MVC aims to obtain an indicator matrix that uncovers the
underlying cluster structure by leveraging multiple data rep-
resentations. However, current methods generally confronts
the following challenges: (1) insufficient deep information
extraction, as shallow structures fail to capture complex hier-
archical patterns; (2) reliance on post-processing, which in-
creases complexity and introduces potential information loss;
(3) ineffective exploitation of inter-view complementarity,
limiting the integration of diverse information; and (4) sen-
sitivity to noise, which affects clustering robustness. There-
fore, a more effective framework is needed to extract deep
features, minimize post-processing, and enhance multi-view
information integration while ensuring robustness.

Problem Formulation:  Given multi-view dataset X =
{X"}(1 < v < V), where X¥ € R" % denotes the data
matrix for the v-th view, n is sample number, and d,, is the di-
mension of the v-th view data. Anchor-based methods reduce
computational complexity by constructing an anchor matrix
SY € R™ ™ and employing S for clustering instead of X",
where m is the anchor number. Our objective is to derive an
indicator matrix H” € R™**_ where k is cluster number,

3.2 Objective

To fully exploit the deep and hidden information within each
view, we design a multi-layer projection structure. This
structure performs layer-by-layer projection on the anchor
graph, capturing complex patterns and relationships in the
data. Each layer in this deep projection structure extracts fea-
tures at varying layers, enhancing the overall data represen-
tation and directly projecting the data into the labeling space,
resulting in more accurate clustering. The objective function
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for this deep projection structure is:
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(1)

where SV € R™*™ is the anchor graph for the v-th view
constructed via the method illustrated in [Li et al., 2024b].
GY € R%-1%di jg the projection matrix for the i-th layer of
the v-th view, where d; is the dimension of the i-th layer, [ is
the set number of layers, and d; = k, dg = m. H} € R7xk
represents the clustering indicator matrix for the [-th layer,
with k being the number of clusters. «,, is the weight as-
signed to the v-th view.

Tensorial Fusion: Eq. (1) only provides the view-specific
clustering results, and the final result can be obtained with a
regularization term Y |[H — HY||%, as adopted in [Zhao et
al., 2024]. However, this regularization is too strong and may
hinder exploiting complete information of different views [Li
et al., 2023]. Following the tensored low-rank MVC meth-
ods, we introduce a weighted tensor Schatten p-norm regu-
larization as formulated below:

v
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where H, constructed based on the approach specified in the
[Li et al., 2024b], is the tensor formed by all the indicator
matrices H}, /3 is a parameter balancing the tensor norm con-
* |lw,s, represents the weighted tensor Schatten
Sp-norm. This formulation allows us to capture the comple-
mentary information among views, further enhancing cluster-
ing performance.

Sparse Anchor Projection: To ensure robust feature se-
lection and enhance resistance to noise, we incorporate a
sparsity constraint using the /5 ,-norm on the projection ma-
trix. This constraint filters out noise and redundancy, en-
hancing clustering accuracy and eliminating the need of post-
processing for accurate clustering. The objective function
with the sparsity constraint is expressed as:
1
min S'GYGs -G} — H|3
dnig, 2 oo R

+ /\Z IGEll2.0) + BIHII s,
i=1
Hy(H})" =1

v
Za” =1, a">0,
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where ) is used to adjust the impact of the sparsity constraint.

3.3 Optimization

We use the Augmented Lagrange Multiplier (ALM) to opti-
mize the objective Eq. (2). Specifically, we introduce three
auxiliary variables Q} = G}, J = H,and M" = H} where
MY > 0. let B} = G7G3, ..., G}, the objective function can
be optimized by solving the following problem:
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where Z € R™FXv YV ¢ R"™F and WY € Rdi-1xdi
are Lagrange multipliers; p; are the penalty parameters. We
adopt alterative direction minimization method to optimize
Eq.(4).

Optimizing Q7 Fixing other variables, Eq.(4) becomes:
1
+5la

A
min —— QY|
QY P10y
where U} = GY + W -
can be solved with the Generalized Soft-Thresholding (GST)
algorithm on U7:

- UY||% (5)
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Taking the derivative of Eq.(8) with respect to G and set-
ting it to zero, we have:
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Optimizing HY (i < [): Fixing other variables, the opti-
mization problem becomes:

: v v v 2
min [S"BY — H;|[; an

To find the optimal HY, we directly set the optimization
problem to zero. After that, we get:

H; = S'B; (12)
Optimizing H}: Fixing other variables, the optimization
problem becomes:

v 2
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This leads to the equivalent trace maximization problem:
v
max Y tr (H}’TD”> (14)
Loy=1

where the auxiliary variable DV is defined as D¥ =
2S'B} + p2 (MU - %) + p3 (..’77J - %

To solve this problem, perform a Singular Value Decompo-
sition (SVD) on the matrix DV: DV = UXV . The optimal
solution for H}* is then given by:

H* =UV' (15)

This iterative procedure updates the matrix H}* for each
view v, ensuring the optimization of clustering results across
all views.

Optimizing J: Fixing other variables, the optimization
problem becomes:

2
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According to [Zhao et al., 2024], the optimal solution for
Eq.(16) is
. Z
T =Ts |H+— (17)
3 P3

The term I' s is a generalized shrinkage operator that en-

forces the §éhatten Sp-norm regularization on the tensor
H + pé. It controls the rank of J, enhancing solution ro-
bustness. The detailed optimization process is provided in
the appendix for further reference.

Optimizing M": The optimization problem for M" can
be formulated as follows:

v |12

14
Y
min % HH;’ ~ MY —
v=1

st. M”>0 (18)
M P2
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The optimal solution to this problem is given by:

YU
M”:max( ;’—&—,0) (19)
P2

Optimization of a,,: Fixing other variables, the optimiza-
tion problem becomes:

|4
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The solution is:
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Update Other Variables: Update the Lagrange multipli-
ers by

Qy —

Y'U = YU + pQ(H;] - Mv)
W7 =W/ +pa(Gf — QF)
Z=Z+ps(H-T)

The penalty parameters p; = min(¢,p;, pmax), Where ¢,
and pnax are constants.

Dataset Views Dimension Samples Clusters
BBCSport 2 3283/3183 544 5
Yale 2 1024/4096 165 11
Sonar 3 20/20/20 208 2
Vehicle Sensor 4 5151715 1594 2
NGs 3 2000/2000/2000 500 5
WebKB 2 1840/3000 1051 2
MSRC 5 24/576/512/256/254 210 7
RGB-D 2 2048/300 1449 13

Table 1: Dataset Specifications

3.4 Complexity Analysis

Our method primarily consists of two main parts: the ini-
tialization of the anchor graph S” and the iterative param-
eter updates. The computational complexity of initializing
the anchor graph S" is consistent with previous works, which
is O(vnmd + vnmlog(m)), where v, m, and n represent
the number of views, anchors, and samples, respectively.
Here, d = > '_, d, is the total dimensionality across all
views And assume that the number of iterations of the train-
ing process is t. The computational complexity of the up-
date process for QY, HY, HY,GY, J,M" are: O(vnmklit),
O(vnmklt), O((nvm? + vnmk)t), O((nvm? + vm?)it),
O((vnklog(vm) + v®nk)t), O(vmkt). Here, I, c, and v are
small constants, with n usually the largest. Despite optimiz-
ing several variables, the limited number of layers (2-3) keeps
the overall computational complexity, O(vnmd + vnm?it),
reasonable in practice.
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Datasets Yale BBCSport Sonar Vehicle Sensor
Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
FastMICE 65.46 66.06 47.04 4191 46.00 7.90 5721 269 5721 9562 94.63 66.00
MVLRSSC 58.79 39.20 66.09 76.63 7236 76.63 58.65 227 58.65 9496 6991 94.96
RMSL 78.78 7823 79.39 76.63 7236 76.63 6490 7.04 6490 7812 61.84 78.12
GMC 54.55 62.44 5455 80.70 76.00 7943 6394 549 6394 78.02 6150 78.12
FPMVS-CAG 5031 5932 51.52 42.10 15.09 51.84 5048 0.01 53.37 69.68 69.68 95.81
MVC-DMF-PA 15.75 16.10 20.00 73.34 52.68 76.28 15.75 16.10 20.00 50.37 62.76 50.37
AGFS-OMVC 97.57 96.69 97.57 97.06 92.89 97.06 98.07 88.04 98.07 98.87 91.83 98.87
Orth-NTF 78.18 81.90 80.00 89.15 79.49 89.52 97.11 83.80 97.11 98.05 86.23 98.05
MVC-DNTF 84.24 86.39 82.42 98.05 87.85 94.85 97.11 83.80 97.11 99.62 96.79 99.62
OURS 98.18 98.47 98.78 99.08 97.07 99.08 100.00 100.00 100.00 100.00 100.00 100.00

Table 2: Clustering performance comparison in terms of ACC, NMI, and PUR on Yale, BBCSport, Sonar, and Vehicle Sensor datasets.

Datasets NGs WebKB MSRC RGB-D

Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
FastMICE 3840 48.00 26.63 95.62 94.63 0.66 86.67 86.67 77.73 41.81 32.61 49.53
MvLRSSC 90.26 88.82 91.72 92.58 58.19 92.58 78.57 68.55 78.57 39.00 32.40 50.59
RMSL 9.60 86.11 94.60 6042 193 7812 27.62 8.18 3190 12.63 2.85 26.98
GMC 97.80 9293 97.80 84.02 25.78 84.02 2429 691 26.19 4023 33.06 46.51
FPMVS-CAG 73.80 59.23 73.80 9496 6991 9496 42.86 37.68 42.86 34.50 38.73 45.47
MVC-DMF-PA 86.80 80.27 86.80 89.43 50.89 89.43 91.43 8536 9143 16.83 72.25 33.12
AGFS-OMVC 9740 93.56 97.40 98.57 86.39 98.57 99.00 96.02 98.09 68.32 69.63 68.99
Orth-NTF 9540 89.73 9540 96.57 73.25 96.57 99.00 97.80 99.00 59.07 65.78 75.56
MVC-DNTF 97.60 93.73 97.60 95.81 71.55 95.81 99.04 96.02 99.04 63.21 71.28 82.95
OURS 99.00 96.80 99.00 99.81 97.47 99.81 99.04 97.80 99.04 72.25 71.17 78.05

Table 3: Clustering performance comparison in terms of ACC(%), NMI(%), and PUR(%) on NGs, WebKB, MSRC, and RGB-D datasets.

4 Experiments

4.1 Dataset

We evaluate the performance of the proposed method on eight
widely adapted multi-view learning benchmark datasets,
which are Yale [Yale University, 2001], BBCSport [Greene
and Cunningham, 2006], Sonar [Sejnowski and Gorman, ],
Vehicle Sensor [Duarte and Hu, 2004], NGs [Hussain et al.,
2010],WebKB [Blum and Mitchell, 1998], MSRC [Winn and
Jojic, 2005] and SentencesNYU v2 (RGB-D) [Silberman ef
al., 2012]. Detailed information on dataset specifications is
provided in Table 1.

4.2 Comparison Methods

In this paper, we compare our proposed method with multi-
ple state-of-the-art multi-view clustering algorithms. A de-
tailed description of each comparison method is provided in
the Appendix. The comparison methods include GMC [Wang
etal.,2019], UDBGL [Fang et al., 2023], DiIMSC [Cao et al.,
2015], MvLRSSC [Brbi¢ and Kopriva, 2018], RMSL [Li et
al., 20191, FastMICE [Huang et al., 2023], MvDGNMF [Li
et al., 2020al, MVC-DMF-PA [Zhang et al., 2021], AGFS-
OMVC [Zhao et al., 2024], Orth-NTF [Li et al., 2024b],
MVC-DNTF [Feng et al., 2024].

4.3 Experimental Setup

All experiments were executed on a desktop with an Intel(R)
Core(TM) i5-13400 CPU and 32 GB of RAM, using MAT-
LAB 2023a. Data normalization was performed as a prepro-
cessing step for all datasets to ensure consistent input quality.
We assessed the clustering quality using Accuracy (ACC),
Normalized Mutual Information (NMI), and Purity (PUR).

For the deep anchor graph projection approach, the layer
size configurations were determined based on the complexity
of the dataset. Specifically, for a two-layer projection, sizes
[d1, k] were used, where d; varied among [4k, 5k, 6k]. For a
three-layer configuration, sizes [d1, d2, k] were used, with d;
in the range of [8k, 10k, 12k] and dy between [4k, 5k, 6k].
These configurations allowed us to explore the impact of
depth in the deep projection on the clustering results.

4.4 Clustering Performance

The experimental results presented in Tables 2 and 3 demon-
strate the clustering performance of our proposed method
cross multiple datasets in comparison with several benchmark
algorithms. The best results are highlighted in bold, while the
second-best results are underlined.

The results indicate that the deep projection structure in
TMVC-DAGP significantly enhances clustering accuracy by
capturing complex data relationships more effectively. Com-
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pared with AGFS-OMVC, which also employs a projection-
based approach, and Orth-NTF, which leverages tensor de-
composition, TMVC-DAGP consistently outperforms them.
For instance, on the RGB-D dataset, TMVC-DAGP achieved
an ACC of 72.25%, surpassing the best-performing baselines.
This highlights the advantage of our deep structure in extract-
ing meaningful information from multi-view data.

Furthermore, the direct projection of anchor graphs into
the label space contributes to the robustness and precision
of TMVC-DAGP. In contrast to MVC-DMF-PA and MVC-
DNTF, which utilize deep non-negative matrix factorization,
our approach demonstrates superior performance. Notably,
TMVC-DAGP achieved an ACC of 98.78% on the Yale
dataset and superior clustering results to other methods aon
the Sonar and Vehicle Sensor datasets. The integration of
tensor-based view fusion further strengthens clustering per-
formance by effectively leveraging complementary informa-
tion across different views.

4.5 Convergence

To validate the convergence of TMVC-DAGP, we conducted
comprehensive experiments on multiple datasets by tracking
the changes in objective function values, specifically focus-
ing on the differences between H” and M", as well as H and
J . The convergence curves for the BBCSport, Sonar, MSRC,
and Yale datasets are presented in Figure 1. The results
demonstrate a consistent decrease in objective function values
as iterations increase, reflecting the stability and robustness
of the method. For instance, the BBCSport dataset achieves
convergence after approximately 100 iterations, while Sonar,
MSRC, and Yale datasets converge within 80 iterations. This
rapid and consistent convergence across diverse datasets un-
derscores the effectiveness of TMVC-DAGP in practice. This
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Figure 1: Convergence curve on BBCSport, Sonar, MSRC, and Yale

Additionally, to validate the clustering process and evalu-
ate how well the data structures align during iterations, we
employed t-SNE visualizations. These visualizations demon-

strate the evolution of cluster separability at different stages
of the iterative process, as shown in Figure 2.
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Figure 2: t-SNE visualizations of the BBCSport, NGS, RGB-D, and
MSRC datasets at different iterations.

Overall, the convergence analysis and visualizations con-
firm that TMVC-DAGP achieves both numerical stability and
enhanced clustering performance in multi-view scenarios.

4.6 Parameter Analysis
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Figure 3: Clustering results with different anchor rates on 3-sources,
BBCSport, Yale, RGB-D

We study how different parameters affect the clustering re-
sults. First, we analyze the impact of the anchor rate on clus-
tering performance. Figure 3 illustrates ACC under different
anchor rates on BBCSport, Yale, MSRC, and Sonar datasets.
It can be observed that choosing an appropriate anchor rate is
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Figure 5: The influence of 5 and p (belonging to the Schatten p-norm) on clustering results for the BBCSport, Sonar, Yale, and RGB-D.

important for improving clustering performance, as too high
or too low anchor rates may lead to decreased performance.

Next, we explore the effects of the regularization parame-
ters A, 3, p of €3, norm and p of Schatten p norm in con-
junction with clustering performance. Figures 4 and 5 illus-
trate the impact of different combinations of these parame-
ters across several datasets. This demonstrates the robustness
of TMVC-DAGP, as it maintains effective clustering perfor-
mance even when parameters are varied.

4.7 Ablation Study

We conducted ablation experiments to evaluate the effective-
ness of each component. First, we compared the performance
of the algorithm when the Schatten p-norm (casel) and #5 -
norm (case2) constraints were retained individually. Table 4
shows the clustering accuracy under different settings across
four benchmark datasets. The results indicate that removing
any of these constraints leads to a drop in performance, espe-
cially on complex datasets, showing that these constraints are
crucial for maintaining stability and improving accuracy.

casel case2 | BBCSport  Yale RGB-D  Sonar
X X 67.83 5031  55.76 60.09
X v 88.78 8545 6294 93.26
v X 92.46 91.51  70.87 97.11
v v 99.08 98.78  72.25  100.00

Table 4: ACC(%) of ablation experiments

We also studied the effect of the layer number in the deep
projection structure, as shown in Table 5 and Table 6. It
demonstrates that increasing the layer number can effectively

improve clustering performance but will not introduce much
computational burden, as deeper structures better capture the
intrinsic structure of the data. Considering the improvement
of performance, the extra computational cost is acceptable.

D BBCSport  Yale RGB-D Sonar

[£] 97.06 97.40 68.32 99.03

[dy, k] 98.05 98.18 71.01 99.03
[d1,ds, k] 99.08 98.18 72.25 100.00

Table 5: ACC(%) of different layers on four datasets.

P BBCSport Yale RGB-D Sonar
[k] 3.10 1.26  16.00 1.24
[dy, k] 4.58 1.54 17.16 1.23
[d1,ds, k] 4.45 1.78 18.85 1.32

Table 6: Running time (s) of different layers on four datasets.

5 Conclusion

In this paper, we introduced a novel Tensorial Multi-view
Clustering with Deep Anchor Graph Projection (TMVC-
DAGP), which effectively captures the complex structures via
projecting the anchor graph into label space. Together with
tensorized schatten p-norm, TMVC-DAGP exploits comple-
mentary information across various views. Besides, a spar-
sity constraint using the {5 ,-norm enhances robustness and
achieves one-step clustering, particularly in high-dimensional
and noisy environments. Extensive experiments and compar-
isons on several multi-view datasets illustrate the effective-
ness and superiority of our method.
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