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Abstract

Federated Multi-View Clustering (FedMVC) aims
to uncover consistent clustering structures from
distributed multi-view data for clustering while
preserving data privacy. However, existing Fed-
MVC methods under vertical settings either ig-
nore the ubiquitous incomplete view issue or re-
quire uploading data features, which may lead
to privacy leakage or induce high communication
costs. To mitigate the view incompleteness is-
sue and simultaneously maintain privacy and ef-
ficiency, we propose a novel Federated Multi-
view Graph Clustering with Incomplete Attribute
Imputation (FMVC-IAI). This method constructs a
consensus graph structure through complementary
multi-view data and then utilizes a non-parametric
graph neural network (GNN) to impute missing
features. Additionally, it utilizes the adjacency
graph as the knowledge carrier to share and fuse
the multi-view information. To alleviate the high
communication cost due to graph sharing, we pro-
posed to share the anchor graph for global adja-
cency graph construction, which reduces commu-
nication cost and also helps to reduce privacy leak-
age risk. Extensive experiments demonstrate the
superiority of our method in FedMVC tasks with
incomplete views.

1 Introduction
Multi-view data refers to data derived from different per-
spectives or sources to describe the same object. Each view
provides a distinct aspect of information. Multi-view data
have become ubiquitous across various real-world applica-
tions [Liang et al., 2025; Yang et al., 2022], such as remote
sensing and social networking. In practice, it is expensive
to obtain reliable labels for massive and complex multi-view
data, which makes multi-view clustering (MVC) receive con-
siderable attention from researchers in recent years as an un-
supervised method [Huang et al., 2023; Zhao et al., 2025]. By
exploiting consistent and complementary information from

∗Corresponding Author

various views, MVC generally exhibits superior performance
to single-view approaches.

There are numerous MVC methods developed. For in-
stance, Xiao et al. [2023] employ graph neural networks
(GNNs) as a feature fusion module to better integrate multi-
view features, and Teng et al. [2024] use transformers to ex-
tract consensus features for MVC, both achieved good perfor-
mance. However, in reality, multi-view data collected from
different sources is often held by separate organizations, with
each organization owning only one view of the data. This
situation introduces two challenges: (1) Due to privacy con-
cerns, data sharing between views is not permitted, and (2)
the independence of data collection leads to instability in data
quality, specifically with some views of certain samples be-
ing incomplete or missing. Traditional MVC methods, which
rely on the assumption of centralized data distribution, are
unable to effectively address these two real-world challenges
[Chen et al., 2023b].

To overcome these challenges, recent studies introduced
federated learning into MVC and developed several Feder-
ated Multi-view Clustering (FedMVC) approaches. Huang
et al. [2022] proposed an efficient FedMVC method based
on matrix factorization and developed a federated optimiza-
tion framework. Effective as it is, this method cannot obtain
the deep features as a shallow model, resulting in subopti-
mal clustering performance. Therefore, Chen et al. [2023b]
proposed a deep FedMVC method that employs deep learn-
ing to extract high-level features and introduced a missing
data completion strategy based on prototypes, effectively im-
proving the clustering performance. However, it requires
each client to upload local embedded features to the server
and may be vulnerable to model inversion attacks [Sun et
al., 2025] and might produce high communication overhead.
To alleviate the privacy issues, Sun et al. [2025] proposed
a structured graph learning framework for FedMVC, which
avoided uploading embedding features and reduced privacy
risks. However, the method does not consider the possible in-
complete view problem and requires passing a N ×N graph
between the client and the server, resulting in a high commu-
nication overhead on large-scale datasets.

Therefore, we propose a novel deep FedMVC method
based on graph convolutional network (GCN), i.e.,, Federated
Multi-view Graph Clustering with Incomplete Attribute
Imputation (FMVC-IAI). First, it utilizes the global struc-
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tural information to impute incomplete attributes based on
GNN, thus mitigating the view incompleteness issue. Then,
it uses Graph Autoencoder (GAE) for feature extraction to
extract high-order features. To defend against model inver-
sion attacks, inspired by [Zhang et al., 2022], we extract
view-specific anchor graphs instead of embedded features as
knowledge carriers to support collaborative training. This
method not only reduces privacy leakage risks but also sig-
nificantly lowers communication overhead from O(N2) to
O(Nr), where r is the anchor number smaller than N . The
main contributions of the work can be summarized as follows:

• We propose a novel FedMVC method that employs
graph structures from other clients to impute the
local missing attributes, which addresses the view-
incompleteness problems under federated settings.

• We leverage the anchor graph for cross-client knowledge
sharing, which helps to reduce the communication over-
head and improve model performance.

• Our method effectively addresses data missing scenarios
in federated environments, particularly under complex
conditions with high missing rates. Extensive compara-
tive experiments demonstrate its superiority.

2 Related Works
2.1 Multi-view Clustering
Multi-view clustering (MVC) is a method that utilizes mul-
tiple views of data to uncover consistent clustering struc-
tures. Its main challenge lies in extracting consistent in-
formation from multi-view features. Existing multi-view
clustering methods can be broadly categorized into heuris-
tic methods and deep learning-based methods [Chen et al.,
2023a]. Heuristic approaches include matrix factorization-
based [Zhao et al., 2017; Li et al., 2023a], graph-based [Liang
et al., 2022; Zhao et al., 2024], and kernel-based methods
[Wang et al., 2023; Wu et al., 2024]. However, these meth-
ods typically extract shallow features and are not suitable for
complex data.

Therefore, deep learning is introduced to MVC owing to
its impressive deep feature extraction capacities. [Ren et al.,
2024b; Chen et al., 2025a; Chen et al., 2025b]. For exam-
ple, Xu et al. [2021] proposed a deep MVC method based on
a deep autoencoder, which leverages a feature fusion mech-
anism to extract consistent information across views. [Lin
et al., 2024] utilized a deep graph autoencoder to extract both
structural and attribute features, enabling effective multi-view
clustering for graph data. Some works take into account the
incomplete multi-view clustering problem [Liu et al., 2023],
Pu et al. [2024] proposed an adaptive completion method.
It first uses a deep autoencoder to extract embedding fea-
tures, then estimates the embedding features of the missing
data by leveraging cross-view soft clustering assignments and
global cluster centroids, thereby achieving data completion.
Although these methods have achieved excellent MVC per-
formance, they are all based on the assumption of centralized
data distribution. They do not consider the practical require-
ment where view data is distributed across different holders
and cannot be accessed mutually.

2.2 Federated Multi-view Clustering
To address the above real-world challenges, Federated Multi-
View Clustering methods [Huang et al., 2022; Li et al.,
2023b; Qiao et al., 2024] have been proposed. Inspired by
vertical federated learning[Liu et al., 2024], these methods
aim to extract consensus information from distributed data
while ensuring data privacy is preserved throughout the pro-
cess. Huang et al. [2022] first combines multi-view learn-
ing with federated learning, proposing a federated multi-
view clustering (FedMVC) model called FedMVL. To ad-
dress challenges such as stragglers and fault tolerance in fed-
erated learning, it derives an iterative joint optimization al-
gorithm that enables each node to flexibly handle subprob-
lems. Chen et al. [2023b] addressed the issues of data hetero-
geneity and missing data in federated scenarios by proposing
a federated multi-view clustering method called FedDMVC,
which uploads autoencoder embedding features to the server
to achieve feature completion. Building upon this, Ren et
al. [2024a] further addressed the issue of sample misalign-
ment in federated learning. While existing research has made
significant progress, directly uploading embedding features
poses a risk, as it is susceptible to model inversion attacks
[Sun et al., 2021] that could lead to privacy leakage.

3 Proposed Method
3.1 Problem Statement
A typical FedMVC under vertical settings can be defined as
follows. Suppose there are M clients, with the m-th client
identified by Cm holding the m-th view data X(m). Most ex-
isting FedMVC methods assume that multi-view data X held
by different entities are complete, i.e., for a certain sample,
all the clients hold its data with the corresponding views.
However, it is almost impossible that all the samples have
complete views, since the data are collected by different en-
tities for different purposes. We introduce an mask vector
b(m) ∈ RN×1 for Cm, where b(m)

i = 1 indicates that Cm
holds the data of the i-th sample. Besides, there exists a
server S responsible for coordinating the collaborative train-
ing among various clients. Our design goal is to enable the
clients to collaboratively train a FedMVC model that parti-
tions data into K groups with the assistance of the server
S , ensuring low privacy risk and reasonable communication
cost.

Overview: Each client preprocesses local data via a cer-
tain model according to the data characteristics (like Autoen-
coder, Convolutional Autoencoder, etc). Taking the autoen-
coder (AE) as an example, each client employs AE to pro-
cess local data with a simple reconstruction loss for noise
elimination and dimension reduction. The subsequent fed-
erated model training requires several rounds of interactions.
In each round, it imputes the missing attributes via a simple
feature diffusion process with a global adjacency graph. Sub-
sequently, each client further extracts high-level embeddings
with an Graph Autoencoder (GAE) network, and performs lo-
cal clustering with the global supervision produced by S and
produces local structural information and clustering informa-
tion, which are sent to S to generate global adjacency graph
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and global supervision. The general framework of FMVC-
IAI is illustrated in Figure 1.

3.2 Client-side Design
Each client maintains a local model composed of four parts:
incomplete-view imputation, GAE-based embedding, local
clustering module with global supervision, and interaction
with the server. whose details are as follows.

Incomplete-view Imputation
The missing views of some samples in different clients hinder
the clustering. Chen et al. [2023b] addresses this issue by in-
troducing global supervision modules and imputing the miss-
ing views. However, this method requires uploading the local
data features, which may introduce privacy risks. Inspired
by [Rossi et al., 2022], we build a simple feature comple-
tion method for missing features based on GNN with glob-
ally fused graph Ag generated by S . Cm leverages AE to
map the raw data X(m) into a latent feature space to obtain its
low-level feature Z(m) via a reconstruction loss before impu-
tation. Then, the missing sample features in Z(m) are filled
with zero vectors, making the size of Z(m) equal to N × dz .
Finally, each client Cm leverages the global graph and local
attributes for missing attribute completion. The process of
feature completion is analogous to a multi-source heat dif-
fusion process, where each existing sample acts as an inde-
pendent heat source, diffusing its features along the edges of
the global graph to complete all the missing data. First, we
calculate the diffusion matrix Ã from Ag by:

Ã = D− 1
2 AgD− 1

2 (1)

where D is the degree matrix of Ag . Suppose B(m) =

diag(b(m)), where I is an identity matrix. To impute the
missing samples, we adopt the method in [Rossi et al., 2022]
to produce the missing attributes by minimizing the Dirichlet
energy. By initializing the imputed feature matrix Z̃

(m)

0 =

Z(m), the iterative imputation process can be formalized as a
feature propagation process below:

Z̃
(m)

t+1 = (I − B(m))ÃZ̃
(m)

t + B(m)Z̃
(m)

t (2)

where Z̃
(m)

is the imputed feature matrix. Note that a high-
quality global graph structure plays a crucial role. Therefore,
we update the graph structure Ag after each communication
round to achieve better feature completion, which is illus-
trated in details in the subsequent part. At the beginning, Ag

can be initialized by Ag =
∑M

m=1 A(m), where A(m) is the
local adjacency graph constructed from Z(m).

GAE-based Embedding
This module incorporates GAE to further extract high-level
embeddings from the imputed attributes and global structures.
First, the graph attention network (GAT) is introduced to pro-

cess Ẑ
(m)

as follows:

H(m) = GAT(Z̃
(m)

,Ag) (3)

where H(m) ∈ RN×dh represents the high-level features ex-
tracted by the GAE. Then, we utilize MLP as decoder to re-
construct the attributes and structure as follows:

Ẑ
(m)

= MLP(H(m))

Â
(m)

= σ(H(m)H(m)T )
(4)

where σ(·) is the sigmoid activation function. Finally, we use
the MSE loss as the feature reconstruction loss term and the
binary cross-entropy loss as the structural reconstruction loss.
The full reconstruction loss is defined as:

Lr = ∥Ẑ
(m)

− Z̃
(m)∥22−

1

N

N∑
i=1

N∑
j=1

[
Ag

ij log(Â
(m)

ij ) + (1− Ag
ij) log(1− Â

(m)

ij )
]

(5)

Local Clustering with Global Supervision
Cm leverages a clustering layer with learnable parameters
U(m) ∈ RK×dh to obtain the local clustering assignment ma-
trix Q(m) ∈ RN×K .

q
(m)
ij =

(1 + ∥h(m)
i − u(m)

j ∥22)−1∑K
j=1(1 + ∥h(m)

i − u(m)
j ∥22)−1

(6)

where he element q(m)
ij corresponds to the entry located at the

i-th row and j-th column of the matrix Q(m). Similarly, h(m)
i

and u(m)
j denote the row vectors of matrices H(m) and U(m)

, respectively.
Then, each client Cm leverages the global cluster assign-

ment matrix P sent by the server to compute the KL diver-
gence between Q(m) and P as the clustering loss, enabling
global information to guide the local model training:

Lc = DKL(P∥Q(m)) (7)

Thus, the overall loss function on the client side is defined
by Eq. (8).

L = Lr + αLc (8)

where α is a hyperparameter that balances the contribution of
the clustering loss and the reconstruction loss.

3.3 Client-Server Interaction
To assist S to construct the global adjacency graph and su-
pervision information, Cm is required to transfer local adja-
cency graph and clustering assignment to S . However, di-
rectly transmitting the local graph constructed from H(m) re-
sults in limited information sharing, while transmitting the
distance matrix incurs an expensive communication overhead
of O(N2), which is not suitable for communication sensi-
tive scenarios and large-scale data. To mitigate this problem
and inspired by [Zhang et al., 2022], we propose to construct
the adjacency graph from anchor graphs and share the anchor
graph instead of a full adjacency graph. To be specific, we
adopt the method described in [Li et al., 2020] to extract the
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Figure 1: Framework of our method, which contains a global server and M local clients. At the beginning of each round, the server sends
the global pseudo-labels Y, the clustering assignment matrix P, and the global graph Ag to each client. The clients then perform independent
local feature completion and training, and upload their local anchor graphs G(m), prototype distance matrices E(m) and EMD(P,Q(m)) to
the server for global information updates.

anchor graph G(m) ∈ RN×r from H(m) and transmit it to S ,
reducing communication cost to O(Nr) from O(N2).

In addition, to enable S to generate the global cluster-
ing assignment P, Cm further computes the local prototype
F(m) ∈ RK×dh based on the pseudo-labels Y from the server
and calculates matrix E(m) ∈ RN×K between local samples
to the prototypes as in Eq. (9):

F(m)
k =

1

|S(m)
k |

∑
h(m)
i ∈S

(m)
k

h(m)
i

e
(m)
ij = ∥h(m)

i − F(m)
j ∥22

(9)

where S
(m)
k = {h(m)

i , yi|yi = k}Ni=1 is the set of samples
with pseudo-label k on the m-th client Cm, e(m)

ij is the ele-
ment in the i-th row and j-th column of the matrix E(m).

3.4 Server-side Clustering
Construction of Global Adjacency Graphs.
After receiving the anchor graphs G(m) uploaded by the
clients, S performs a weighted fusion as illustrated below:

G =
M∑

m=1

w(m)G(m) (10)

where w(m) is the weight of Cm, which measures the contri-
bution of G(m). We believe that Q(m) closer to the global as-
signment P include more consistent information and should
be assigned a larger weight. Therefore, we adopt Earth
Mover’s Distance (EMD) to measure the distance between
the previous P and Q(m) of Cm as the evidence to determine
w(m):

w(m) =
e−EMD(P,Q(m))∑M
i=1 e

−EMD(P,Q(i))
(11)

The global adjacency graph Ag by performing KNN on
the distance matrix D ∈ RN×N computed from the aggre-
gated anchor graph G by Dij = ∥Gi − Gj∥22. In practice,
EMD(P,Q(m)) can be computed locally by Cm and then
transmitted to S for lower communication cost.

Global Clustering
S is also responsible for generating the global clustering as-
signment and pseudo labels. S first aggregates all E(m) from
Sm into E =

∑M
m=1 E(m). We measure the similarity be-

tween global embedded features and global prototypes by
converting their Euclidean distances into conditional proba-
bilities using the Student’s t-distribution:

tij =
(1 + eij)

−1∑
j(1 + eij)−1 (12)

where eij represents the element in the i-th row and j-th col-
umn of the matrix E. Then, the global clustering assignment
matrix P can be obtained by Eq. (13):

pij =
(tij/

∑
j tij)

2∑
j(tij/

∑
j tij)

2
(13)

Finally, S performs spectral clustering on D to obtain pseudo
label matrix Y, and sends Ag , P and Y to all the clients. It
should be noted that Ag is a sparse (N,N) matrix, which can
be compressed into a dense (N, k) matrix, so the data size
to be transmitted for Ag is (N, k), where k is the number
of neighbors in KNN. We summarize the workflow of our
method in Algorithm 1.

3.5 Communication Overhead Analysis
We analyze the communication overhead of our method
from two aspects. First, during the data upload phase from
the client to the server, the data to be uploaded includes
E(m),G(m) and EMD(P,Q(m)), which respectively incurs
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Algorithm 1 FMVC-IAI

Input: The incomplete multiview data {X(m)}Mm=1 dis-
tributed in M clients, the number of clustering clusters
K, the number of communication rounds R.

Output: Clustering result Y
1: Each client Cm initializes KNN graph.
2: S initializes P, Y, Ag

3: for Not reaching R rounds do
4: ▷ Local Training on Cm
5: for Each client Cm in parallel do
6: Generate Z(m) from X(m) with AE
7: Impute features with global graph Ag .
8: Local training with loss in Eq. (8) to obtain H(m).
9: Extract the anchor graph G(m) from H(m).

10: Update E(m) using Y and H(m).
11: Upload E(m) and G(m) to S .
12: end for
13: ▷ Global Fusion on S
14: S update P by Eq. (13).
15: S update Y
16: S update Ag using the KNN and G(m).
17: S distribute P, Ag and Y to each client Cm.
18: end for

the communication cost of O(rN), O(NK), and O(1), re-
sulting a total cost of O(NK + Nr). During the data trans-
mission from the server to the clients, the data to be down-
loaded includes P,Y and Ag , which respectively produce a
cost of O(NK), O(N), and O(Nk), leading to a total cost
of O(NK + Nk + N). Therefore, the overall communica-
tion complexity is O(Nr+2NK+Nk+N), which is much
smaller than O(N2).

4 Experiments
4.1 Experimental Settings
Datasets and Metrics
We conducted experiments on three multi-view datasets:

• HW [Winn and Jojic, 2005] comprises multi-feature
data for digits 0 through 9, with 200 samples for each
class. For each binarized handwritten digit image, six
different view features were extracted: 1. mfeat-fou, 2.
mfeat-fac, 3. mfeat-kar, 4. mfeat-pix, 5. mfeat-zer, and
6. mfeat-mor.

• OutdoorScene [Monadjemi et al., 2002] contains 15
scene categories with both indoor and outdoor environ-
ments, 4485 images in total. Following [Jiang et al.,
2024], we select 8 outdoor categories with total 2,688
images with four views.

• NoisyMNIST [Wang et al., 2015] View 1 consists of the
original MNIST images, whereas view 2 is comprised of
intra-class images that have been sampled and embed-
ded with Gaussian white noise. Following [Chao et al.,
2024], we utilize a subset that includes 10,000 samples.

Data Setting: Each view in the dataset is distributed across
different clients, and clients cannot access each other’s data.

Additionally, following [Feng et al., 2024], we set the missing
rate of η, randomly select ηN missing samples, and delete
half of the view data to simulate missing data with different
missing rates in various federated scenarios.

Metrics: We use three widely used clustering metrics for
evaluation, i.e., Accuracy (ACC), Normalized Mutual Infor-
mation(NMI), and Adjusted Rand Index(ARI).

Comparison Methods
To validate the effectiveness and superiority of our method,
we conducted comparisons with seven state-of-the-art IMVC
methods, which include five centralized incomplete multi-
view clustering methods: PIC [Wang et al., 2019], DAIMC
[Hu and Chen, 2018], COMPLETER [Lin et al., 2021],
DSIMVC [Tang and Liu, 2022], and CPSPAN [Jin et al.,
2023]; and two recent FedMVC methods: MGCD [Sun et
al., 2025] and FCUIF [Ren et al., 2024a], under missing rate
settings of η at [0.1, 0.3, 0.5, 0.7, 0.9].

4.2 Experimental Results
Tables ?? to ?? provide detailed clustering performance com-
parisons of our method and the benchmark methods across
different missing rates and datasets. To eliminate random
variations, we conducted five repeated experiments for all
methods and reported the average values. The results are pre-
sented with the mean value first, followed by the MAD (Mean
Absolute Deviation). Additionally, the best results are high-
lighted in bold, and the second-best results are underlined.

The experimental results demonstrate that, compared to
the two most recent federated IMVC methods, our approach
achieves the best performance in most cases. In contrast to
MGCD, which does not account for missing data, our method
outperforms it in all missing rate scenarios. This indicates
that missing data can severely impact the clustering perfor-
mance of federated IMVC.

Compared to FCUIF, our method outperforms it on most
datasets and missing rates. Particularly on the HW dataset,
while our method shows no significant advantage at low miss-
ing rates, at high missing rates, FCUIF experiences a consid-
erable performance drop, whereas the performance decline of
our method is smaller than that of FCUIF. This demonstrates
that our feature completion approach is effective. Moreover,
our method avoids uploading feature embeddings, reducing
the risk of privacy leakage compared to existing deep IMVC
methods.

To visually observe the impact of missing rate changes on
clustering performance, we present the error band diagram
of all clustering metrics and comparison methods on the HW
dataset in Figure 2. As can be seen from the figure, under
different missing rate settings, our method consistently main-
tains high clustering performance. Particularly in high miss-
ing rate scenarios (η = 0.9), our method even outperforms all
benchmark methods, including centralized methods, proving
the robustness of our feature completion approach.

4.3 Ablation Study
We validate the effectiveness of each module in the proposed
method through ablation experiments. The experimental re-
sults are shown in Table ??. The four modules considered
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Dataset η
Centralized Federated

PIC DAIMC COMPLETER DSIMVC CPSPAN MGCD FCUIF OURS

HW

0.1 82.85±0.0 86.90±0.0 74.88±12.81 84.06±0.23 90.98±1.90 78.35±0.0 96.17±0.24 97.64±0.03
0.3 71.20±0.0 80.95±0.0 71.19±4.34 79.23±3.88 90.19±1.57 56.08±0.0 94.81±0.21 97.87±0.06
0.5 85.15±0.0 80.80±0.0 64.38±12.52 76.80±3.70 89.39±1.63 39.29±0.0 93.87±0.06 97.21±0.07
0.7 80.80±0.0 71.00±0.0 74.44±5.26 76.08±2.55 89.92±1.82 26.06±0.0 91.29±0.31 96.19±0.19
0.9 87.40±0.0 70.25±0.0 40.66±3.83 46.09±1.97 90.61±1.11 14.06±0.0 87.72±0.48 96.01±0.21

OutdoorScene

0.1 63.88±0.0 51.45±0.0 42.02±4.04 58.97±2.19 60.54±2.83 43.73±0.0 71.61±1.31 70.80±0.65
0.3 61.61±0.0 44.64±0.0 48.84±3.20 59.46±0.93 58.91±2.84 31.11±0.0 72.14±0.92 71.14±0.85
0.5 59.67±0.0 50.29±0.0 53.22±2.40 58.07±1.55 62.59±3.44 21.35±0.0 71.23±0.79 71.10±0.43
0.7 61.42±0.0 51.64±0.0 56.06±5.97 53.65±2.29 60.24±2.45 16.43±0.0 68.74±0.44 69.31±0.44
0.9 53.35±0.0 50.63±0.0 44.14±5.37 39.90±1.49 60.83±3.18 17.90±0.0 63.62±2.24 66.05±0.52

NoisyMNIST

0.1 97.29±0.0 39.78±0.0 77.31±7.10 80.20±7.55 47.01±0.89 28.17±0.0 68.42±1.23 80.23±1.55
0.3 86.33±0.0 37.31±0.0 78.41±2.53 78.59±2.56 46.22±0.63 20.38±0.0 68.75±2.20 83.21±1.59
0.5 80.51±0.0 33.43±0.0 61.59±1.59 75.19±2.40 46.11±0.91 16.52±0.0 63.43±0.94 77.35±1.97
0.7 77.05±0.0 43.72±0.0 54.89±2.42 59.07±3.91 45.62±0.57 14.21±0.0 57.03±1.77 70.39±0.70
0.9 63.09±0.0 38.46±0.0 33.33±3.94 39.35±4.32 44.26±0.87 20.86±0.0 53.86±1.51 70.96±2.40

Table 1: Comparison of clustering accuracy (ACC) under different missing rates.

Dataset η
Centralized Federated

PIC DAIMC COMPLETER DSIMVC CPSPAN MGCD FCUIF OURS

HW

0.1 82.93±0.0 77.18±0.0 74.07±9.86 81.20±0.56 83.92±2.13 75.75±0.0 91.44±0.39 94.44±0.08
0.3 75.90±0.0 70.64±0.0 71.94±3.69 77.15±3.16 83.02±1.98 53.22±0.0 88.88±0.41 95.98±0.13
0.5 84.53±0.0 70.21±0.0 69.23±8.47 73.11±2.27 82.28±1.89 35.41±0.0 87.65±0.18 93.65±0.18
0.7 83.03±0.0 68.64±0.0 74.24±1.51 70.71±2.26 83.01±1.82 16.08±0.0 83.34±0.47 91.50±0.38
0.9 85.92±0.0 68.89±0.0 44.70±1.83 50.83±4.70 83.36±1.46 1.31±0.0 77.72±0.72 91.48±0.37

OutdoorScene

0.1 53.19±0.0 43.30±0.0 43.04±2.53 51.45±0.47 50.49±1.99 33.34±0.0 56.78±0.78 54.14±0.67
0.3 53.78±0.0 36.80±0.0 42.00±1.50 50.70±0.22 50.43±1.76 20.86±0.0 56.78±0.64 55.28±1.20
0.5 50.18±0.0 38.16±0.0 43.46±1.78 49.84±0.72 52.73±0.83 8.80±0.0 55.39±0.68 55.30±0.65
0.7 43.35±0.0 39.20±0.0 48.02±2.92 46.07±1.51 51.13±1.24 0.85±0.0 53.25±0.41 53.50±0.43
0.9 35.93±0.0 32.88±0.0 35.96±4.41 30.31±1.95 49.36±2.08 4.46±0.0 47.16±1.15 48.24±0.66

NoisyMNIST

0.1 93.24±0.0 30.78±0.0 76.29±2.76 74.52±4.43 46.27±1.17 19.16±0.0 60.58±1.23 75.59±1.79
0.3 84.42±0.0 31.82±0.0 72.28±2.22 70.53±1.16 45.64±0.74 14.72±0.0 58.60±1.51 74.73±0.84
0.5 71.71±0.0 26.50±0.0 63.39±2.29 67.08±2.05 45.32±1.47 7.56±0.0 51.28±0.64 73.15±0.59
0.7 71.79±0.0 32.79±0.0 54.25±2.14 52.43±3.39 44.32±1.20 4.02±0.0 44.32±0.73 62.86±0.65
0.9 60.10±0.0 27.96±0.0 31.42±3.43 32.93±5.34 41.25±1.44 17.02±0.0 40.68±1.57 61.17±2.07

Table 2: Comparison of clustering normalized mutual information (NMI) under different missing rates.

0.1 0.3 0.5 0.7 0.9
Missing rate

0

20

40

60

80

100

AC
C(

%
)

ACC(%) with different Missing rate

PIC
DAIMC
COMPLETER
DSIMVC
CPSPAN
MGCD
FCUIF
OURS

0.1 0.3 0.5 0.7 0.9
Missing rate

0

20

40

60

80

100

N
M

I(%
)

NMI(%) with different Missing rate

PIC
DAIMC
COMPLETER
DSIMVC
CPSPAN
MGCD
FCUIF
OURS

0.1 0.3 0.5 0.7 0.9
Missing rate

0

20

40

60

80

100

AR
I(%

)

ARI(%) with different Missing rate

PIC
DAIMC
COMPLETER
DSIMVC
CPSPAN
MGCD
FCUIF
OURS

Figure 2: Error band plot of performance as missing rate increases

are: M1 represents the GCN-based feature completion mod-
ule, M2 represents the weighted fusion module, and M3 and
M4 represent the feature reconstruction loss and the structural
reconstruction loss in GAE, respectively. The ablation experi-

ment results show that, regardless of whether the missing rate
is high or low, M4 has a significant impact on the clustering
results. At high missing rates, all modules are indispensable
for clustering performance. This demonstrates the effective-
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Dataset η
Centralized Federated

PIC DAIMC COMPLETER DSIMVC CPSPAN MGCD FCUIF OURS

HW

0.1 75.20±0.0 73.84±0.0 58.95±21.04 75.61±0.83 81.75±3.20 71.78±0.0 91.68±0.49 94.82±0.07
0.3 65.44±0.0 64.34±0.0 51.129±9.3 69.89±4.90 80.34±2.72 41.96±0.0 88.86±0.42 95.30±0.12
0.5 78.64±0.0 64.78±0.0 42.63±14.27 65.10±2.97 78.97±2.83 19.44±0.0 87.01±0.13 93.87±0.17
0.7 76.50±0.0 60.53±0.0 58.70±4.43 61.99±2.78 79.91±2.86 6.51±0.0 81.90±0.62 91.73±0.40
0.9 81.48±0.0 57.33±0.0 9.05±1.93 30.40±1.84 80.93±1.93 14.90±0.0 75.21±0.85 91.41±0.43

OutdoorScene

0.1 46.39±0.0 34.84±0.0 21.19±3.60 37.24±1.29 38.67±2.44 24.87±0.0 49.23±0.84 46.56±0.92
0.3 44.76±0.0 28.94±0.0 21.77±3.50 36.91±0.53 38.08±1.93 16.22±0.0 49.37±0.89 46.56±0.89
0.5 41.22±0.0 30.74±0.0 29.09±3.70 36.00±1.07 41.64±1.30 5.74±0.0 48.00±0.91 48.79±0.40
0.7 35.64±0.0 32.71±0.0 35.01±4.43 32.22±1.56 39.58±1.89 0.15±0.0 44.96±0.51 45.19±0.48
0.9 31.36±0.0 26.47±0.0 24.50±4.92 19.11±1.24 38.68±2.49 1.45±0.0 38.81±1.46 40.13±0.63

NoisyMNIST

0.1 94.10±0.0 20.73±0.0 67.10±5.26 69.01±6.82 31.94±1.25 11.63±0.0 52.82±1.50 69.08±1.57
0.3 82.04±0.0 19.94±0.0 66.05±2.73 64.73±2.07 31.32±0.88 7.22±0.0 51.43±2.26 69.82±1.48
0.5 70.88±0.0 15.22±0.0 49.47±2.10 60.41±2.81 31.04±1.58 2.82±0.0 45.03±0.75 66.53±1.59
0.7 66.18±0.0 22.12±0.0 41.35±3.21 42.58±3.61 31.21±1.10 1.86±0.0 37.60±1.34 56.69±0.70
0.9 50.11±0.0 18.41±0.0 12.00±4.39 17.63±1.54 27.62±1.20 7.50±0.0 33.67±1.53 54.69±2.26

Table 3: Comparison of clustering adjusted rand index (ARI) under different missing rates.

η M1 M2 M3 M4 ACC NMI ARI

0.1

✓ ✓ ✓ 96.40 90.48 90.90
✓ ✓ ✓ 97.30 93.94 94.09
✓ ✓ ✓ 97.35 93.95 94.19
✓ ✓ ✓ 87.85 86.81 82.57
✓ ✓ ✓ ✓ 97.64 94.44 94.82

0.9

✓ ✓ ✓ 93.47 88.55 87.35
✓ ✓ ✓ 87.75 87.29 83.11
✓ ✓ ✓ 89.90 85.42 82.02
✓ ✓ ✓ 74.10 76.79 64.67
✓ ✓ ✓ ✓ 96.01 91.48 91.41

Table 4: Ablation study on HW.

ness of each module in our proposed method.

4.4 Parameter Analysis
We conducted experiments to perform parameter analysis on
several key parameters involved in the proposed method. The
experimental results are shown in Figure 3 and Figure 4.
Specifically, we tested the clustering performance on the HW
dataset under a missing rate setting of η = 0.9, varying the
following parameters: The number of neighbors k used for
KNN graph construction, ranging from 5 to 45 with an inter-
val of 5. The maximum number of communication rounds R,
ranging from 1 to 15 with an interval of 1. The clustering loss
balance coefficient α ∈ [10−4, 10−3, 10−2, 10−1, 1, 10, 100]
The number of selected anchors r, ranging from 10 to 1000.

From Figure 3, it can be observed that the clustering per-
formance is optimal when k is around 20. As R increases,
the clustering performance initially improves and then stabi-
lizes at a maximum value. From Figure 4, it is evident that α
maintains stable clustering performance within the range of
0.1 to 10, and a small number of anchor points (more than
120 on HW) in each cluster is sufficient to achieve stable per-
formance for our method.
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Figure 3: Clustering performance with different k and R
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Figure 4: Clustering performance with different α and r

5 Conclusion

In this paper, we propose a federated multi-view clustering
method with incomplete attribute imputation. First, a global
consensus graph is constructed from the existing data, and
clients use the global graph structure information to perform
local feature completion. Besides, to reduce privacy leak-
age risks and communication overhead, we extract an anchor
graph from the autoencoder embeddings to replace the direct
uploading of embedding features or graphs. Finally, weighted
fusion of the anchor graphs is performed on the server to ob-
tain the global clustering assignment, which guides the client
model training for self-supervised learning. Experimental re-
sults demonstrate the superiority of our method, particularly
the robustness in high missing rate scenarios.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work is supported by the National Science Foundation
of China under Grant No. 62037001, the Key Research
and Development Project in Shaanxi Province (2024PT-
ZCK-89), the Fundamental Research Funds for the Cen-
tral Universities (ZYTS25267, QTZX25004), and the Sci-
ence and Technology Project of Xi’an (Grant 2022JH-JSYF-
0009), Open Project of Anhui Provincial Key Laboratory
of Multimodal Cognitive Computation, Anhui University
(No. MMC202416), Selected Support Project for Scientific
and Technological Activities of Returned Overseas Chinese
Scholars in Shaanxi Province 2023-02, and the Xidian Inno-
vation Fund (Project NoYJSJ25007).

References
[Chao et al., 2024] Guoqing Chao, Yi Jiang, and Dianhui

Chu. Incomplete contrastive multi-view clustering with
high-confidence guiding. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages
11221–11229, 2024.

[Chen et al., 2023a] Jie Chen, Hua Mao, Wai Lok Woo, and
Xi Peng. Deep multiview clustering by contrasting clus-
ter assignments. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 16752–
16761, 2023.

[Chen et al., 2023b] Xinyue Chen, Jie Xu, Yazhou Ren, Xi-
aorong Pu, Ce Zhu, Xiaofeng Zhu, Zhifeng Hao, and Li-
fang He. Federated deep multi-view clustering with global
self-supervision. In Proceedings of the 31st ACM Interna-
tional Conference on Multimedia, pages 3498–3506, 2023.

[Chen et al., 2025a] Jianpeng Chen, Yawen Ling, Jie Xu,
Yazhou Ren, Shudong Huang, Xiaorong Pu, Zhifeng Hao,
Philip S Yu, and Lifang He. Variational graph generator
for multiview graph clustering. IEEE Trans. on Neural
Networks and Learning Systems, 2025.

[Chen et al., 2025b] Man-Sheng Chen, Xi-Ran Zhu, Jia-Qi
Lin, and Chang-Dong Wang. Contrastive multiview at-
tribute graph clustering with adaptive encoders. IEEE
Trans. Neural Networks Learn. Syst., 36(4):7184–7195,
2025.

[Feng et al., 2024] Cong Feng, Ao Li, Haoyue Xu, Hailu
Yang, and Xinwang Liu. Deep incomplete multiview clus-
tering via local and global pseudo-label propagation. IEEE
Trans. on Neural Networks and Learning Systems, 2024.

[Hu and Chen, 2018] Menglei Hu and Songcan Chen. Dou-
bly aligned incomplete multi-view clustering. In Proceed-
ings of the 27th International Joint Conference on Artifi-
cial Intelligence, pages 2262–2268, 2018.

[Huang et al., 2022] Shudong Huang, Wei Shi, Zenglin Xu,
Ivor W Tsang, and Jiancheng Lv. Efficient federated multi-
view learning. Pattern Recognition, 131:108817, 2022.

[Huang et al., 2023] Zongmo Huang, Yazhou Ren, Xiaorong
Pu, Shudong Huang, Zenglin Xu, and Lifang He. Self-
supervised graph attention networks for deep weighted

multi-view clustering. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages 7936–
7943, 2023.

[Jiang et al., 2024] Zhangqi Jiang, Tingjin Luo, and Xinyan
Liang. Deep incomplete multi-view learning network with
insufficient label information. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages
12919–12927, 2024.

[Jin et al., 2023] Jiaqi Jin, Siwei Wang, Zhibin Dong, Xin-
wang Liu, and En Zhu. Deep incomplete multi-view clus-
tering with cross-view partial sample and prototype align-
ment. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 11600–
11609, 2023.

[Li et al., 2020] Xuelong Li, Han Zhang, Rong Wang, and
Feiping Nie. Multiview clustering: A scalable and
parameter-free bipartite graph fusion method. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 44(1):330–
344, 2020.

[Li et al., 2023a] Guopeng Li, Dan Song, Wei Bai, Kun Han,
and Ratnasingham Tharmarasa. Consensus and com-
plementary regularized non-negative matrix factorization
for multi-view image clustering. Information Sciences,
623:524–538, 2023.

[Li et al., 2023b] Songze Li, Duanyi Yao, and Jin Liu.
Fedvs: Straggler-resilient and privacy-preserving verti-
cal federated learning for split models. In International
Conference on Machine Learning, pages 20296–20311.
PMLR, 2023.

[Liang et al., 2022] Weixuan Liang, Xinwang Liu, Sihang
Zhou, Jiyuan Liu, Siwei Wang, and En Zhu. Robust graph-
based multi-view clustering. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages
7462–7469, 2022.

[Liang et al., 2025] Xinyan Liang, Pinhan Fu, Yuhua Qian,
Qian Guo, and Guoqing Liu. Trusted multi-view classifi-
cation via evolutionary multi-view fusion. In Proceedings
of the 13th International Conference on Learning Repre-
sentations, pages 1–14, 2025.

[Lin et al., 2021] Yijie Lin, Yuanbiao Gou, Zitao Liu, Boyun
Li, Jiancheng Lv, and Xi Peng. Completer: Incomplete
multi-view clustering via contrastive prediction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2021.

[Lin et al., 2024] Jia-Qi Lin, Man-Sheng Chen, Xi-Ran Zhu,
Chang-Dong Wang, and Haizhang Zhang. Dual informa-
tion enhanced multiview attributed graph clustering. IEEE
Trans. on Neural Networks and Learning Systems, 2024.

[Liu et al., 2023] Chengliang Liu, Jie Wen, Zhihao Wu, Xi-
aoling Luo, Chao Huang, and Yong Xu. Information
recovery-driven deep incomplete multiview clustering net-
work. IEEE Trans. on Neural Networks and Learning Sys-
tems, 2023.

[Liu et al., 2024] Yang Liu, Yan Kang, Tianyuan Zou, Yan-
hong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Zhang, and Qiang Yang. Vertical federated learning: Con-
cepts, advances, and challenges. IEEE Trans. on Knowl-
edge and Data Engineering, 2024.

[Monadjemi et al., 2002] Amir Monadjemi, BT Thomas,
and Majid Mirmehdi. Experiments on high resolution im-
ages towards outdoor scene classification. 2002.

[Pu et al., 2024] Jingyu Pu, Chenhang Cui, Xinyue Chen,
Yazhou Ren, Xiaorong Pu, Zhifeng Hao, S Yu Philip, and
Lifang He. Adaptive feature imputation with latent graph
for deep incomplete multi-view clustering. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 14633–14641, 2024.

[Qiao et al., 2024] Dong Qiao, Chris Ding, and Jicong Fan.
Federated spectral clustering via secure similarity recon-
struction. Advances in Neural Information Processing Sys-
tems, 36, 2024.

[Ren et al., 2024a] Yazhou Ren, Xinyue Chen, Jie Xu,
Jingyu Pu, Yonghao Huang, Xiaorong Pu, Ce Zhu, Xi-
aofeng Zhu, Zhifeng Hao, and Lifang He. A novel fed-
erated multi-view clustering method for unaligned and in-
complete data fusion. Information Fusion, 108:102357,
2024.

[Ren et al., 2024b] Yazhou Ren, Jingyu Pu, Zhimeng Yang,
Jie Xu, Guofeng Li, Xiaorong Pu, S Yu Philip, and Li-
fang He. Deep clustering: A comprehensive survey. IEEE
Trans. on Neural Networks and Learning Systems, 2024.

[Rossi et al., 2022] Emanuele Rossi, Henry Kenlay, Maria I
Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong,
and Michael M Bronstein. On the unreasonable effec-
tiveness of feature propagation in learning on graphs with
missing node features. In Learning on graphs conference,
pages 11–1. PMLR, 2022.

[Sun et al., 2021] Jingwei Sun, Ang Li, Binghui Wang,
Huanrui Yang, Hai Li, and Yiran Chen. Soteria: Prov-
able defense against privacy leakage in federated learn-
ing from representation perspective. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 9311–9319, 2021.

[Sun et al., 2025] Bohang Sun, Yongjian Deng, Yuena Lin,
Qiuru Hai, Zhen Yang, and Gengyu Lyu. Graph consis-
tency and diversity measurement for federated multi-view
clustering. The 39th Annual AAAI Conference on Artificial
Intelligence, 2025.

[Tang and Liu, 2022] Huayi Tang and Yong Liu. Deep safe
incomplete multi-view clustering: Theorem and algo-
rithm. In International Conference on Machine Learning,
pages 21090–21110. PMLR, 2022.

[Teng et al., 2024] Ge Teng, Ting Mao, Chen Shen, Xiang
Tian, Xuesong Liu, Yaowu Chen, and Jieping Ye. Urrl-
imvc: Unified and robust representation learning for in-
complete multi-view clustering. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 2888–2899, 2024.

[Wang et al., 2015] Weiran Wang, Raman Arora, Karen
Livescu, and Jeff Bilmes. On deep multi-view represen-

tation learning. In International conference on machine
learning, pages 1083–1092. PMLR, 2015.

[Wang et al., 2019] Hao Wang, Linlin Zong, Bing Liu, Yan
Yang, and Wei Zhou. Spectral perturbation meets incom-
plete multi-view data. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence, pages
3677–3683, 2019.

[Wang et al., 2023] Senhong Wang, Jiangzhong Cao,
Fangyuan Lei, Jianjian Jiang, Qingyun Dai, and Bingo
Wing-Kuen Ling. Multiple kernel-based anchor graph
coupled low-rank tensor learning for incomplete multi-
view clustering. Applied Intelligence, 53(4):3687–3712,
2023.

[Winn and Jojic, 2005] John Winn and Nebojsa Jojic. Lo-
cus: Learning object classes with unsupervised segmen-
tation. In Tenth IEEE International Conference on Com-
puter Vision (ICCV’05) Volume 1, volume 1, pages 756–
763. IEEE, 2005.

[Wu et al., 2024] Tingting Wu, Songhe Feng, and Jiazheng
Yuan. Low-rank kernel tensor learning for incomplete
multi-view clustering. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 38, pages 15952–
15960, 2024.

[Xiao et al., 2023] Shunxin Xiao, Shide Du, Zhaoliang
Chen, Yunhe Zhang, and Shiping Wang. Dual fusion-
propagation graph neural network for multi-view cluster-
ing. IEEE Trans. on Multimedia, 25:9203–9215, 2023.

[Xu et al., 2021] Jie Xu, Yazhou Ren, Guofeng Li, Lili Pan,
Ce Zhu, and Zenglin Xu. Deep embedded multi-view clus-
tering with collaborative training. Information Sciences,
573:279–290, 2021.

[Yang et al., 2022] Xihong Yang, Xiaochang Hu, Sihang
Zhou, Xinwang Liu, and En Zhu. Interpolation-based con-
trastive learning for few-label semi-supervised learning.
IEEE Trans. on Neural Networks and Learning Systems,
35(2):2054–2065, 2022.

[Zhang et al., 2022] Hongyuan Zhang, Jiankun Shi, Rui
Zhang, and Xuelong Li. Non-graph data clustering via
O(n) bipartite graph convolution. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, 45(7):8729–8742,
2022.

[Zhao et al., 2017] Handong Zhao, Zhengming Ding, and
Yun Fu. Multi-view clustering via deep matrix factoriza-
tion. In Proceedings of the AAAI conference on artificial
intelligence, volume 31, 2017.

[Zhao et al., 2024] Wenhui Zhao, Guangfei Li, Haizhou
Yang, Quanxue Gao, and Qianqian Wang. Embedded fea-
ture selection on graph-based multi-view clustering. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 17016–17023, 2024.

[Zhao et al., 2025] Zihua Zhao, Ting Wang, Haonan Xin,
Rong Wang, and Feiping Nie. Multi-view clustering via
high-order bipartite graph fusion. Information Fusion,
113:102630, 2025.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


