
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

OMS: One More Step Noise Searching to Enhance Membership Inference Attacks
for Diffusion Models

Xiaomeng Fu1,3, Xi Wang∗2,4, Qiao Li1,3, Jin Liu1,3, Jiao Dai∗1, Jizhong Han1, Xingyu Gao2,4

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China

3School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
4University of Chinese Academy of Sciences, Beijing, China

fuxiaomeng@iie.ac.cn, wangxiboss@163.com, {liqiao,liujin,daijiao,hanjizhong}@iie.ac.cn,
gxy9910@gmail.com

Abstract
The data-intensive nature of Diffusion models am-
plifies the risks of privacy infringements and copy-
right disputes, particularly when training on exten-
sive unauthorized data scraped from the Internet.
Membership Inference Attacks (MIA) aim to deter-
mine whether a data sample has been utilized by the
target model during training, thereby serving as a
pivotal tool for privacy preservation. Current MIA
employs the prediction loss to distinguish between
training member samples and non-members. These
methods assume that, compared to non-members,
members, having been encountered by the model
during training result in a smaller prediction loss.
However, this assumption proves ineffective in dif-
fusion models due to the random noise sampled
during the training process. Rather than estimating
the loss, our approach examines this random noise
and reformulate the MIA as a noise search problem,
assuming that members are more feasible to find
the noise used in the training process. We formulate
this noise search process as an optimization prob-
lem and employ the fixed-point iteration to solve
it. We analyze current MIA methods through the
lens of the noise search framework and reveal that
they rely on the first residual as the discriminative
metric to differentiate members and non-members.
Inspired by this observation, we introduce OMS,
which augments existing MIA methods by iterat-
ing One More fixed-point Step to include a further
residual, i.e., the second residual. We integrate our
method into various MIA methods across different
diffusion models. The experimental results validate
the efficacy of our proposed approach.

1 Introduction
Recently, diffusion models [Ho et al., 2020; Song et al.,
2020b] have been widely recognized for their unparalleled
capability to generate images of exceptional quality, which

∗Corresponding author

are increasingly becoming indistinguishable from their real-
world counterparts. Due to the high quality of images gener-
ated by diffusion models, an increasing number of AI compa-
nies are developing generative tools predicated on diffusion
models for commercial art design.

Nonetheless, these advancements are accompanied by in-
herent challenges [Brittain, 2023; Liu et al., 2021]. The data-
intensive nature of diffusion models has amplified the risk
of privacy infringements and copyright disputes. Trained on
extensive unauthorized data scraped from the Internet, these
methods overlook the copyrights and privacy of the original
owners. A case in point is the recent lawsuit filed by Getty
Images against Stability AI, alleging unauthorized use of 12
million of Getty’s images for model training. Thus, it is im-
perative to develop tools to detect diffusion models’ privacy
infringements.

To audit these privacy risks, Membership Inference Attacks
(MIA) [Shokri et al., 2017] have emerged as a potential so-
lution. The objective of MIA is to ascertain whether a data
sample has been utilized in the training process of a ma-
chine learning model. Existing MIA methods [Sablayrolles
et al., 2019; Salem et al., 2019; Song and Mittal, 2021] typi-
cally operate under the assumption that member records tend
to exhibit lower prediction losses compared to non-member
records. Consequently, these methodologies compute the pre-
diction losses and utilize this metric to differentiate between
member and non-member records.

Although the utilization of prediction loss to differentiate
between member and non-member records has been empir-
ically validated for numerous deterministic models, such as
classification models and Generative Adversarial Networks
(GANs) [Chen et al., 2020; Hayes et al., 2019; Hilprecht et
al., 2019; Choquette-Choo et al., 2021; Hanzlik et al., 2021],
its efficacy is diminished when applied to diffusion models
due to the intractability of the training loss. More precisely,
during the training process of the diffusion model, a random
noise is sampled, serving not only as a component of the
model’s input but also as the target in the training loss. How-
ever, during the execution of the membership inference, it is
virtually impossible to replicate the exact noise sampled dur-
ing the training phase. The discrepancy between the noise
used during training and membership inference contributes
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to the inaccuracy of the loss estimation.
Instead of the loss assumption, we propose an alternative

hypothesis: it is more feasible for members to find the
noise counterpart used in the training process. This as-
sumption aligns more closely with the inherent stochastic
characteristics of diffusion model training. Based on this as-
sumption, we introduce a novel MIA framework for diffusion
models, leveraging a noise searching mechanism. We formal-
ize the noise searching process as an optimization problem
with the training loss as the optimization objective.

Moreover, we propose to utilize the fixed-point iteration
to solve the optimization problem. By iteratively applying a
function to the initial guess, we strive to facilitate the con-
vergence to the noise encountered by the members during
the training stage. We begin with an empirical analysis fo-
cuses on the convergence properties of the fixed-point iter-
ation. We discern a distinct attribute where member sam-
ples exhibit faster convergence rate compared to non-member
samples. This observation implies that the convergence rate
can be employed as a discriminative feature to differentiate
between member and non-member samples.

This attribute also provides further insights into current
MIAs for diffusion models. Specifically, from the perspective
of the fixed-point iteration, we reinterpret current MIA meth-
ods as assessments of convergence rate, primarily through the
first residual. To refine this measurement and capture the nu-
ances of convergence dynamics more comprehensively, we
introduce an augmentation to the iteration process, incorpo-
rating an additional step that considers the second residual
which is termed as the “One More Step” (OMS) approach.

We conduct experiments across various diffusion models,
spanning CNN-based and Transformer-based architectures,
along with various datasets and MIA methods. Notably, to the
best of our knowledge, we are the first to evaluate MIA per-
formance on Transformer-based diffusion models. The exper-
imental results demonstrate the effectiveness of the proposed
OMS approach and the noise searching MIA framework. In
summary, our paper makes the following contributions:

• We reveal the noise inconsistency issues in current MIA
methods for diffusion models. To address this, we devise
a novel framework in the perspective of noise searching.
Formally, we conceptualize the noise searching process
as an optimization problem.

• We propose the fixed-point iteration to solve the noise
searching optimization problem. Moreover, we investi-
gate its convergence properties in practice and find that
members exhibit faster convergence rate compared to
non-members.

• We analyze existing MIA methods through the proposed
framework, revealing that the efficacy of existing meth-
ods is linked to the convergence rate, particularly as
characterized by the first residual. Motivated by this, we
introduce a refinement strategy by iterating One More
Step (OMS) to include the second residual.

• We conduct experiments on various diffusion models,
encompassing CNN-based and Transformer-based ar-
chitectures, using various datasets. The results not only

confirm the validity of our MIA framework but also un-
derscore the efficacy of the OMS refinements.

2 Related Work
Membership Inference Attack (MIA). The goal of MIA is
to predict the presence of a specific data record in the training
set of a given model. The effectiveness of MIA fundamen-
tally relies on the hypothesis that machine learning models
exhibit differential responses to member records versus un-
familiar non-member records. Given the manner to exploit
model’s reactions, existing methods can be divided into two
categories, model-based methods and metric-based meth-
ods. In the realm of model-based methods [Shokri et al.,
2017; Salem et al., 2019; Long et al., 2020; Chen et al., 2020;
Truex et al., 2019], a shadow model is trained to mimic
the responses of the target machine learning model. Subse-
quently, attack algorithms are formulated, predicated on the
reactions of the shadow model, with the ultimate objective
of achieving generalization to the target model. Despite the
significant advancements in the field, model-based methods
are characterized by their computational intensity and exhibit
susceptibility to model’s architecture. Methods grounded
in metrics [Sablayrolles et al., 2019; Yeom et al., 2018;
Salem et al., 2020; Bentley et al., 2020] primarily employ
a metric (typically the loss value) as a representative measure
of the model’s response to each sample. The membership of a
specific sample is subsequently determined based on the nu-
merical values of the selected metric.
MIA for diffusion models. Given the computational inten-
sity of training a shadow model with comparable parame-
ters, model-based methods are deemed unsuitable for diffu-
sion models. As a result, most current MIA tailored for dif-
fusion models [Duan et al., 2023; Matsumoto et al., 2023;
Kong et al., 2023] are metric-based methods. These meth-
ods assume that the loss value for members is smaller than
that for non-members. Despite achieving substantial perfor-
mance, these methods still suffer from the inaccuracy of loss
estimation. During the training phase of the diffusion model,
the loss value is dictated by the training target (a random
Gaussian noise). However, when executing the MIA, repli-
cating the exact noise sampled during the training process
is virtually unattainable. Instead, we propose a novel MIA
framework predicated on noise searching. This innovative ap-
proach promises to enhance the overall performance of MIA
and provide insight into the principles of MIA methods for
diffusion models.

3 Method
Given a data record x0, the goal of MIA is to identify whether
x0 is in the training set of the target diffusion model ϵθ.
Existing MIAs [Duan et al., 2023; Matsumoto et al., 2023;
Kong et al., 2023] tailored for diffusion models predomi-
nantly assume the members’ loss values are lower than those
for non-members. However, these loss-based approaches
are susceptible to inaccuracies in loss estimation, which are
caused by noise inconsistency between the training and in-
ference stages (Section 3.2). In contrast, we propose a novel
MIA framework that employs noise searching, an approach
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we believe aligns more closely with the stochastic nature of
the model’s training process. We formulate the noise search-
ing process as an optimization problem and use the fixed-
point iteration to solve this problem (Section 3.3). We posit
that members can retrieve the training noise with less effort
compared to non-members. Subsequently, we analyze the
convergence properties of the fixed-point iteration and fur-
ther validate that it is more feasible for members to search
the noise than non-members (Section 3.4). Motivated by this,
we reinterpret the underlying mechanisms contributing to the
efficacy of existing MIA methods and propose an enhance-
ment by incorporating One More iteration Step (OMS) (Sec-
tion 3.5).

3.1 Background and Notations
We begin with a brief introduction of the background and no-
tations of the diffusion models. Denoising Diffusion Proba-
bilistic Models (DDPM) [Ho et al., 2020; Song et al., 2020a]
consist of a forward and a reverse process. The forward
process, also named as the diffusion process, gradually adds
Gaussian noise to the input image x0 in T time steps accord-
ing to a predefined variance schedule β1, ..., βT :

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

Let αt = 1 − βt and ᾱt =
∏t

s=1 αs, this process can be
simplified to:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

When t is large enough, the ᾱ is approaching 0, making xt an
isotropic Gaussian noise. The reverse process aims to recover
the data distribution from the Gaussian noise. The reverse
process in one step can be represented as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σt) (3)

where Σt is a constant depending on the variance schedule βt

and µθ(xt, t) is determined by a neural network:

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (4)

By recursively leveraging the reverse step, Gaussian noise can
be recovered to the original image. To train the DDPM, an
image x0, a timestep t and a random noise ϵ ∼ N (0, I) are
first sampled. A noisy image xt is then obtained by using the
forward process (Equation 2). We then input both the noisy
image xt and the timestep t into a U-Net [Ronneberger et
al., 2015] ϵθ to predict the noise within xt. The optimization
objective for the denoising U-Net can be written as:

L = Et,x0,ϵ[||ϵ− ϵθ(x0, t, ϵ)||22] (5)

3.2 Noise Inconsistency Between Training and
Inference

The diffusion model’s training procedure can be described by
Equation 5. To elaborate, given the input image x0 and a spe-
cific timestep t, a random noise ϵtrain is sampled from the
standard normal distribution. This noise is then utilized to
perturb x0 into a corrupted version xt, following the sched-
ule predefined in Equation 2. Subsequently, the diffusion

model, parameterized by θ generates a prediction of the noise
within xt (denoted as ϵθ(x0, t, ϵtrain)). The training loss for
the diffusion model is computed as the distance between the
predicted noise ϵθ(x0, t, ϵtrain) and the actual sampled noise
ϵtrain. During the inference phase, due to the infeasibility of
the training noise ϵtrain, an alternate noise ϵinf is sampled
to estimate the loss value. However, it is important to note
that there exists no guarantee that ϵinf is identical or approxi-
mately similar to the noise ϵtrain. This inconsistency in noise
significantly impacts the accuracy of the loss values, conse-
quently affecting the effectiveness of existing MIA targeting
diffusion models.

3.3 MIA by Noise Searching
In contrast to existing MIA that rely on the randomly sampled
inference noise as a surrogate for the training noise ϵtrain
to approximate the loss, thereby encountering the noise in-
consistency issue, we introduce a novel MIA framework for
diffusion models, leveraging a noise search strategy. Our ap-
proach aims to reconstruct, for a given record x0, the cor-
responding training noise ϵtrain that minimizes the training
loss as defined in Equation 5. We assume that it is more fea-
sible for members to obtain the training noise ϵtrain. We
formulate the process of noise searching as an optimization
problem:

min
ϵ

||ϵ− ϵθ(x0, t, ϵ)||p

s.t. ϵ ∼ N (0, I)
(6)

This optimization framework directly addresses the noise in-
consistency issue by focusing on identifying the true training
noise ϵtrain. Compared with loss-based methods, the pro-
posed approach emphasizes the identification of ϵtrain. We
argue this approach aligns more coherently with the inherent
stochastic nature of the diffusion model’s training process.

Fixed-point iteration. We address the aforementioned op-
timization problem by the fixed-point iteration. For a given
record x0 and timestep t, the predicted noise ϵθ(x0, t, ϵ) is
solely dependent on ϵ. This dependency can be represented
as an implicit function ϵ = f(ϵ). The optimal noise, which
pairs with the record x0 during the training process, is also
identified as the solution to the implicit function f . To ad-
dress this, we employ the fixed-point iteration [Smart, 1980].
The iterative process can be represented as follows:

ϵn = f(ϵn−1), n = 1, 2, ... (7)

We assume that the fixed-point iteration process essentially
satisfies the constraints embedded within the optimization
problem, given the fact that the model ϵθ is trained to generate
noises adhering to the distribution. Consequently, we hypoth-
esize that the model’s outputs also conform to the standard
normal distribution. Note that we do not use more advanced
methods for solving implicit functions such as Newton-
Raphson or Conjugate Gradient [Nocedal and Wright, 1999].
This is because the Newton-Raphson method needs to com-
pute gradients while the Conjugate Gradients need to search
high dimension gradients, both of which are computationally
intensive and potentially intractable.
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Figure 1: The top row is the Jacobian norm in different timesteps and iterations. The bottom row shows the residuals δn, with the blue and
red boxes representing the members and non-members. The green line is the theoretical distance between two random Gaussian noise. We
report the results calculated over 1000 images of Cifar10 dataset (500 members and 500 non-members). The diffusion model is also trained
on the Cifar10 dataset.

3.4 Convergence of the Fixed-point Iteration
The primary concern about the fixed-point iteration lies in
its practical convergence properties. We present an empiri-
cal analysis to address this concern. Given the initial ϵ0, our
objective is to demonstrate that the sequence {ϵn}, n → ∞
generated by Equation 7 converges. To achieve this, we aim
to prove that the residual δn = ϵn − ϵn−1 converges, which
would imply that {ϵn} is the Cauchy sequence. The residual
can be expressed as follows:

||δn+1|| = ||ϵn+1 − ϵn|| = ||f(ϵn)− f(ϵn−1)|| (8)

Through Taylor Expansion, we obtain:

||f(ϵn)− f(ϵn−1)||

=||f(ϵn−1) +
∂f(ϵ)

∂ϵ
|ϵ=ϵn−1 · δn−1 +O(||δn−1||2)− f(ϵn−1)||

≤||∂f(ϵ)
∂ϵ

|ϵ=ϵn−1 || · ||δn||+O(||δn||2)

(9)

In a sufficiently confined domain, the term ||O(δ2)|| can
be considered negligible, and the convergence dynamics are
primarily governed by the Jacobian norm ||∂f(ϵ)∂ϵ ||. If the Ja-
cobian norm is below 1, it indicates that the implicit function
f is contractive, leading to an exponential decay in the resid-
uals, thereby affirming the convergence of the fixed-point it-
eration. We visualize this Jacobian norm (the top row) along
with the residuals (the bottom row) across various iterations
and timesteps in Figure 1. Notably, the Jacobian norm con-
sistently remains below the threshold of 1, thereby empiri-
cally validating the convergence of the fixed-point iteration.
In the residual plots, the theoretical distance (i.e., the distance
between two random Gaussian noise) is depicted in green,
whereas the residuals for member and non-member sets are
depicted in blue and red, respectively. Moreover, it is ob-
served that the residuals for both member and non-member
sets exhibit rapid convergence, with the member set residuals
smaller than those of non-member set, further indicating that
it is more feasible for members to obtain the training noise.

It is also important to highlight that the first residual δ1, rep-
resenting the divergence between ϵ0 and ϵ1, is frequently em-
ployed as an estimation of the training loss in current MIA
methods. We also provide validation about the convergence
property and convergence speed from the lens of contraction
mapping theorem [Berinde and Takens, 2007].

3.5 Existing MIAs and One More Step (OMS)

We re-assess the efficacy of prevailing MIA methods through
the lens of the fixed-point iteration. Current MIA methods
approximate the training loss of diffusion models by measur-
ing the divergence between the initial noise ϵ0 and the noise
after the first iteration ϵ1. In the context of the fixed-point
iteration, this divergence is equivalently characterized as the
first residual δ1. As illustrated in the bottom row of Figure 1,
this residual effectively discriminates between members and
non-members. However, it is also discernible that the sec-
ond residual δ2 for members is smaller than non-members,
indicating its substantial potential for enhancing membership
discrimination. Motivated by this observation, we take One
More Step (OMS) beyond ϵ1 to obtain ϵ2 and utilize the dis-
tance between ϵ0 and ϵ2 as the discriminative metric. This
metric can be interpreted as an ensemble of the first and sec-
ond residuals (δ1 and δ2). This approach not only preserves
the discriminative capability inherent in the traditional loss-
based approach (i.e., δ1), but also incorporating the extra in-
formation δ2 to augment the performance. The relationship
is mathematically expressed as:

||ϵ0 − ϵ2|| = || (ϵ0 − ϵ1)︸ ︷︷ ︸
loss term

+ (ϵ1 − ϵ2)︸ ︷︷ ︸
extra term

|| = ||δ1 + δ2|| (10)

Note that we do not leverage further residuals such as δ3

and δ4, though they also seem potential metric to distinguish
the member and non-member records. This is because the
marginal gain is decreased. We also provide experiments uti-
lizing different residuals in Section 4.5.
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Method
Cifar10 Cifar100 LFW LSUN-Cat Ave

ASR AUC ASR AUC ASR AUC ASR AUC ASR AUC

NA 71.86 78.28 75.97 82.18 72.40 79.54 62.60 67.02 70.71 76.75
+OMS 78.21 85.71 81.49 88.27 83.02 90.73 68.89 75.10 77.90 84.95
∆ ↑ +6.35 +7.43 +5.52 +6.09 +10.62 +11.20 +6.29 +8.09 +7.19 +8.20

SecMI 84.01 90.68 79.83 86.77 61.49 64.90 73.13 79.36 74.62 80.43
+OMS 86.48 92.82 83.32 90.62 77.80 85.67 84.59 91.20 83.05 90.08
∆ ↑ +2.47 +2.14 +3.49 +3.85 +16.31 +20.77 +11.46 +11.84 +8.43 +9.65
PIA 88.75 94.89 85.20 92.21 82.10 90.17 77.61 84.87 83.42 90.54

+OMS 91.78 97.26 89.68 96.08 84.49 92.27 82.58 89.65 87.13 93.82
∆ ↑ +3.03 +2.37 +4.49 +3.86 +2.39 +2.11 +4.96 +4.78 +3.72 +3.28

Table 1: The ASR and AUC metrics for existing MIA methods on DDPM, both with and without the integration of the One More Step (OMS).
The symbol ∆ is employed to denote the improvement in performance resulting from the integration of the OMS procedure.

Method
TPR@1%FPR TPR@0.1%FPR

Cifar10 Cifar100 LFW LSUN-Cat Cifar10 Cifar100 LFW LSUN-Cat

NA 6.42 3.66 10.86 3.40 0.88 0.23 1.12 0.36
+OMS 12.12 8.03 30.01 6.37 2.34 0.66 5.66 0.79
∆ ↑ +5.70 +4.37 +19.15 +2.98 +1.46 +0.44 +4.54 +0.43

SecMI 9.15 7.19 3.65 3.10 0.49 0.22 0.42 0.12
+OMS 15.87 17.33 28.05 11.24 0.99 1.33 7.64 0.56
∆ ↑ +6.72 +10.14 +24.41 +8.14 +0.50 +1.11 +7.21 +0.44
PIA 28.86 19.41 25.74 8.90 1.05 2.31 7.00 0.42

+OMS 60.11 48.30 29.72 13.59 13.24 10.66 9.22 0.94
∆ ↑ +31.25 +28.89 +3.99 +4.69 +12.19 +8.35 +2.22 +0.52

Table 2: The TPR at extremely low FPR for existing MIA methods on DDPM, both with and without the integration of the One More Step
(OMS). The symbol ∆ is employed to denote the improvement in performance resulting from the integration of the OMS procedure.

4 Experiment
4.1 Experimental Setup
Diffusion Models and Datasets. We evaluate our pro-
posed method across diverse diffusion models, specifically
DDPM [Ho et al., 2020], Stable Diffusion [Rombach et
al., 2022] and U-ViT [Bao et al., 2023]. DDPM repre-
sents a foundational approach in the realm of diffusion mod-
els, which employs convolutional neural networks as the
backbone. We train DDPM on four datasets: Cifar10, Ci-
far100 [Krizhevsky et al., 2009], LFW [Huang et al., 2008]
and Lsun-Cat [Yu et al., 2015]. The Stable Diffusion models,
which are prominently recognized for their text-to-image syn-
thesis capabilities, have undergone numerous iterations. We
selectively adopt SD1.5 and SD2.1 due to their widespread
usage and recognition within the research community. U-ViT,
a recently introduced diffusion model, incorporates trans-
formers as its core architecture. Our investigation leverages
the open-source implementation of U-ViT which has been
trained on the Cifar10 datasets.
Evaluation Metrics. To evaluate the performance of our
proposed method, we adopte established metrics in pre-
vious works [Carlini et al., 2022; Carlini et al., 2023;
Duan et al., 2023; Kong et al., 2023] including Attack Suc-
cess Rate (ASR), AUC and the True Positive Rate (TPR)
at extremely low False Positive Rate (FPR). Specifically,
TPR@1%FPR and TPR@0.1%FPR refer to the True Positive
Rate (TPR) when the False Positive Rate (FPR) is constrained
to 1% and 0.1%, respectively.

Implementation Details. To evaluate the effectiveness of
the proposed OMS, we conduct a series of experiments, align-
ing our benchmarks with state-of-the-art MIA methods de-
signed for diffusion models, which include the Naive Attack
(NA) [Matsumoto et al., 2023], SecMI [Duan et al., 2023],
PIA [Kong et al., 2023], GSA [Pang et al., 2023] and Quan-
tile [Bertran et al., 2024; Tang et al., 2023]. We strictly follow
the prescribed settings of these methods, and exclusively in-
troduce a further fix-point iteration. Notably, our approach
not only seamlessly integrates with these established MIA
methods but also augments their performance.

4.2 Evaluation Results
Performance on DDPM. The comparative results on
DDPM, with and without OMS, are presented in Table 1. It
can be observed that the OMS confers substantial improve-
ments in performance, with increases of 8.20%, 9.65% and
3.28% in the Average AUC across the four datasets, com-
pared to those baselines (NA, SecMI, PIA) without OMS.
The improvements demonstrate the advantage of executing
multiple fixed-point iterations over the conventional single-
iteration approaches. We also observe that our method is par-
ticularly effective for weak attackers: an AUC increase from
64.90 to 85.67 for SecMI. Besides, we also note our method
can further boost strong attackers with an average 3.72%
AUC improvement for PIA. There results demonstrate the
broad applicability of our proposed OMS. Furthermore, we
provide the results of TPR at extremely low FPR in Table 2.
These results demonstrate that the OMS notably enhances the
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Method
SD1.5 SD2.1

ASR AUC TPR@1% TPR@0.1% ASR AUC TPR@1% TPR@0.1%

NA 71.04 76.67 19.64 4.62 69.58 74.99 18.76 4.42
+OMS 73.34 79.00 24.40 8.89 71.45 77.40 23.14 8.47
∆ ↑ +2.30 +2.33 +4.76 +4.26 +1.86 +2.41 +4.38 +4.04

SecMI 57.20 57.60 6.29 2.04 57.24 56.61 3.98 0.78
+OMS 60.62 61.38 13.21 5.47 61.84 62.29 10.97 3.24
∆ ↑ +3.42 +3.77 +6.93 +3.42 +4.60 +5.69 +6.99 +2.46
PIA 63.17 67.59 12.71 3.76 71.15 78.38 18.56 3.36

+OMS 72.08 78.89 25.33 4.26 77.59 85.45 30.47 9.61
∆ ↑ +8.90 +11.30 +12.61 +0.50 +6.44 +7.07 +11.91 +6.25

Table 3: Performance of existing MIA methods on text-to-image diffusion models, both with and without the integration of the One More
Step (OMS). The symbol ∆ is employed to denote the improvement in performance resulting from the integration of the OMS procedure.

Method
Without OMS With OMS

ASR AUC TPR@1%FPR ASR(∆) AUC(∆) TPR@1%FPR(∆)

NA 61.47 63.66 2.62 68.51(+7.04) 74.31(+10.65) 8.65(+6.03)
SecMI 68.21 74.44 12.88 74.95(+6.74) 82.31(+7.87) 24.35(+11.47)

PIA 54.60 52.91 1.80 - - -
PIAN 59.36 61.13 3.42 69.11(+9.75) 75.42(+14.29) 9.86(+6.44)

Table 4: Performance of existing MIA methods on U-ViT, both with and without the integration of the One More Step (OMS). The symbol
∆ is employed to denote the improvement in performance resulting from the integration of the OMS procedure.

prediction confidence, thereby amplifying the practical appli-
cability in scenarios requiring high prediction certainty.

Performance on text-to-image diffusion models. Distinct
from unconditional diffusion models, text-to-image diffusion
models require dual inputs: the image itself and an accompa-
nying text. However, in real-world scenario, images are sel-
dom annotated by texts. It is a common case that users do not
have access to the text employed during the training phase.
To replicate this real-world scenario, we leverage BLIP [Li
et al., 2022] to generate text captions for the input images.
The results on text-to-image diffusion models are detailed in
Table 3. These evaluation further corroborate the substantial
performance improvements that can be achieved by incorpo-
rating the OMS into current MIA methods.

Performance on Transformer-based diffusion models.
The traditional diffusion models predominantly leverage
CNNs as their backbone. However, recent advancements
have seen an increasing trend towards the adoption of Trans-
formers as the foundational architecture [Bao et al., 2023;
Chen et al., 2024; Peebles and Xie, 2023; Esser et al.,
2024]. To assess the efficacy of existing MIA methods on
Transformer-based diffusion models and substantiate the ef-
fectiveness of our approach, we conduct experiments utilizing
the U-ViT model, a continuous time diffusion model based on
Transformers. Notably, the majority of existing MIA methods
are specifically designed for discrete time diffusion models,
posing a challenge for direct application to the U-ViT model.
To address this, we implement a simple mapping strategy,
converting the discrete timestep within the range [0, 1000] to
the continuous range [0, 1]. Additionally, we observe that the
performance of PIA approximates random guessing. To miti-
gate this issue, we leverage a regularization technique [Kong

Method
DDPM-Cifar10 U-ViT-Cifar10

@5% @1% @0.1% @5% @1% @0.1%

QR (t-error) 27.76 6.10 0.38 17.15 3.13 0.54
QR (t-error+OMS) 44.66 17.14 1.38 31.97 8.62 1.20

∆ ↑ +16.90 +11.04 +1.00 +14.82 +5.49 +0.66

Table 5: Performance of OMS in Quantile Regression (QR). @5%,
@1%, @0.1% is short for the TPR value when the FPR is set to 5%,
1% and 0.1% separately.

et al., 2023], hereby referred to as PIAN. The results, pre-
sented in Table 4, reveal that the incorporation of an addi-
tional fixed-point iteration, as proposed in our method, led to
performance improvements in existing methods, suggesting
the robustness and efficacy of OMS approach across diffu-
sion models with diverse architectures.

4.3 Integration with Quantile Regression
Quantile Regression [Tang et al., 2023] incorporates the t-
error metric (proposed by SecMI [Duan et al., 2023]) to learn
a quantile regression model that predicts the α-quantile of the
t-error for each individual sample. This approach enables the
estimation of a sample-specific α-quantile as a refined per-
sample threshold for identifying membership status. While
t-error serves as a fundamental confidence metric for quantile
regression, we have shown that the t-error can be augmented
through OMS (Table 1- 3). Similarly, we refine quantile re-
gression by incorporating an additional fixed-point iteration
to current confidence metric (t-error). This refinement leads
to improved performance, as evidenced in Table 5.

4.4 Integration with Gradient-based Method
GSA [Pang et al., 2023] constitutes a gradient-based MIA
method which posits that the gradients inherently convey a
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Model Method ASR AUC TPR@1% TPR@0.1%
GSA 87.56 94.19 55.33 21.85

SD1.5 GSA+OMS 88.12 94.53 56.17 22.18
∆ ↑ +0.56 +0.34 +0.84 +0.33
GSA 87.94 94.50 55.86 21.37

SD2.1 GSA+OMS 88.64 95.11 58.82 22.53
∆ ↑ +0.70 +0.61 +2.96 +1.16

Table 6: Performance of OMS in Gradient-Based Method (GSA).

(a) The results of OMS for differ-
ent training epochs.

(b) The results of OMS for differ-
ent timesteps.

Figure 2: The results of AUC and TPR@1%FPR metrics of OMS
for different training epochs and different timesteps on Cifar10.

more direct indication of how the target model responds to
member and non-member samples. As a white-box attacker,
GSA demonstrates significant efficacy against diffusion mod-
els compared to other attackers. We concentrate on the back-
propagation GSA, which harnesses the backward pass of gra-
dient computation during loss optimization to execute MIA.
We refine this back-propagation GSA by backwarding the
loss after OMS (Equation 7). Notably, as evidenced in Ta-
ble 6, the OMS is also capable of enhancing the efficacy of
gradient-based methods.

4.5 Ablation Study
The Training Steps. Previous researches [Leino and
Fredrikson, 2020; Salem et al., 2019] have highlighted the
tendency of machine learning models to memorize training
data as the training procedure progresses. Based on these in-
sights, we conduct an evaluation of our method throughout
the training process. The results are presented in Figure 2(a).
We observe that all these examined MIA methods exhibit en-
hanced performance as the training epochs increase, which
corroborates the phenomenon of model memorization. An-
other notable observation is the consistent efficiency of our
method throughout the entire training process. Furthermore,
we identify that PIA begins to saturate in terms of AUC after
1500 training epochs. Our method further boosts PIA’s per-
formance on TPR@1%FPR, providing compelling evidence
for the superiority and robustness of our approach.
The Timesteps. The timestep serves as a crucial parameter
for the level of noise incorporated into the input of the denois-
ing U-Net, significantly impacting the performance of the dif-
fusion models. Consequently, we execute MIA across a range
of timesteps, specifically from 50 to 250. The performance
enhancements attributed to OMS are presented in Figure 2(b).

0 10040 806020

AUC [%]

||𝝐𝟑 − 𝝐𝟐||

||𝝐𝟐 − 𝝐𝟏||

||𝝐𝟏 − 𝝐𝟎||

||𝝐𝟐 − 𝝐𝟎||

||𝝐𝟑 − 𝝐𝟎||

64.66

70.31

78.28

85.71

87.06

Figure 3: The results (AUC) utilizing different number of fixed-point
iteration in Cifar10 dataset.

Our observations indicate that the OMS exhibits robust per-
formance across timesteps but the improvements diminishes
as the timestep increases. This observed decline can be at-
tributed to the increasing prominence of noise in the model’s
input. Specifically, as the timestep increases, the noise com-
ponent becomes the dominant factor, potentially disrupting
the stability of the fixed-point iteration process.

The number of iteration. We incorporate an additional
fixed-point iteration for computational efficiency, which is
also validated by previous experimental results. In this exper-
iment, we explore varying fixed-point iterations and harness
the distance to execute MIA. The results are depicted in Fig-
ure 3. Specifically, ||ϵ1 − ϵ0|| represents the NA approach,
whereas ||ϵ2 − ϵ0|| represents NA with OMS in previous ex-
periments. It is evident that increasing the number of itera-
tions leads to improved performance, with ||ϵ3 − ϵ0|| demon-
strating the optimal results. While residuals (||ϵ2 − ϵ1|| and
||ϵ3 − ϵ2||) exhibit some level of effectiveness, their perfor-
mance diminishes as the iteration count increases. It is also
noteworthy that while additional fixed-point iterations hold
the potential for superior performance, the marginal gains di-
minish progressively.

5 Conclusion

In this paper, we explore the MIA for diffusion models in a
novel perspective, i.e., the noise searching. We first analyze
the noise inconsistency issue between the training and mem-
bership inference stage. To address this issue, we introduce
a noise searching framework that formulates the search for
optimal training noise as an optimization problem. Utilizing
the fixed-point iteration, we solve the optimization problem
and conduct a thorough examination of its convergence prop-
erties, revealing distinct convergence rates between member
and non-member data. Based on this observation, we rethink
the effectiveness of current MIA methods and propose an en-
hancement through one more iteration step, resulting in a sub-
stantial performance boost for existing MIA methods. In con-
clusion, the proposed noise searching framework provides a
unique and unified perspective for comprehending the fun-
damental principles of MIA tasks for diffusion models. We
anticipate that our contributions will foster further research
into the privacy risks associated with diffusion models and
contribute to the ongoing research in this field.
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Ethical Statement
The primary objective of our research is to devise a method
capable of discerning whether a particular sample was in-
cluded in the training dataset. The proposed method offers
a multitude of beneficial applications, encompassing the de-
tection of privacy violations and the assessment of model pri-
vacy. While acknowledging the potential for malevolent enti-
ties to misuse our method for privacy attacks, we underscore
the capacity of privacy protection techniques, such as differ-
ential privacy, to counteract such threats. It is crucial to note
that the development of these techniques is not intended to
facilitate malicious activities, but rather to advance the field
of privacy protection. We trust that our contributions will be
used responsibly to enhance privacy protection measures and
promote ethical practices in machine learning research.
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