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Abstract
Graph learning has shown significant advantages
in organizing and leveraging complex data, mak-
ing it promising for numerous real-world applica-
tions with heterogeneous information, particularly
multi-omics data analysis. Despite its potential in
such scenarios, existing methods are still in their
infancy, lacking architectural potential and strug-
gling to handle such complex data. In this paper,
we propose the Multiplex Mixture of Graph Learn-
ers (MMoG) framework. MMoG first conducts
fine-grained processing of consensus and unique
information, constructing consistent features and
multiplex graph structures. Then, a macroscopi-
cally shared group of sub-GNNs with diverse or-
ders and architectures synergistically learn repre-
sentations, providing a foundation for strong in-
teraction between different views. Inspired by
the mixture of experts (MoE), each sample in dif-
ferent omics adaptively determines the neighbor-
hood ranges and architectures for information ag-
gregation, while blocking unsuitable sub-GNNs.
MMoG treats the complex multi-omics analysis as
a multi-view learning problem, and essentially de-
composes it into multiple sub-problems, allowing
each omics/view to solve intersecting yet unique
sub-problem groups. Additionally, we introduce
mutual information-driven orthogonal loss and bal-
ancing loss to avoid view collapse. Extensive ex-
periments on multi-omics data across multiple can-
cer types highlight MMoG’s superiority.

1 Introduction
The proliferation of heterogeneous data has become a per-
vasive characteristic of many real-world applications [Wang
et al., 2021b; Zhou et al., 2025]. These data often contain
multiplex information collected from diverse analytical tech-
niques, modalities, or perspectives, each providing a unique
yet potentially consensual description of the underlying phe-
nomena [Wang et al., 2021a; Zhang et al., 2025c]. This char-
acteristic gives rise to a powerful paradigm–multi-view learn-

∗Corresponding author.

ing [Wan et al., 2023], which models multiplex information
as several views. By effectively leveraging complementary
and shared information across views, multi-view learning has
shown significant promise in integrating and analyzing such
heterogeneous data. A representative example of multi-view
learning is found in biological research [Zhu et al., 2024],
particularly in the study of cancer. Cancer is an inherently
complex and heterogeneous disease, with significant molecu-
lar and phenotypic diversity both between and within tumors.
This variability, driven by genetic, epigenetic, and proteomic
alterations, complicates the accurate classification of cancer
subtypes, which is crucial for personalized treatment strate-
gies but still challenging. Recently, advancements in medical
technologies like high-throughput sequencing and mass spec-
trometry have made it possible to integrate different layers
of biological data. In cancer research, genome-wide multi-
omics data, including transcriptomics (e.g., mRNA expres-
sion), epigenomics (e.g., DNA methylation), and genomics
(e.g., copy number variation) etc., have emerged as power-
ful tools for addressing the complexity of tumor biology. As
illustrated in Figure 1(a), large-scale projects such as The
Cancer Genome Atlas (TCGA) have systematically collected
multi-omics data across various cancer types. These diverse
layers of biological information provide a more comprehen-
sive and fine-grained view of the molecular landscape of can-
cer, enabling integrative analyses for subtype classification,
biomarker discovery, and personalized therapy.

Multi-omics data captures more complete and nuanced bio-
logical information than typical data processed by multi-view
learning. Effectively integrating this information from dif-
ferent omics is crucial for a comprehensive understanding of
cancer subtypes. The more general form of this problem has
been systematically discussed in multi-view learning, known
as the principles of consistency and complementarity. For
instance, Yang et al.; Sun et al.; Qin et al. boosted cross-
view consistent and complementary information via differ-
ent manners. However, these methods may struggle to han-
dle cases with high view-heterogeneity, which is precisely
a prominent characteristic of multi-omics data arising from
varying measurement techniques and biological processes.
Graphs hold promise for bridging this gap, as they are in-
nately capable of modeling data from arbitrary distributions,
thus aligning views with large discrepancies. Therefore,
graph-based multi-view learning approaches [Li et al., 2023;

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

BRCA

LUSC

LIHC

KIPAN

READ

UCEC

…
(a) Multi-omics Data

Epigenomics

Transcriptomics

Genomics

Proteomics
…

mRNA Exp
CNV

DNAm

GNN

GNN

GNN

Different Node/Omics

(b) Existing Challenges

High
Feature 
Heterogeneity

Non-adaptive
Neighborhood 
Ranges

Insufficient
Model
Interaction

Figure 1: (a) Multi-omics data across multiple cancer types; (b)
Challenges for graph-based multi-omics analysis model.

Zhang et al., 2025a] have gained widespread adoption. De-
spite these advancements, they rely on classical shallow mod-
els, which may not perform well in complex multi-view sce-
narios like multi-omics cancer subtype inference.

Beyond general multi-view learning tasks, multi-omics
data presents unique challenges due to its complexity. Due
to variations in data scales, measurement techniques, and bi-
ological processes, multi-omics data suffer from erratic sam-
ple sizes as well as high-dimensional, multi-scale, and inher-
ently heterogeneous features that are difficult to process using
the traditional graph-based model, leading to a shift to Graph
Neural Networks (GNNs). Recent works have attempted to
apply GNNs to establish new frameworks. Chen et al.; Lu
et al. explored using different GNN architectures. In particu-
lar, Wu et al.; Wang et al. specifically focused on multi-omics
data. However, the above characteristics of multi-omics data
and limitations of existing methods pose critical challenges:
1) Pronounced feature complexity and heterogeneity require
greater model capacity, but architectures in hand offer limited
representational power due to their design; 2) Topological dif-
ferences across views and samples demand flexible neighbor-
hoods, which current architectures lack; 3) Existing methods
typically configure independent GNNs for each view, inte-
grating with pre- or post-fusion, which architecturally limits
intrinsic cross-view interactions. These challenges highlight
the architectural limitations of current multi-view or multi-
omics models, which remain relatively coarse for handling
such complex problems. This prompts the question: Can we
design a more fine-grained graph learning architecture for
such complex problems?

Motivated by this question, we propose a novel framework
based on the divide-and-conquer principle, termed Multiplex
Mixture of Graph Learners (MMoG). First, the highly het-
erogeneous raw features are treated as unique information,
and view-specific projection modules map them into same-
dimensional latent spaces. The graph structures, modeling
data from disparate distributions, are shared across all views.
Each view adaptively integrates the graph structure to con-
struct its multiplex graph. Through finer-grained manage-

ment of shared and unique information, these establish a solid
foundation for intrinsic interactions between views. As the
core of MMoG, multiplex graph learners receive the con-
structed features and multiplex graphs, and shape represen-
tations through a group of collaborative sub-GNNs with mul-
tiple orders and parameters. These sub-GNNs are shared
across views as a whole, integrating multiple hypotheses to
enhance capacity, while fundamentally ensuring strong inter-
view interactions. Inspired by Mixture of Experts (MoE),
the sparse gating mechanism allows each sample in each
view to flexibly select the optimal combination of param-
eters and neighborhood ranges, while blocking inappropri-
ate sub-GNNs. In essence, this manner subtly divides the
complex task of multi-view learning into interdependent sub-
problems. To mitigate view collapse, we introduce a balanc-
ing loss and an orthogonal loss driven by mutual information
to constrain the sub-GNNs. Finally, we treat each view as an
expert with self-gating to form the final representation. The
procedure of MMoG is depicted in Figure 2. In summary, we
make the following contributions:

• Taking advantages of MoE, we design MMoG to over-
come the key gaps in existing algorithms, i.e., the limited
architectural potential in complex multi-view scenarios.

• MMoG allows samples to adaptively aggregate long- or
short-range information on suitable sub-GNNs.

• Propose the mutual information-driven orthogonal loss
and balancing loss to mitigate view collapse.

• Comprehensive experiments on multi-omics cancer
datasets demonstrate the superiority of MMoG.

2 Related Work
2.1 Graph Neural Networks
GNNs emerged as a powerful framework for learning on
graph-structured data [Liu et al., 2024a; Yu et al., 2024;
Liu et al., 2024b; Wu et al., 2023b]. They propagate infor-
mation across graphs using message passing, allowing each
node to update its representation by incorporating neighbor-
hood information. The famous GNN was proposed by Kipf
and Welling in the form of spectral-based GNNs. Over time,
GNNs have evolved with the development of various archi-
tectures [Xu et al., 2019; Veličković et al., 2018; Zhuang et
al., 2025; Zheng et al., 2022]. Recently, several studies [Li
et al., 2023; Wu et al., 2023a] integrated knowledge from
multiple relationships by combining several GNNs. As a
powerful integration paradigm, MoE has shown promise in
large language models [Shazeer et al., 2017], but its applica-
tion to GNNs remains underexplored. Few studies have ad-
dressed single-view problems with MoE [Wang et al., 2023;
Ma et al., 2024].

2.2 Graph-based Multi-view Learning
Graph-based multi-view learning aims to leverage the var-
ious advantages of graphs to perform complex multi-view
learning. Early works [Li et al., 2025; Zhuang et al., 2024;
Wen et al., 2023] were built on traditional optimization-based
models, such as spectral clustering, and primarily focused
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Figure 2: The illustration of the proposed MMoG framework.

on unsupervised learning tasks. In recent years, there has
been a shift towards GNNs [Lin et al., 2024; Chen et al.,
2024], which provide a deeper understanding of graphs and
can effectively propagate label information. This has sparked
the growth of semi-supervised learning approaches, where
GNNs can enhance label propagation across views. Given
the challenges posed by complex multi-view scenarios, such
as multi-omics data, some methods have been specifically de-
signed to address multi-omics integration [Wu et al., 2024a;
Xiao et al., 2025]. However, these approaches typically treat
the GNN as a monolithic module. A finer-grained model re-
mains an area for further exploration.

2.3 Multi-Omics Analysis
Multi-omics analysis integrates data from multiple molecu-
lar layers, such as genomics, transcriptomics, epigenomics,
and proteomic, providing a holistic view of biological pro-
cesses and diseases. In cancer research, multi-omics integra-
tion has become crucial for accurately classifying cancer sub-
types, identifying biomarkers, and understanding tumor het-
erogeneity. Studies like The Cancer Genome Atlas (TCGA)
pan-can analysis [Weinstein et al., 2013] have demonstrated
that integrating multi-omics genomic data with clinical infor-
mation improves the accuracy of cancer subtype prediction
and patient stratification. For example, [Vasaikar et al., 2018;
Berg et al., 2017; Zhang et al., 2025b] demonstrated how in-
tegrating various omic layers, such as genomics, transcrip-
tomics, and proteomics, can reveal molecular relationships
and enhance our understanding of cancer biology. With
the advancements, GNN-based methods have gained traction
for multi-omics cancer studies [Schulte-Sasse et al., 2021;
Wang et al., 2021d; Xiao et al., 2023].

3 Proposed Method
3.1 Preliminary
Let X = {X1,X2, . . . ,XV } be the multi-view or multi-
omics input set, where V is the number of views and Xv ∈
Rn×mv is the v-th input feature. Note that n denotes the num-
ber of samples and mv is the feature dimension for v ∈ [V ].

By constructing graphs over all the views based on certain
similarities, we have the graph structures formed as adjacency
matrices A = {A1,A2, . . . ,AV }, where Av ∈ {0, 1}n×n.
Only the undirected graph is discussed, i.e., Av

ij = 1 when
there exists a link between sample i and j in the v-th view
and Av

ij = 0 otherwise. Let Yi,: = {0, 1}c be the one-hot
label vector of sample i and Y = {Yi,: : ∀i ∈ L} denotes all
target labels, where L is the index set of labeled samples. For
classification tasks, our goal is to learn a model from X , A,
and Y to predict unlabeled samples.

3.2 Multiplex Mixture of Graph Learners
For each view in multi-view data, there are a couple of in-
puts Xv and Av . We then define distinct processing for each
of them. First, due to the complexity of scenarios such as
multi-omics analysis, the features of each view exhibit high
and varying dimensionalities, carrying semantically signifi-
cant differences. Therefore, we consider a group of view-
specific encoders to project the features into a latent space
sharing the same dimensionality, which provides the founda-
tion for subsequent cross-view interactions, that is

Zv = Pv (Xv;ϕv) , (1)

where Pv : Rmv → Rm denotes the projection module pa-
rameterized by ϕv and Zv ∈ Rn×m is the learned features
with m shared dimensions. Due to the properties of graphs
that model arbitrarily distributed features, graph structures
can be easily shared across views. For convenience, we de-
note ϕ = {ϕv : v ∈ [V ]}. But within each view, a trade-off
is required for view-wise graph structures. For this, we cal-
culate the view-specific multiplex graph

Sv = Fv (A;ψv) , (2)

where Fv : A → Rn×n is a fusion module with train-
able parameters ψv and Sv ∈ Rn×n is the learned mul-
tiplex graph structure. For example, Fv can simply be a
weighted sum on structures from all views. Similarly, we de-
note ψ = {ψv : v ∈ [V ]}. Note that, in terms of graph theory,
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the fused multiplex graph may still aggregate conflicting con-
tents, such as heterophilic and homophilic edges, or graphs
with large spectral differences. This issue can be addressed in
the subsequent multiplex graph learners consisting of tailored
sub-GNN models, such as those based on adaptive filtering.

After the distinct initial processing of features and struc-
tures, we introduce GNNs as the further representation
learner. Modern GNNs are built upon the message-passing
schema, which recursively propagates information across the
graph structure and finally encodes non-Euclidean graphs into
low-dimensional embeddings in Euclidean space. Due to the
high heterogeneity of multi-omics data, each view may adapt
to completely different models. For example, the neighbor-
hood ranges required for DNA methylation and mRNA ex-
pression vary significantly and lead to entirely different pa-
rameter updates. From the lens of uniqueness preserving, we
first consider building a separate GNN for each view

Hv = Gv (Sv,Zv;Wv) , (3)
where Gv : Rn×n × Rn×m → Rn×c denotes a GNN model
with a set of learnable weights Wv and Hv ∈ Rn×c is the
yielded graph embedding. Typically, each layer in GNNs can
be summarized as a unified formula, which contains an ag-
gregation with a combination step

m
(l)
i = AGGREGATE(l)

({
h
(l−1)
j : j ∈ N (i)

})
,

h
(l)
i = COMBINE(l)

(
h
(l−1)
i ,m

(l)
i

)
,

(4)

where m
(l)
i is the message from neighborhood and h

(l)
i is

the representation of sample i at the l-th layer. Note that we
only consider the single-view situation in Eqn (4) for brevity.
The composition of messages, along with the aggregation and
combination operations, is crucial and depends on the specific
design of different GNNs. In addition to these, GNNs often
include learnable weights for linear projections and nonlin-
ear transformations through activation functions. It is evi-
dent that constructing an appropriate GNN for each view in-
volves specifying the number of message-passing layers L
and training the corresponding parameters. Nevertheless, in
the context of multi-omics or other complex multi-view data,
limited model capacity hinders effective parameter optimiza-
tion, while determining the number of layers or orders re-
quires substantial prior knowledge. Moreover, this paradigm
essentially integrates the GNN into the multi-view learning
framework in a simplistic manner, lacking the intrinsic inter-
action between views.

Therefore, the design of framework should be considered
at a finer granularity, ensuring that while associations be-
tween views are preserved, it can also handle the heterogene-
ity of each view. We will discuss the design philosophy in the
context of specific scenarios. Considering multi-view classi-
fication tasks, the process of learning representation in each
view and contributing to the final prediction can be viewed as
solving a complex problem. Since the learned representations
from different views should reach a consensus for the clas-
sification, the problem-solving process across views should
be seen as interrelated. However, due to the complexity of
each problem, it is difficult to explicitly define this relation-
ship. Therefore, we divide each complex problem into multi-
ple sub-problems. In this way, the associations between views

can be viewed as intersections or overlaps between the sub-
problems. Guided by this idea, we advocate for an ensem-
ble of models, where each model is designed to solve a sim-
pler problem. Then each view adaptively selects the appro-
priate combination to learn representations that possess both
uniqueness and potential correlations. Motivated by this anal-
ysis, we formulate the framework as

M(Sv,Zv; θ,W)i,: =
∑
e∈[E]

Q(Zv; θ)i,e Ge (Sv,Zv;W)i,:

subject to
∑
e∈[E]

I{Q(Zv; θ)i,e ̸= 0} = K ∀i ∈ [n], (5)

where we have M : Rm → Rd, E is the number of sub-
GNNs, and Q : Rm → RE is the sparse gating function,
which outputs vectors Q(Zv; θ)i,: ∈ RE for each sample i to
decide the gating value of every sub-GNN e ∈ [E]. Note that
Q satisfies the sparse constraint that ∥Q(Zv; θ)i,:∥0 = K.
For this, we adopt the top-K strategy, i.e.,

Q(Zv; θ)i,e =
exp(H(Zv; θ)i,e)∑

j∈T (Zv ;K)i
exp(H(Zv; θ)i,j)

(6)

when e ∈ T (Zv)i and Q(Zv; θ)i,e = 0 otherwise, where
H : Rm → RE denotes the gating network that computes
weights of each sub-GNNs, and T (Zv;K)i ⊆ [E] selects the
indices of top-K largest logits from H(Zv; θ)i,:. For the sub-
GNNs, we first define the maximum layers/orders, and then
construct several GNNs with different parameters for each
number of layers/orders. The message-passing rules for each
GNN depend on the specific model chosen.

The design of MMoG is inspired by the idea of MoE,
containing an elaborate gating mechanism and multiple sub-
GNNs as experts. In short, the input Zv of each view is first
processed by a gating network H, which maps the features of
each sample to weights for each sub-GNN. The gating func-
tion then selects the top-K sub-GNNs for each sample based
on the weights. Each sample is routed to sub-GNNs with
appropriate parameters, where it obtains neighborhood infor-
mation at required orders. Finally, the representations learned
from the selected top-K modules are integrated according
to their weights to produce the final representation for each
sample. In essence, MMoG divides the complex problems of
each view into simpler sub-problems, each handled by a ded-
icated expert, i.e., a sub-GNN. This divide-and-conquer strat-
egy effectively addresses data complexity and heterogene-
ity. Moreover, the varying numbers of layers/orders of sub-
GNNs enable highly flexible selection of the neighborhood
ranges. Macroscopically, MMoG serves as a shared represen-
tation learner across all views, which means the interrelations
between complex problems of views, thereby guaranteeing
strong inter-view interactions and successfully realizing our
envisioned goal. After processing all views, it is critical to
synthesize the opinions across them. To this end, we propose
a view-expert fusion module, which conceptualizes the out-
puts from each view as distinct experts.

Hi,: =
∑
v∈[V ]

π(Zv;φ)i M(Sv,Zv; θ,W)i,:, (7)
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where H is the fused representation, π : Rd → R is a self-
gating network, parameterized with φ. Leveraging the shared
π, each sample dynamically determines an optimal combina-
tion of representations from the various views.

3.3 Mitigating View Collapse
Despite its well-established architecture, MMoG still faces a
significant risk—view collapse—arising from its view-shared
nature. View collapse refers to the phenomenon where, dur-
ing the process of representation learning, each view loses
its unique semantics from the original input and only retains
similar information. In the context of “problem division”, it
means that each view focuses solely on the overlapping sub-
problems, leading to trivial solutions. This risk can arise from
two factors. The gating mechanism introduces sparsity and
results in faster inference speeds, but it may lead to an imbal-
anced training process across sub-GNNs. Therefore, we need
to introduce a balancing loss. For view v, we define a random
variable ωv with observations

ωve =
∑
i∈[n]

Q(Zv; θ)i,e. (8)

It actually represents the total weight obtained by a specific
sub-GNN for the v-th view across all samples, representing
its importance. We aim to let each expert be similarly impor-
tant, and thus introduce the following balancing loss:

Jbal(ϕ, ψ, θ) =
1

V

∑
v∈[V ]

CV(ωv)2, (9)

where CV is the coefficient of variation. Apart from the im-
balance introduced by the gating mechanism, the sub-GNNs
themselves can also cause view collapse. This arises be-
cause the information included in representations from differ-
ent sub-GNNs may exhibit substantial overlap, which can be
seen as a degradation of MMoG. To mitigate this, we incor-
porate the Mutual Information (MI) and expect to minimize
the MI between distinct sub-GNNs to foster diversity:

minimize
ϕ,ψ,W

I(Uv
e ,U

v
e′), (10)

where Uv
e and Uv

e′ denote representations generated by two
different sub-GNNs Ge and Ge′ , and I(Uv

e ,U
v
e′) is the MI

between them. Specifically,

I(Uv
e ,U

v
e′) =

∫ ∫
p(uve ,u

v
e′) log

p(uve ,u
v
e′)

p(uve)p(u
v
e′)
duvedu

v
e′ ,

(11)

where p : Rd → R+ is the probability density function.
Problem (10) implies that p(uve ,u

v
e′) and p(uve)p(u

v
e′) should

be as similar as possible for a small log p(uv
e ,u

v
e′ )

p(uv
e)p(u

v
e′ )

, which
means de-correlation between the two variables uve and uve′ .
Inspired by [Zhang et al., 2023], we formulate that by mini-
mizing the covariance

minimize
ϕ,ψ,W

Cov([Uv
e ]:,i, [U

v
e′ ]:,j), (12)

which drives features (columns) of Uv
e and Uv

e to be as inde-
pendent as possible. Further, we have

Cov([Uv
e ]:,i, [U

v
e′ ]:,j) =

1

n

[
Uv
e
⊤Uv

e′
]
i,j

− µiµ
′
j , (13)

where µi = 1
n

∑n
t=1[U

v
e ]t,i and µ′

j = 1
n

∑n
t=1[U

v
e′ ]t,j are

the mean value of [Uv
e ]:,i and [Uv

e′ ]:,j respectively. Let the
mean values to be zero, and we only focus on the first term
[Uv

e
⊤Uv

e′ ]i,j on the right side of Eqn (13). That can be
achieved by an additional centering step. Considering all
pairs (i, j), the aim is to let Uv

e
⊤Uv

e′ be a zero matrix:

minimize
ϕ,ψ,W

∥∥Uv
e
⊤Uv

e′

∥∥
0
, (14)

where the ℓ0-norm is adopted. Since Problem (14) is NP hard,
we relax the ℓ0-norm to ℓ1-norm and obtain the orthogonal
loss between any two sub-GNNs

Jort(ϕ, ψ,W) =
∑
v∈[V ]

∑
e<e′

∥∥Uv
e
⊤Uv

e′

∥∥
1
. (15)

In each view, we constrain the mutual information between
different sub-GNNs by decorrelating any two representations.
The combination of balancing loss Jbal and orthogonal loss
Jort ensures that the framework maintains a larger hypoth-
esis space, thereby preventing view collapse. The detailed
derivations of this subsection are deferred to the Appendix.

3.4 Training Detail
To perform multi-omics cancer subtype classification, we
adopt the cross-entropy loss to minimize the divergence be-
tween predictions and ground-truth labels

Jtsk(ϕ, ψ, θ,W, φ) = −
∑
i∈L

∑
j∈[c]

Yi,j log Ỹi,j , (16)

where we recall that L is the index set of labeled sample and
c is the number of classes. Ỹ is the obtained via performing
the softmax on logtis H . The toatal objecitve is to

minimize
ϕ,ψ,θ,W,φ

J := Jtsk + αJbal + βJort, (17)

where α and β are trade-off parameters.
We give the computational complexity of MMoG, that is

O(nmC + nKLF 2 + nKLBF ), where C is the maximum
input dimension, B is the number of edges in the multiplex
graph, and L and F are the maximum orders and hidden units
in each sub-GNN. It shows that appropriately adding more
sub-GNNs expands the model’s capacity without imposing a
significant computational burden. Details are in Appendix.

4 Experiment
In this section, we examine the performance of MMoG to
answer four research questions, that is:

• RQ1: How does MMoG perform in the real-world multi-
omics analysis task?

• RQ2: How does the balancing loss Jbal and orthogonal
loss Jort work?

• RQ3: How do hyperparameters α, β, Orders and K af-
fect the performance of MMoG?
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Metric Meth/DS BRCA KIPAN LGG UCEC CRC GBMLGG TCGA

ACC

SVM 0.702 ± 0.000 0.939 ± 0.000 0.600 ± 0.000 0.725 ± 0.000 0.763 ± 0.000 0.520 ± 0.000 0.680 ± 0.000

RF 0.802 ± 0.000 0.939 ± 0.000 0.498 ± 0.000 0.725 ± 0.000 0.776 ± 0.000 0.546 ± 0.000 0.670 ± 0.000

DeepMO 0.814 ± 0.021 0.941 ± 0.009 0.642 ± 0.031 0.802 ± 0.031 0.754 ± 0.047 0.535 ± 0.024 0.730 ± 0.069

Moanna 0.775 ± 0.018 0.925 ± 0.009 0.613 ± 0.018 0.773 ± 0.030 0.726 ± 0.042 0.531 ± 0.049 0.587 ± 0.022

MOGONET 0.716 ± 0.015 0.914 ± 0.005 0.623 ± 0.018 0.754 ± 0.019 0.759 ± 0.000 0.492 ± 0.015 0.421 ± 0.007

MoGCN 0.736 ± 0.004 0.915 ± 0.004 0.511 ± 0.000 0.716 ± 0.000 0.779 ± 0.012 0.530 ± 0.063 0.739 ± 0.004

MOSGAT 0.730 ± 0.032 0.911 ± 0.004 0.585 ± 0.013 0.821 ± 0.019 0.757 ± 0.011 0.496 ± 0.012 -
Ours 0.851 ± 0.014 0.952 ± 0.004 0.690 ± 0.013 0.847 ± 0.012 0.865 ± 0.026 0.579 ± 0.008 0.752 ± 0.011

F1

SVM 0.436 ± 0.000 0.929 ± 0.000 0.600 ± 0.000 0.280 ± 0.000 0.433 ± 0.000 0.394 ± 0.000 0.614 ± 0.000

RF 0.688 ± 0.000 0.928 ± 0.000 0.496 ± 0.000 0.287 ± 0.000 0.489 ± 0.000 0.470 ± 0.000 0.520 ± 0.000

DeepMO 0.764 ± 0.049 0.925 ± 0.008 0.637 ± 0.038 0.538 ± 0.019 0.676 ± 0.052 0.511 ± 0.022 0.646 ± 0.069

Moanna 0.699 ± 0.020 0.903 ± 0.017 0.608 ± 0.019 0.534 ± 0.020 0.688 ± 0.040 0.481 ± 0.030 0.517 ± 0.023

MOGONET 0.589 ± 0.026 0.905 ± 0.005 0.618 ± 0.024 0.437 ± 0.006 0.432 ± 0.000 0.436 ± 0.027 0.385 ± 0.004

MoGCN 0.553 ± 0.007 0.914 ± 0.004 0.338 ± 0.000 0.280 ± 0.000 0.677 ± 0.046 0.415 ± 0.084 0.667 ± 0.004

MOSGAT 0.578 ± 0.053 0.908 ± 0.005 0.550 ± 0.029 0.523 ± 0.041 0.478 ± 0.031 0.467 ± 0.015 -
Ours 0.825 ± 0.014 0.940 ± 0.004 0.688 ± 0.014 0.552 ± 0.005 0.760 ± 0.072 0.541 ± 0.008 0.672 ± 0.011

Table 1: Classification results (mean and standard deviation) of all comparative algorithms on the seven multi-omics cancer subtype datasets,
with 10% labeled samples, where the best results are highlighted with pink and the second-best results are highlighted with cyan.

Moanna MoGCN MMoG MOSGAT 

Figure 3: The visualization of the representations of Moanna, MoGCN, MOSGAT, and MMoG on the KIPAN dataset.

4.1 Experimental Setting
Datasets: We evaluate MMoG on 7 multi-omics datasets:
BRCA, KIPAN, LGG, UCEC, CRC, GBMLGG, and TCGA,
and we also use some classical multi-view datasets like An-
imals. We adopt a semi-supervised classification setting,
where only 10% of the samples are used as the training set,
while the remaining 90% are reserved for testing.
Compared Methods: For comparison, we employ GNN-
free methods: SVM, RF, Moanna [Lupat et al., 2023],
DeepMO [Lin et al., 2020], and GNN-based methods:
MOGONET [Wang et al., 2021c], MoGCN [Li et al., 2022],
and MOSGAT [Wu et al., 2024b]. All the above methods are
set as default following the original paper. To evaluate perfor-
mance, we conduct the experiments on all datasets, reporting
the mean values and standard deviations (10 runs). More ex-
periments and setting details are deferred to Appendix.

4.2 Cancer Subtype Classification (RQ1)
In this subsection, we perform semi-supervised classification
of multi-omics cancer subtypes and report the results w.r.t.
the accuracy (ACC) and the macro-F1 score (F1) in Table

Lbal Lort
TCGA Animals

ACC F1 ACC F1

✓ ✓ 0.752± 0.011 0.672± 0.011 0.851± 0.014 0.788± 0.005

✓ 0.744± 0.017 0.655± 0.017 0.838± 0.008 0.760± 0.008

✓ 0.744± 0.012 0.655± 0.012 0.810± 0.028 0.753± 0.028

0.705± 0.015 0.648± 0.015 0.796± 0.023 0.722± 0.023

Table 2: Ablation study of MMoG on datasets TCGA and Animals.
✓ indicates the corresponding loss is used.

1. From the table, we derive that: Benefiting from its fine-
grained design, MMoG consistently outperforms or closely
matches the best performance across multiple datasets, par-
ticularly excelling in ACC and F1 metrics on BRCA, KIPAN,
LGG, and TCGA datasets.

4.3 Representation Visualization (RQ1)
To further validate the effectiveness of the proposed method,
we visualized the representations generated by different ap-
proaches on the KIPAN dataset, as shown in Figure 3. The
figure demonstrates that the representations obtained using
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Figure 4: The classification performance of MMoG w.r.t. hyperpa-
rameters α and β on the TCGA and Animals dataset.

# Selected Sub-GNNsMax Order / # Sub-GNNs

F
1

 (
%

)

F
1

 (
%

)

Figure 5: The classification performance of MMoG w.r.t. the max
orders, the number of sub-GNNs and selected sub-GNNs.

the MMoG method exhibit clear and well-separated category
distributions. In contrast, other methods exhibit substantial
overlap between categories. For example, both Moanna and
MOSGAT struggle to distinguish between KIRC and KIRP,
while MoGCN performs better overall, but still shows pro-
nounced overlap between KIRP and KICH. These results
highlight MMoG’s ability to capture inter-category feature
differences better, thereby producing representations with
stronger discriminative power. These results indicate that
MMoG is capable of learning more discriminative representa-
tions, which may be attributed to the model capacity provided
by the MoE architecture.

4.4 Ablation and Parameter Analysis (RQ3)
To validate the effectiveness of the proposed module, we con-
duct an ablation study by progressively removing the balanc-
ing loss J bal and the orthogonal loss J ort. The results in
Table 2 show that excluding both losses leads to the low-
est performance, while including either loss improves results,
and the best performance is achieved when both are used to-
gether. This underscores the complementary roles and neces-
sity of both loss terms in our model. Additionally, we exam-
ine the sensitivity of the model to hyperparameters α and β
(see Figure 4). Performance peaks when α = 1e−5 and β is
set to 1e−6 or 1e−8. However, when β becomes too large,
performance becomes unstable, suggesting that excessive or-
thogonality constraints may harm the learning process.

4.5 Expert Effect Analysis (RQ4)
To further investigate the MoE-based architecture, we fix the
ratio of maximum order to the number of experts (sub-GNNs)
and the ratio of selected samples, both at 1/2, and repeat
each setting 20 times. As shown in Figure 5, performance

Figure 6: Visualization of omics-sub-GNN selection in MMoG on
the BRCA dataset. Arrows indicate selection strengths.

improves and then plateaus as the maximum order and total
number of experts increase. Similarly, with 10 experts, using
only one expert yields poor performance, while increasing
to three brings significant gains. These results indicate that
using sub-GNNs with diverse orders and parameters notably
enhances overall performance, while the number of selected
experts can be sparse but should not be too low. Based on the
statistics of expert selection for each sample on each view,
Figure 6 further visualizes selection patterns across omics.
Different omics prefer sub-GNNs with different parameters
and orders, demonstrating that MMoG effectively supports
fine-grained multi-omics analysis. This also suggests that the
proposed loss functions regularize the model effectively.

5 Conclusion
In this paper, we proposed the MMoG framework to ad-
dress the challenges of multi-omics and complex multi-view
data. MMoG overcame the limitations of existing methods
by enabling stronger collaboration between views through
fine-grained processing, scale-consistent features, and mul-
tiplex graph structures. Inspired by the MoE approach, The
framework leveraged a shared group of diverse GNNs, adapt-
ing neighborhood ranges and architectures for each sam-
ple in each view. We also introduced mutual information-
driven orthogonal loss and balancing loss to prevent view col-
lapse. Experimental results on multi-omics and typical multi-
view datasets demonstrated MMoG’s superiority in handling
highly heterogeneous multi-view data and outperforming cur-
rent methods. In summary, MMoG effectively enhanced
graph-based multi-view learning, providing a robust solution
to the complexities of multi-omics analysis and setting a new
benchmark for future work. One possible limitation is that
MMoG on data with both highly heterogeneous graph struc-
tures and features has not yet been explored.
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