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Abstract

Multimodal emotion recognition has garnered sig-
nificant attention for its ability to integrate data
from multiple modalities to enhance performance.
However, physiological signals like electroen-
cephalogram are more challenging to acquire than
visual data due to higher collection costs and com-
plexity. This limits the practical application of mul-
timodal networks. To address this issue, this pa-
per proposes a cross-modal knowledge distillation
framework for emotion recognition. The frame-
work aims to leverage the strengths of a multi-
modal teacher network to enhance the performance
of a unimodal student network using only the vi-
sual modality as input. Specifically, we design
a prototype-based modality rebalancing strategy,
which dynamically adjusts the convergence rates of
different modalities to mitigate modality imbalance
issue. It enables the teacher network to better inte-
grate multimodal information. Building upon this,
we develop a Cross-Modal Densely Guided Knowl-
edge Distillation (CDGKD) method, which effec-
tively transfers knowledge extracted by the multi-
modal teacher network to the unimodal student net-
work. Our CDGKD uses multi-level teacher assis-
tant networks to bridge the teacher-student gap and
employs dense guidance to reduce error accumu-
lation during knowledge transfer. Experimental re-
sults demonstrate that the proposed framework out-
performs existing methods on two public emotion
datasets, providing an effective solution for emo-
tion recognition in modality-constrained scenarios.

1 Introduction

Emotion is a complex psychological and physiological pro-
cess reflecting an individual’s subjective perception of the
external environment. It also plays a crucial role in in-
terpersonal communication and human-computer interaction
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(HCI). With the rapid advancement of HCI technologies,
emotion recognition has become a major research focus in
affective computing [Zhao et al., 2018], with applications
spanning intelligent assistants, educational technologies, and
medical diagnostics [Shen er al., 2017]. However, achiev-
ing high accuracy in emotion recognition remains challenging
due to the inherent diversity and complexity of emotional ex-
pressions [Liu et al., 2024]. To address this, researchers have
explored various multimodal data sources in recent years, in-
cluding text, speech, facial expressions, and physiological
signals, to improve recognition accuracy [Lian et al., 2023;
Udahemuka et al., 2024; Wang et al., 2025]. Among these,
the visual modality is widely used due to its ease of ac-
quisition and rich temporal dynamics [Canal et al., 2022].
Complementing the visual modality, electroencephalogram
(EEG) is a representative physiological signal that reflects
the neural activities underlying emotions, offering more ob-
jective neural evidence and being less susceptible to inten-
tional manipulation [Jia et al., 2024]. The two modalities
exhibit strong complementarity in emotion recognition: the
visual modality captures external features of emotional ex-
pressions [Liu et al., 2023al], while EEG provides neural
evidence of intrinsic emotional states [Ding et al., 2022;
Cheng et al., 2024b]. By integrating these two modalities, re-
searchers can leverage synergistic effects, further enhancing
recognition performance and advancing HCI development.

However, visual modality data is often easier to acquire in
practical applications, whereas physiological signals such as
EEG are relatively difficult to collect due to equipment limita-
tions and high collection costs. This limitation hinders emo-
tion recognition systems from fully leveraging the advantages
of multimodal fusion in resource-constrained environments.
Cross-modal knowledge distillation offers a potential solution
to address this issue by transferring knowledge from a multi-
modal teacher network to a unimodal student network [Gupta
et al., 2016]. Tt compensates for the limited representation
capacity of student networks, improving their classification
performance with unimodal inputs. However, existing meth-
ods are still inadequate for effectively distilling information
from multimodal data (e.g., video and physiological signals)
into unimodal networks. The key challenge is efficiently ex-
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tracting knowledge from multimodal data and transferring it
effectively to unimodal networks.

Modality imbalance hinders the effective extraction of
knowledge from multimodal data. Theoretically, multi-
modal data provides multiple perspectives and should out-
perform unimodal networks [Peng er al., 2022]. However,
in some cases, the best-performing unimodal networks even
outperform multimodal networks, as shown in Table 1. This
phenomenon reflects modality imbalance in multimodal fu-
sion [Wang er al, 2020]. Significant differences in fea-
ture representation capabilities and convergence rates be-
tween modalities hinder weaker modalities from learning ef-
fectively, limiting overall fusion performance [Fan et al.,
2023]. To address the modality imbalance problem, exist-
ing methods can be broadly categorized into two types. The
first category enhances weaker modalities by introducing uni-
modal supervision or auxiliary modules [Wang et al., 2020;
Du et al., 2021; Zhang er al., 2024]. However, these meth-
ods heavily depend on unimodal network quality and in-
crease computational overhead. The second category dy-
namically adjusts the convergence rates of modalities, sup-
pressing stronger modalities to balance the learning contri-
butions between them [Wang er al., 2020; Xiao et al., 2020;
Peng et al., 2022]. Nevertheless, this strategy may weaken
dominant modalities, which could hinder the overall network
performance. Thus, whether by improving weaker modalities
or balancing convergence rates, current methods face limi-
tations and struggle to balance enhancing weaker modalities
and optimizing overall fusion performance.

Modal Arousal Valence
EEG 60.61 61.27
Visual 61.47 63.02
Fusion (Visual+EEG)  60.93 64.50

Table 1: Unimodal networks can outperform multimodal networks
in some cases. Experiments are conducted on the DEAP dataset.

Another challenge is bridging the gap between differ-
ent networks to facilitate effective cross-modal knowl-
edge transfer, enhancing the performance of unimodal
networks. Multimodal teacher networks typically have
more complex deep network structures, with multiple in-
put channels and specialized branches for processing fea-
tures from different modalities, whereas student networks are
lightweight and rely on a single modality. Due to the sig-
nificant differences in network complexity and feature repre-
sentation capabilities, direct knowledge distillation often re-
sults in incomplete knowledge transfer, limiting the perfor-
mance of the student network [Cho and Hariharan, 2019]. To
address this issue, existing methods have attempted to miti-
gate these structural differences by introducing intermediate
auxiliary networks, such as teacher assistant (TA) networks
[Mirzadeh et al., 2020]. Assistant-based distillation meth-
ods can be broadly categorized into two types. The first is
single-level TA distillation, where a single-level TA network
is constructed to transfer knowledge from the teacher net-
work to the TA network, which then transfers it to the stu-
dent network, as shown in Figure 1a. However, a single-

[Correct Answer] [Wrong Answer]

L e [
Teacher
e ]

Assistant
ﬂSmall Gap l

]
]
lh L )
P s [E]CTED

(@ (b)

P -

<+—-=}
- —

Figure 1: (a) The gap between the teacher and student networks may
limit the effectiveness of knowledge distillation. TA network bridge
this gap by reducing the differences, enabling more efficient knowl-
edge transfer. (b) The MTAKD method suffers from the problem
of “error accumulation”: as higher-level TAs transfer knowledge to
lower-level TAs, errors accumulate across levels, eventually affect-
ing the learning performance of the student network.

level TA network often struggles to bridge the complex gap
between teacher and student networks, limiting knowledge
transfer effectiveness [Liang et al., 2023]. The second ap-
proach is multi-level TA knowledge distillation (MTAKD),
which employs multiple TA networks to transfer knowledge
step by step from the teacher network to the student network,
as shown in Figure 1b. Although this method can alleviate
the gap between teacher and student networks at a finer gran-
ularity, it may suffer from error accumulation during the pro-
gressive training [Son et al., 2021]. Specifically, errors in-
troduced during the knowledge transfer of one level may be
further amplified by subsequent networks, thereby affecting
the performance of the student network. Designing an effec-
tive distillation mechanism that enables the student network
to efficiently comprehend the teacher network’s knowledge
while reducing error propagation during the transfer process
remains a crucial challenge.

To address the above challenges, this paper proposes an
innovative cross-modal knowledge distillation framework for
emotion recognition. The framework aims to effectively ex-
tract and integrate emotional features through a multimodal
fusion strategy and transfer them to a unimodal student net-
work via knowledge distillation, enhancing its performance
in emotion recognition task. The main contributions of this
paper are summarized as follows:

* We propose a prototype loss-based modality rebalanc-
ing strategy to balance the convergence rates between
modalities, enabling the teacher network to effectively
fuse multimodal features.

* We develop a Cross-Modal Densely Guided Knowledge
Distillation (CDGKD) method that bridges the gap be-
tween the teacher and student networks while mitigating
error accumulation.

e The proposed framework effectively transfers multi-
modal knowledge to enhance unimodal network perfor-
mance, achieving state-of-the-art results on two emotion
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recognition datasets.

2 Related Works

Multimodal fusion networks have shown considerable advan-
tages over unimodal networks in emotion recognition tasks
[Ngiam er al., 2011; Zadeh er al., 2017; Cheng et al., 2025].
For example, Liu et al. [2023b] propose EmotionKD, us-
ing a multimodal teacher network to extract heterogeneous
and interactive features between EEG and Galvanic Skin Re-
sponse (GSR) signals. Li et al. [2023] design a Transformer-
based audio-visual framework to capture cross-modal corre-
lations, improving emotion intensity estimation and classifi-
cation. Wu et al. [2023] develop a bionic dual-system archi-
tecture that integrates facial expression features with remote
physiological signals and leveraging reinforcement learning
to achieve efficient recognition of complex emotions. These
works show the promise of multimodal fusion for improving
adaptability and robustness in varied scenarios.

In the domain of multimodal emotion recognition, the in-
tegration of facial video and EEG signals has demonstrated
considerable potential due to their complementary character-
istics. Facial video, characterized by its intuitiveness and ease
of acquisition, effectively captures explicit emotional states
through observable facial expressions [Zhang et al., 2022].
Liu et al. [2023a] propose a method based on the Trans-
former architecture, which makes full use of the rich tempo-
ral dynamics in the visual modality to accurately capture the
subtle changes in facial expressions. However, the robust-
ness of the visual modality is often compromised by external
factors such as lighting conditions, occlusion, and deliberate
emotional masking. In contrast, EEG signals objectively re-
flect implicit emotional states by recording brain activity and
are particularly adept at identifying concealed emotional re-
sponses. The TSception network employs multi-scale con-
volution to capture both the temporal dynamics and spatial
asymmetry of EEG signals, demonstrating the unique advan-
tages of EEG in implicit emotion recognition [Ding et al.,
2022]. Therefore, the combination of visual and EEG signals
can leverage their complementary strengths, enabling more
comprehensive feature representations and improved robust-
ness in emotion recognition tasks.

Some preliminary studies have explored the integration of
visual and EEG modalities [Tan et al., 2021]. For exam-
ple, Huang et al. [2019] employ a decision-level fusion ap-
proach to combine visual and EEG data, effectively enhanc-
ing the accuracy of emotion recognition. Saffaryazdi et al.
[2022] further introduce the facial micro-expression modal-
ity and combine it with EEG and other physiological signals
to more comprehensively capture emotional features. Cheng
et al. [2024a] propose the Dense Graph Convolutional with
Joint Cross-Attention network, leveraging the spatial topol-
ogy and consistency information between visual and EEG to
further improve emotion recognition performance. Despite
these advancements, existing approaches often overlook the
challenge of modality imbalance.

In addition to the challenges within multimodal fusion,
practical constraints such as computational cost and deploy-
ment complexity have limited the real-world application of

multimodal systems. To address these issues, cross-modal
knowledge distillation has emerged as a promising solution
[Gupta et al., 2016]. By transferring knowledge from a high-
performance multimodal teacher network to a lightweight
unimodal student network, this approach can achieve compa-
rable performance with significantly lower resource require-
ments. For instance, Liu et al. [2023b] demonstrate how in-
teractive knowledge from EEG and GSR signals can be ef-
fectively distilled into a unimodal GSR network. Similarly,
Aslam et al. [2024] propose aligning structural relationships
from multiple teacher networks to improve the adaptability of
student networks. However, the effectiveness of this distilla-
tion process is constrained by the gap between the teacher and
student networks, with the limited capacity of the student net-
work often hindering effective knowledge transfer [Cho and
Hariharan, 2019].

3 Methodology

This study proposes a cross-modal knowledge distillation
framework designed to enhance visual unimodal emotion
recognition task. The framework comprises two key com-
ponents: a Prototype-Based Modality Rebalancing Strategy
for effective emotional feature extraction and multimodal fu-
sion, and a Cross-Modal Densely Guided Knowledge Dis-
tillation method to transfer these features to unimodal stu-
dent networks for improved performance. As shown in Fig-
ure 2, the framework first receives paired facial video and
EEG data, extracting visual and EEG features through the vi-
sual encoder and EEG encoder, respectively. These features
are used to calculate the prototype loss and then passed to the
classifier to compute the cross-entropy loss after concatena-
tion. Both losses guide the backpropagation process of the
multimodal teacher network. Subsequently, the knowledge
from the trained teacher network will guide the learning of
the TA network and the student network.
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Figure 2: The proposed cross-modal knowledge distillation frame-
work. The teacher network balances the convergence rates of the
visual and EEG modalities using prototype loss, generating high-
quality multimodal knowledge. This knowledge is gradually trans-
ferred to the student network through multi-level TA networks,
thereby enhancing the student network’s emotion recognition per-
formance using only the visual modality.
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Figure 3: Overview of the multimodal teacher network training pro-
cess. Visual and EEG inputs are encoded separately, then concate-
nated and passed to a shared classifier for prediction. Modality-
specific features are compared with class prototypes to compute the
prototype loss, which encourages intra-class feature compactness
and enables the estimation of each modality’s convergence rate. The
final loss combines cross-entropy loss and prototype losses, guiding
the teacher network to learn balanced multimodal representations for
later distillation.

3.1 Prototype-Based Modality Rebalancing
Strategy

In emotion recognition tasks involving the fusion of visual
and EEG modalities, there is a disparity in the feature utiliza-
tion efficiency between different modalities. Features from
the weaker modality are prone to being suppressed, which
limits overall performance. To address this issue, a proto-
type loss-based modality rebalancing strategy is designed, as
shown in Figure 3. By dynamically adjusting the modal-
ity weights, this approach promotes the convergence of the
weaker modality and alleviates the imbalance problem.

A prototype is a feature vector that represents the center
of a data class [Snell et al., 2017]. In the embedding space,
each class’s data points are assumed to cluster around a cen-
tral point (prototype). For emotion class k, the prototype in
the visual modality m, and EEG modality m, is defined as
the mean of the feature representations of all samples in that
class. The definition of the class-wise prototype c;* in each
modality is given by:

Ny,
1
C?:M;zi’”, m € {my,, m.} (1)

where Nj, is the number of samples in class k, and 2z} is
the feature representation of sample z; in modality m. The
class prototype aggregates the sample distribution informa-
tion, guiding the modality features to converge towards the
class center, thereby enhancing the discriminability of emo-
tion classification.

For sample z; in modality m, its class distribution is de-
termined by the distance between the feature representation
z;" and the class prototype c;'. Specifically, the probabil-
ity distribution of each class is calculated using the Softmax
function:
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where d(-, -) is a distance function defined as the Euclidean
distance: d(z™, ") = ||z — ¢*||%. The training objective
is to make the sample’s predicted result more likely to match
the correct class. To achieve this, given /N samples, the loss
function is defined as the average negative log probability of
each sample belonging to its true class k:

1
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The class distribution p}* not only provides the classifica-
tion basis for the sample, but the sum of the probabilities for
the correct class also measures the sample’s aggregation de-
gree. The higher the intra-class compactness of the sample
features, the better the discriminability of the features, which
in turn reflects the convergence rate within the modality.

Specifically, during training, the convergence rate of
modality m is represented by the sum of the classification
probabilities of the samples in the current batch:
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where B{" is the batch of data at training step ¢, and p}" is
the probability of sample x; belonging to its true class in
modality m, as calculated by equation (2). This metric is
computed using only feature representations and prototypes,
which are computationally independent of the fusion method
and classifier structure. The final loss function Licqcner fOr
the multimodal network is defined as the weighted sum of
cross-entropy loss and prototype loss:
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where L¢ g is the cross-entropy loss, and « controls the con-
tribution of the classification and prototype losses to the over-
all objective. The values of \,,, and \,,, are determined by
calculating the ratio of modality convergence rates 7}, and
they dynamically adjust the convergence rates of the modali-
ties during training:
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where clip(a, b, ¢) is a clipping function that restricts b to lie
within the range [a, ¢|. This method encourages the slower-
learning modality to utilize its prototype features, while the
faster modality maintains its original learning strategy, alle-
viating the modality imbalance issue.

3.2 Cross-Modal Densely Guided Knowledge
Distillation
To address the issues of information loss and error accumula-

tion in multi-level knowledge transfer, we propose a Cross-
Modal Densely Guided Knowledge Distillation (CDGKD)
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Figure 4: Overview of the CDGKD framework. Each TA or the
student network is supervised by a randomly sampled subset from
the combined set of higher-level models, including the teacher and
previously trained TAs.

method for emotion recognition. As shown in Figure 4, our
CDGKD improves unimodal emotion recognition by guiding
the student network using knowledge from the teacher and
intermediate TA networks during cross-modal transfer from
EEG and visual modalities to the visual modality. Specifi-
cally, the student is influenced not only by the immediately
preceding TA, but also by combined supervision from all pre-
vious TAs and the teacher. This strategy mitigates error accu-
mulation by leveraging multiple knowledge sources, improv-
ing the student’s performance.

The TA networks are derived from the teacher network
by simplifying its EEG encoder, while preserving core fea-
ture extraction capabilities. The visual encoder remains un-
changed, enabling visual information to combine with repre-
sentations from progressively simplified EEG encoders, pro-
viding diverse cross-modal guidance. Since the student only
uses the visual modality, TA networks gradually reduce re-
liance on EEG and strengthen visual guidance. This ensures
smooth knowledge transition and enhances student perfor-
mance on visual tasks.

The entire CDGKD training adopts a level-by-level strat-
egy to ensure clarity and effectiveness in knowledge transfer.
Each TA network is trained independently and receives guid-
ance from more complex previous networks (i.e., the teacher
or a higher-level TA) via distillation loss. Let T" denotes the
teacher network, A = {Ay, As,..., A, } represents the set
of TA networks, where A; is the ¢-th TA, and S denotes the
student network. We define the hierarchical guidance rela-
tionships as follows:

A {A; € Alj<idu{T),
S« {TYuA ®)

For the training process of the i-th TA network A;, the loss
function is defined as:

fort=1,2,....n (7)
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where Lo is the cross-entropy loss used to measure the
classification performance of the current network A;. S;
represents the training target set S; C {ir,la,,-..,0l4, ,}
where I7 and [, denote the logits of the teacher network
and the k-th level TA network, respectively. |S;| represents
the size of the logits set. KL(la, || la,_;) represents the
Kullback-Leibler divergence between the logits of the cur-
rent TA network A; and a selected higher-level network A4;_;,
j€{1,...,i— 1}, measuring the distribution difference be-
tween them. The coefficient 3 controls the contribution of the
classification loss and distillation loss to the total loss.

The training of the final student network is similar to that
of the TA networks, both involving the use of Lopakp-
Through level-by-level training and the stochastic learning
strategy, each network in the hierarchy can acquire effective
information from the higher-level knowledge while maintain-
ing flexibility, improving the performance of the final uni-
modal visual student network.

To further enhance the flexibility and robustness of the pro-
posed CDGKD, we introduce a stochastic learning strategy
into the knowledge distillation process. Specifically, during
the training of each TA or the final student network, knowl-
edge sources are randomly selected from the teacher net-
work T and the set of previous TA networks .4, dynami-
cally influencing the training process by varying the knowl-
edge paths. This strategy effectively reduces the network’s re-
liance on specific knowledge paths by dynamically adjusting
the knowledge connections, lowering the risk of overfitting.

The stochastic learning strategy irregularly drops certain
knowledge connections, reducing the interference from com-
plex teacher or TA output distributions on the student net-
work. This allows the student network to focus on the
most relevant and reliable modality knowledge for the emo-
tion recognition task, alleviating overfitting issues due to the
simpler structure of the student network. Additionally, this
strategy significantly reduces the accumulation of erroneous
knowledge during stepwise transfer, enabling the student net-
work to concentrate on learning core and reliable knowledge.

4 Experiments

4.1 Datasets

This study uses two public datasets, DEAP [Koelstra et al.,
2011] and MAHNOB-HCI [Soleymani ef al., 20111, to eval-
uate the proposed cross-modal distillation framework.
DEAP dataset is a multimodal dataset that includes EEG
signals and facial video data. In the experiment, 32 partici-
pants watched 40 one-minute music clips, followed by self-
assessments of arousal, valence, liking, and dominance. The
EEG signals were recorded at 512 Hz with a 32-channel de-
vice, and synchronized facial videos were recorded for 22
participants. Only the data from these 22 participants, who
had both EEG and facial video recordings are used.
MAHNOB-HCI dataset is a similar multimodal emotion
dataset, containing EEG and front-facing color video data.
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The EEG signals were recorded using the Biosemi Active
IT system with 32 electrodes at 256 Hz. In the experiment,
30 participants watched 20 video clips, followed by self-
assessments of arousal, valence, and other emotional dimen-
sions. Data from 24 participants who completed the experi-
ment with both EEG and facial video recordings are used.

4.2 Baselines

To validate the effectiveness of the knowledge distillation
framework, we reproduce some novel cross-modal knowl-
edge distillation methods and representative distillation meth-
ods in a cross-modal experimental setup as baselines, includ-
ing KD [Hinton, 20151, Fitnets [Romero et al., 2014], NST
[Huang and Wang, 20171, TAKD [Mirzadeh et al., 2020],
EmotionKD [Liu et al., 2023b], and AMBOKD [Li et al.,
2024]. Additionally, to validate the performance of the mul-
timodal teacher network, we reproduce some novel and well-
performing multimodal emotion recognition network archi-
tectures as baselines, including CNN+SVM [Huang et al.,
2019], CNN+LSTM [Saffaryazdi et al., 2022], EmotionKD
[Liu et al., 2023b], and DGC+JCA [Cheng et al., 2024al.

4.3 Experiment Settings

In this experiment, we perform binary classification tasks for
two emotion dimensions: valence and arousal. Specifically,
we use a rating of 5 (the median on a 9-point scale) as the
classification threshold, dividing valence into low valence and
high valence, and arousal into low arousal and high arousal.
For visual modality data, we first extract one image every
40 frames, representing the visual modality as a sequence of
frames. Then, we perform face detection on each frame, crop
the face region, and resize the cropped image to 224x224 to
prepare it for input into the network. To align with practical
application scenarios and ensure cross-experiment indepen-
dence between different datasets (training, validation, and test
sets), we perform the data split at the trial level, ensuring that
slices from the same trial do not appear in different datasets.
Specifically, the entire dataset is divided into training, vali-
dation, and test sets in a 8:1:1 ratio. For each sample in the
original data (continuous data of several seconds), we split it
into samples every 4 seconds along the time axis, generating
short-term sample segments for network training.

In this experiment, the visual modality features are ex-
tracted using the Pyramid Vision Transformer (PVT) network
[Wang et al., 2021], which captures emotion-related informa-
tion at different levels by employing multi-scale feature ex-
traction and global context networking. The EEG modality
features are extracted using the TSception encoder [Ding et
al., 20221, a network specifically designed for EEG signals
that can extract emotion-related features from both the tempo-
ral and spatial dimensions. With these two specially designed
encoders, this method effectively leverages the valuable infor-
mation from both visual and EEG signals to support emotion
recognition tasks.

We use the Adam optimizer with a fixed learning rate of
le-4, and employ early stopping during training, which halts
the training process if the validation set metric does not im-
prove for 15 consecutive epochs. The evaluation metric is
classification accuracy. Training is conducted with a batch

size of 128 for up to 100 epochs. The hyperparameter o
in the multimodal teacher network’s loss function (Lieqcher)
and the hyperparameter [ in the distillation loss function
(Leparp) are both set to 0.5. All experiments are con-
ducted using TensorFlow on NVIDIA RTX 3090 GPUs.

4.4 Results

To validate the effectiveness of the proposed teacher network
training strategy and knowledge distillation method, compre-
hensive experimental evaluations are conducted on both the
multimodal teacher network and the unimodal student net-
work guided by the multimodal teacher network. These net-
works are compared with existing knowledge distillation and
emotion recognition baselines.

Performance Analysis of the Proposed CDGKD. The re-
sults in Table 2 show that the proposed CDGKD achieves
state-of-the-art performance on both datasets. Traditional
KD methods focus solely on the logits distribution, using
the teacher network’s output as additional labels to improve
the student network’s performance. However, these meth-
ods provide limited knowledge to the student network. In
contrast, Fitnets and NST leverage intermediate layer fea-
ture maps, offering more information than traditional KD
method. However, they struggle in cross-modal knowledge
distillation, where structural differences between teacher and
student networks make bridging the gap challenging. AM-
BOKD introduces an adaptive modality balancing module to
address modality imbalance but still doesn’t tackle the struc-
tural gap between teacher and student networks. TAKD nar-
rows the gap between teacher and student networks by using
TA networks for gradual knowledge transfer. Compared to
TAKD, our CDGKD integrates knowledge from all higher-
level networks to guide the student, providing a more diverse
set of knowledge sources while avoiding error accumulation,
achieving superior classification performance.

Method DEAP MAHNOB-HCI
Arousal Valence Arousal Valence
KD 62.11 64.34 58.42 61.58
Fitnets 63.33 62.33 56.69 62.38
NST 57.36 64.65 57.75 62.38
TAKD 64.42 64.50 59.48 61.18
EmotionKD 62.71 63.36 60.53 62.58
AMBOKD 63.38 65.57 61.56 61.98
Our 65.97 65.74 63.02 63.97

Table 2: Comparison of student network performance across knowl-
edge distillation baselines on DEAP and MAHNOB-HCI datasets.

Performance Analysis of the Proposed Modality Rebal-
ancing Strategy. The results in Table 3 show that the mul-
timodal teacher network, enhanced with the prototype loss-
based modality rebalancing strategy, achieves state-of-the-
art performance on both datasets and particularly improves
results in the arousal and valence tasks. Specifically, our
method achieves an average performance of 69.22% on the
DEAP dataset, about 3% higher than the best-performing
baseline. On the MAHNOB-HCI dataset, it achieves 69.75%
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on the valence task, outperforming the baselines. EmotionKD
and DGC+JCA use the same feature extractor for both modal-
ities, simplifying the architecture, but they fail to capture
the unique characteristics of each modality. CNN+SVM
and CNN+LSTM use dedicated extractors for each modality,
which capture modality-specific characteristics effectively.
However, the differences in extractor complexity and con-
vergence rates exacerbate the modality imbalance, with the
weaker modality suppressed by the stronger one, limiting
overall performance. Our method explicitly balances the con-
vergence rates of both modalities with prototype loss, achiev-
ing superior performance.

Method DEAP MAHNOB-HCI
Arousal Valence Arousal Valence
CNN+SVM 64.87 64.32 62.71 60.31
CNN+LSTM 65.10 62.40 - -
EmotionKD 62.88 66.61 60.66 64.72
DGC+IJCA 64.38 57.75 60.78 63.80
Our 68.68 69.75 65.27 69.75

Table 3: Comparison of the teacher network based on Prototype-
Based Modality Rebalancing Strategy with baselines on DEAP and
MAHNOB-HCI datasets.

4.5 Ablation Experiments

To further evaluate the effectiveness of the proposed proto-
type loss-based modality rebalancing strategy and CDGKD
method, we conduct ablation experiments on the DEAP
dataset. The specific setups are as follows:

Ablation of the Modality Rebalancing Strategy. To ver-
ify whether the prototype loss alleviates modality imbalance
and improves performance, we design two experimental set-
tings:

e Variant 1: No prototype loss term (o = 0), trained using
only cross-entropy loss.

* Variant 2: With prototype loss term (o = 0.5), combin-
ing cross-entropy loss with prototype loss.

As shown in Table 4, adding the prototype loss term sig-
nificantly improves performance, with an increase of approx-
imately 8% in the arousal task and 5% in the valence task.
This improvement confirms its effectiveness in addressing
modality imbalance by balancing the convergence rates of
both modalities, promoting the learning of the weaker modal-
ity and enhancing overall network performance.

Variant Arousal  Valence
Variant 1 60.93 64.50
Variant2  68.68 69.75

Table 4: Performance comparison of teacher network with and with-
out the prototype-based modality rebalancing strategy.

Variant Arousal  Valence
Variant 3 61.47 63.02
Variant 4 64.42 64.50
Variant 5 65.97 65.74

Table 5: Performance comparison of student network under different
experimental setups of the proposed CDGKD and stochastic learn-
ing strategy.

Ablation of Our CDGKD and Stochastic Learning Strat-
egy. To evaluate the synergy between our CDGKD method
and the stochastic learning strategy, we design the following
experimental setups:

e Variant 3: No knowledge distillation, the student net-
work is trained independently.

e Variant 4: Using the CDGKD without the stochastic
learning strategy.

* Variant 5: Using the CDGKD with the stochastic learn-
ing strategy (full scheme).

As shown in Table 5, the student network’s performance
is lowest without knowledge distillation. Introducing the
proposed CDGKD significantly improves performance, high-
lighting the importance of dense guidance and multi-level TA
networks in bridging the gap between the teacher and stu-
dent networks and preventing error accumulation. The full
scheme combines our CDGKD with the stochastic learning
strategy and achieves the best performance, improving 4.5%
on the arousal task and 2.72% on the valence task compared
to Variant 3. The stochastic learning strategy introduces di-
versity in knowledge transfer, mitigating overfitting and en-
hancing the student network’s generalization and robustness.
In conclusion, the combination of CDGKD and the stochastic
learning strategy significantly improves the unimodal student
network’s performance.

5 Conclusion

We propose an innovative cross-modal knowledge distillation
framework that leverages a multimodal teacher network to
fuse visual and EEG features and efficiently transfer them to
a unimodal student network. To address the issue of modal-
ity imbalance, a prototype-based modality rebalancing strat-
egy is designed to enhance multimodal feature fusion, ob-
taining high-quality multimodal knowledge representations.
Additionally, the proposed CDGKD effectively bridges the
structural differences between the teacher and student net-
works, enabling efficient transfer of the multimodal knowl-
edge extracted by the teacher network and improving the per-
formance of the unimodal student network. Experimental re-
sults demonstrate that the proposed framework improves the
emotion recognition performance of the unimodal visual net-
work on the DEAP and MAHNOB-HCI datasets. This study
is the first to apply cross-modal knowledge distillation from a
multimodal teacher network to guide a unimodal visual net-
work for emotion recognition task, providing new insights
into emotion recognition under modality-constrained condi-
tions.
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