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Abstract
Practical machine learning systems often operate in
multiple sequential stages, as seen in ranking and
recommendation systems, which typically include
a retrieval phase followed by a ranking phase. Ef-
fectively assessing prediction uncertainty and en-
suring effective risk control in such systems pose
significant challenges due to their inherent com-
plexity. To address these challenges, we devel-
oped two-stage risk control methods based on the
recently proposed learn-then-test (LTT) and con-
formal risk control (CRC) frameworks. Unlike the
methods in prior work that address multiple risks,
our approach leverages the sequential nature of the
problem, resulting in reduced computational bur-
den. We provide theoretical guarantees for our pro-
posed methods and design novel loss functions tai-
lored for ranked retrieval tasks. The effectiveness
of our approach is validated through experiments
on two large-scale, widely-used datasets: MSLR-
Web and Yahoo LTRC.

1 Introduction
As machine learning models become more integrated into
our daily lives, the need for transparency and reliability
in their predictions is crucial. Moving beyond black-box
approaches, the ability to understand and quantify uncer-
tainty in these models is increasingly important to ensure
their effectiveness in real-world applications. Conformal pre-
diction, a distribution-free and statistically valid approach
that is straightforward to integrate with existing models, has
emerged as a promising solution for quantifying uncertainty
in machine learning [Vovk et al., 2005]. Its primary objective
is to generate uncertainty sets for model predictions while
ensuring a specified coverage level. Recently, the confor-
mal risk control framework [Angelopoulos et al., 2024] has
expanded upon traditional miscoverage control by enabling
control over the expected value of any loss function. This ex-
tension greatly enhances its applicability across a wider range
of contexts.

Most existing research on conformal prediction focuses on
a single-stage process, where the machine learning system
processes the input and generates the prediction in a single

step. However, this assumption does not hold for many real-
world systems, which often involve two or more concate-
nated stages. One notable example is ranked retrieval sys-
tems, such as search engines, where the task is to retrieve and
rank documents based on their relevance to a user’s query.
These systems typically involve two sequential stages: (1)
the retrieval stage, which identifies a set of candidate doc-
uments from a large repository, and (2) the ranking stage,
which refines and orders these candidates to produce the fi-
nal ranked list presented to the user [Yin and et al, 2016;
Khattab et al., 2020]. This two-stage approach is necessary
because the massive volume of documents often exceeds the
capacity of a single-stage ranking model, particularly when
employing computationally intensive methods. In such two-
stage problems, each stage is designed with distinct optimiza-
tion objectives, and errors from one stage can propagate to
the next. Consequently, the two-stage process introduces ad-
ditional complexity, making it more challenging to accurately
quantify and control uncertainty.

To address these challenges, we propose two-stage con-
formal prediction methods to quantify and control the un-
certainty inherent in such problems. Specifically, we apply
the learn-then-test framework [Angelopoulos et al., 2021a]
and extend the recently developed single-stage conformal risk
control framework [Angelopoulos et al., 2024] to a two-stage
setup, where each stage has its own distinct risk control re-
quirement. Risk control is achieved by identifying parameters
that jointly satisfy the risk constraints for both stages. Fur-
thermore, to address the specific purpose of the two stages in
ranked retrieval problems, we introduce the retrieval risk and
the ranking risk, respectively, and then apply our proposed
two-stage risk control methods to derive their correspond-
ing prediction sets while controlling both risks at the pre-
specified levels. Our proposed methods are model-agnostic
and can be seamlessly integrated into existing ranked retrieval
systems.

1.1 Related work
Conformal prediction Conformal prediction, originally
developed by Vovk and collaborators, has recently emerged
as a prominent method for uncertainty quantification in sta-
tistical machine learning [Vovk et al., 1999; Papadopoulos
et al., 2002; Vovk et al., 2005; Lei et al., 2015]. A recent
survey by Angelopoulos and Bates outlines the significance
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and wide applications of the topic [Angelopoulos and Bates,
2021]. Our work builds upon the learn-then-test framework
[Angelopoulos et al., 2021a] and the recently developed con-
formal risk control (CRC) framework [Angelopoulos et al.,
2024]. The application discussed in our work shares similar-
ities with [Angelopoulos et al., 2023], which uses the LTT
technique [Angelopoulos et al., 2021a] to control the false
discovery rate in recommender systems and optimize recom-
mendation diversity. However, despite addressing the same
ranked retrieval challenges, our work and that of [Angelopou-
los et al., 2023] differ in both objectives and methodologies.
Ranked retrieval Ranked retrieval has been extensively
studied, with models evolving from traditional IR approaches
like BM25 [Baeza-Yates and Ribeiro-Neto, 1999; Stephen
and K., 1976] to modern learning-to-rank algorithms [Liu,
2009]. Recent advances in deep learning have also been
successfully applied to ranked retrieval [Severyn and Mos-
chitti, 2015; Guo et al., 2016], with methods broadly catego-
rized into pointwise [Crammer and Singer, 2001; Chu and
Ghahramani, 2005], pairwise [Burges et al., 2005; Freund
et al., 2003], and listwise approaches [Burges et al., 2006;
Cao et al., 2007], based on their loss functions. A recent
study [Wang and Joachims, 2023] also examines a similar
two-stage problem in recommender systems but focuses on
group fairness in the first stage, differing from our objective.
Another work [Guo et al., 2023] introduces stochastic rank-
ing at inference to ensure utility or fairness in learning-to-
rank models. In contrast, our work addresses a distinct focus.

2 Problem Setup
Formally, in the first stage, consider an i.i.d collection of
non-increasing, right-continuous random functions L(1)

i :
Λ → [0, 1], i = 1, . . . , n + 1, representing the associ-
ated losses. We denote by λ the tuning parameter in this
stage. In the second stage, we consider another i.i.d col-
lection of random functions, L(2)

i : Λ × Γ → [0, 1], i =
1, . . . , n + 1, to represent the associated losses in the second
stage, incorporating an additional tuning parameter γ. Here,
L(2)
i (λ, γ) is assumed to be non-increasing and right contin-

uous in each coordinate. Furthermore, the following condi-
tions hold: L(1)

i (0) = 1, L(1)
i (1) = 0, L(2)

i (0, 0) = 1, and
L(2)
i (1, 1) = 0. We use R(1)(λ) and R(2)(λ, γ) to denote the

expected risk functions at each stage with fixed tuning pa-
rameter λ and γ, i.e., R(1)(λ) = EL(1)

n+1(λ) and R(2)(λ, γ) =

EL(2)
n+1(λ, γ), and use R̂(1)

n (λ) and R̂(2)
n (λ, γ) to denote the

empirical risk functions, i.e., R̂(1)
n (λ) = 1

n

∑n
i=1 L

(1)
i (λ) and

R̂(2)
n (λ, γ) = 1

n

∑n
i=1 L

(2)
i (λ, γ). Without loss of generality,

we assume that the parameter λ is chosen from a finite set
Λ = {λi : i ∈ [m]}, and the parameter γ is chosen from a
finite set Γ = {γi : i ∈ [m]}. We assume the values are
ordered such that 0 ≤ λ1 < λ2 < · · · < λm ≤ 1 and
0 ≤ γ1 < γ2 < · · · < γm ≤ 1.

For pre-specified risk levels α1, α2, we aim to utilize ran-
dom functions {L(1)

i (λ)}ni=1 and {L(2)
i (λ, γ)}ni=1 to identify

data-dependent tuning parameter pairs (λ, γ) that satisfies the
expected risk control guarantee

ER(1)(λ) ≤ α1 and ER(2)(λ, γ) ≤ α2. (1)

When there exists a set of feasible tuning parameter pairs, R,
that satisfy (1), we are also interested in a uniform expected
risk control guarantee

E sup
(λ,γ)∈R

R(1)(λ) ≤ α1, and

E sup
(λ,γ)∈R

R(2)(λ, γ) ≤ α2,
(2)

as this would allow us to select tuning parameter pair from R
based on certain objective function with valid expected risk
control guarantee. Note that the selection of λ and γ encodes
the prediction set sizes. Throughout the paper, we assume
α1, α2 are fixed to be in the interval [0, 1], which implies fea-
sible risk control.

With regard to two-stage risk control, one might wonder:
if we can manage risk effectively in the second stage, why in-
vest effort in controlling it in the first stage? The reason is that
controlling risk in the first stage is foundational to the entire
process. In the case of the ranked retrieval problem, retrieving
all documents in the first stage imposes a significant computa-
tional burden on the ranking stage. Conversely, retrieving too
few relevant documents in the first stage undermines the fea-
sibility of second-stage risk control and compromises ranking
quality. Thus, this paper focuses on simultaneously control-
ling risks at both stages.

2.1 Data Structure in Ranked Retrieval Problem
Before discussing how to achieve risk control as specified in
equations (1) and (2), we first outline the structure of the data
for the ranked retrieval problem. Consider a set of i.i.d cal-
ibration data points {(Xi, Yi, Zi)}ni=1, with (Xi, Yi, Zi) ∈
X × Y × Z , where Yi and Zi are the labeled responses
of feature vector Xi corresponding to the two stages re-
spectively. In the ranked retrieval problem, Xi represents
a query along with its associated candidate documents. We
let Xi = {qi, {di,j}Ni

j=1}, where qi denotes the user query
and {di,j}Ni

j=1 denotes its associated documents with size Ni.
Each pair of qi and di,j is associated with a ground truth rel-
evance score ri,j ∈ {0, 1, . . . , R}, where a higher value of
ri.j indicates a higher relevance of di,j to qi. This score is
only observable for the training data and is hidden for the
test data. Here we denote the relevant documents with a
relevance score great than 0 in the retrieval results of qi by
Yi = {di,j : ri,j > 0}. In the ranking stage, with a fo-
cus on the ranking quality of documents with a ground truth
relevance level r0 ∈ [R] or above, the set of r0-relevant doc-
uments for qi: {di,j : ri,j ≥ r0} is considered. Then, Zi de-
notes the ordered set of the r0-relevant documents, sorted in
descending order based on the ground truth relevance scores
with ties broken arbitrarily: Zi = {di,(1), di,(2), . . .}.

Without loss of generality, we assume that each stage is
associated with a model learned on the training data for all
queries, denoted by Mretrieval for the retrieval model and by
Mrank for the ranking model, respectively. Note that the form
of the retrieval model is flexible; it can range from a sim-
ple Okapi BM25 model, which counts word occurrences, to a
more complex large language model that generates embed-
dings for embedding-based retrieval. Typically, the model
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used in the retrieval stage is more efficient but less power-
ful than the one in the ranking stage. For both stages, by
leveraging the pre-trained model and calibration data, we can
construct prediction sets Ĉ(1)(x;λ) for the unknown response
y ∈ Y and Ĉ(2)(x;λ, γ) for the unknown response z ∈ Z ,
given a test data point (x, y, z) ∈ X ×Y ×Z . By employing
the loss functions l(1) and l(2) for the first and second stages,
respectively, we obtain:

L(1)
i (λ) = l(1)(Ĉ(1)(Xi;λ), Yi), and

L(2)
i (λ, γ) = l(2)(Ĉ(2)(Xi;λ, γ), Zi).

We will specify the choice of Ĉ(1)(·;λ), Ĉ(2)(·;λ, γ), l(1), and
l(2) for ranked retrieval problem in Section 4.

3 Two-stage Risk Control
In this section, we present two approaches for achieving ex-
pected risk control. The first is a direct application of the LTT
framework [Angelopoulos et al., 2021b], included for com-
pleteness, as high-probability risk control offers a stronger
guarantee than expected risk control. In the second approach,
we extend the conformal risk control framework [Angelopou-
los et al., 2024] to accommodate the two-stage setting.

3.1 LTT Framework
In the first stage, the value of λ is determined by evaluating its
risk function R(1)(λ) through the following hypothesis tests
for each λi ∈ Λ:

H(1)
i : R(1)(λi) > α1 vs. H′(1)

i : R(1)(λi) ≤ α1.

Given λ = λi ∈ Λ, the value of γ is selected in the second
stage by using the corresponding risk function R(2)(λi, γ).
For each γj ∈ Γ, the following hypothesis tests are per-
formed:

H(2)
i,j : R

(2)(λi, γj) > α2 vs. H′(2)
i,j : R

(2)(λi, γj) ≤ α2.

Let F (1) =
{
H(1)

i : i = 1, . . . ,m
}

denote the collection of all
hypotheses tested in the first stage. Given λ = λi ∈ Λ, let
F (2)

i =
{
H(2)

i,j : j = 1, . . . ,m
}

denote the collection of all hy-
potheses tested in the second stage for a fixed λi. Finally,
let F (2) =

⋃m
i=1 F

(2)
i represent the complete collection of all

hypotheses tested in the second stage. To conduct hypothe-
sis testing across both stages, we aim to control the global
family-wise error rate (FWER), defined as the probability of
making at least one Type I error across the two families F (1)

and F (2). For each individual hypothesis H(1)
i ∈ F (1) in the

first stage and H(2)
i,j ∈ F (2) in the second stage, we use the

Hoeffding-Bentkus inequality to compute p-values p(1)
i and

p(2)
i,j , as introduced in [Angelopoulos et al., 2021a]. These

p-values are valid under their respective null hypotheses and
are defined as follows:

p(1)
i =min(exp{−nh(R̂(1)

n (λi) ∧ α1, α1)},
eP(Bin(n, α1) ≤ ⌈nR̂(1)

n (λi)⌉)),
p(2)
i,j =min(exp{−nh(R̂(2)

n (λi, γj) ∧ α2, α2)},

eP(Bin(n, α2) ≤ ⌈nR̂(2)
n (λi, γj)⌉)).

￼ℋ(1)
m ￼ℋ(2)

m,m ￼ℋ(2)
m,m−1 ￼ℋ(2)

m,1

￼ℋ(2)
m−1,m ￼ℋ(2)

m−1,m−1 ￼ℋ(2)
m−1,1￼ℋ(1)

m−1

￼ℋ(1)1 ￼ℋ(2)1,m ￼ℋ(2)1,m−1 ￼ℋ(2)1,1

Figure 1: Graphical ordering of hypothesis tests

Here the function h(a, b) is given by:

h(a, b) = a log
(a
b

)
+ (1− a) log

(
1− a

1− b

)
.

To sequentially test the families F (1) and F (2)
i for each

i ∈ [1,m], one can employ the FWER controlling algorithm
to obtain the tuning parameter pairs [Angelopoulos et al.,
2021a]. Given that the loss function in the first stage, L(1)

i (λ),
is non-increasing in λ, and the loss function in the second
stage, L(2)

i (λ, γ), is non-increasing in both λ and γ, the fixed-
sequence procedure tests the hypotheses in these families in
reverse order. Specifically, for F (1), the m hypotheses are
tested sequentially in the order H(1)

m,H(1)
m−1, . . . ,H

(1)
1 . Sim-

ilarly, for F (2)
i , the hypotheses are tested sequentially in the

order H(2)
i,m,H(2)

i,m−1, . . . ,H
(2)
i,1. Building on these considera-

tions, we propose the following procedure for simultaneously
testing F (1)∪F (2), ensuring control of the global FWER at the
pre-specified level δ:
Procedure:

1. Test F (1) using the Bonferroni procedure:
Apply the Bonferroni procedure to the p-values p(1)

i to
simultaneously test F (1) at level δ. Let R(1) denote the
index set of the rejected hypotheses:

R(1) =
{
i ∈ [m] : p(1)

i ≤ δ/m
}
.

2. Test F (2)
i using the fixed-sequence procedure:

For each i ∈ R(1), use the fixed-sequence procedure on
the p-values p(2)

i,j to simultaneously test F (2)
i at level δ/m.

Let R(2)
i denote the index set of the rejected hypotheses:

R(2)
i =

{
j ∈ [m] : p(2)

i,j′ ≤ δ/m ∀j′ ∈ [j,m]
}
.

3. Determine the final set of rejected hypothesis pairs:
The set R of tuning parameter pairs that correspond to
the rejected pairs of hypotheses

(
H(1)

i ,H(2)
i,j

)
is:

R =
{
(λi, γj) : i ∈ R(1), j ∈ R(2)

i

}
.

The procedure described above can be viewed as a special
case of the sequential graphical approach for multiple test-
ing [Bretz et al., 2009; Angelopoulos et al., 2021a]. Con-
sequently, it strongly controls the global FWER at the pre-
specified level δ. We note that some other alternative global
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FWER-controlling procedures can be applied; a few exam-
ples are provided in the appendix. However, determining op-
timal procedure for a specific setting remains an open prob-
lem. In the following, we present the expected risk control
guarantee for general FWER-controlling procedure.
Theorem 1. Let R denote the collection of tuning parame-
ter pairs returned from a FWER controlling algorithm testing
F (1) ∪ F (2) at level δ. Then, we have

P
(
∀(λ, γ) ∈ R : R(1)(λ) ≤ α1, R

(2)(λ, γ) ≤ α2

)
≥ 1− δ.

Therefore, we have

E sup
(λ,γ)∈R

R(1)(λ) ≤ α1 + δ, and

E sup
(λ,γ)∈R

R(2)(λ, γ) ≤ α2 + δ.

A few comments are in order regarding the comparison with
multiple risks in [Angelopoulos et al., 2021a]. The authors
therein discuss a similar setting involving multiple risk func-
tions. Specifically, consider the case where the sets of tuning
parameters have size m, i.e., |Λ| = |Γ| = m. Their procedure
uses the set of all parameter pairs {(λ, γ) : λ ∈ Λ, γ ∈ Γ}, as
input for running FWER controlling algorithm. In contrast,
our approach leverages the sequential nature of the problem
and the monotonicity of the risk functions, which reduces the
computational burden and enhances overall effectiveness.

3.2 Expected Risk Control
In this section, we describe methods that leverage conformal
risk control framework. To proceed, we consider α1, α2 ∈
( 1
n+1 , 1] and introduce a few additional notations. For the

purpose of risk control in the first stage, define:

λ̂(1)
0 = inf

{
λ ∈ Λ :

n∑
i=1

L(1)
i (λ) ≤ (n+ 1)α1 − 1

}
.

Similarly, to ensure the feasibility of risk control in the second
stage, define:

λ̂(2)
0 = inf

{
λ ∈ Λ :

n∑
i=1

L(2)
i (λ, 1) ≤ (n+ 1)α2 − 1

}
.

Lastly, for any fixed λ ∈ Λ, we define:

γ̂(2)
0 (λ) = inf

{
γ ∈ Γ :

n∑
i=1

L(2)
i (λ, γ) ≤ (n+ 1)α2 − 1

}
.

(3)
When the set in equation (3) is empty, we set γ̂(2)

0 (λ) = 1. To
ensure risk control in both stages, we set the value of λ as a
linear combination of λ̂(1)

0 ∨ λ̂(2)
0 and 1:

λ̂(1)(t) :=
⌈
t(λ̂(1)

0 ∨ λ̂(2)
0 ) + (1− t)

⌉
Λ
.

Here λ̂(1)(t) is defined to be the ceiling of t(λ̂(1)
0 ∨λ̂(2)

0 )+(1−t),
restricted to values in Λ, and t ∈ [0, 1] is a tuning parameter.
This formulation ensures that λ̂(1)(t) ≥ λ̂(1)

0 ∨ λ̂(2)
0 for any t.

Using λ̂(1)(t), we determine the value of γ by defining

γ̂(2)(t) := γ̂(2)
0

(
λ̂(1)(t)

)
.

With the above definitions, we are ready to state our results
for expected risk control.

Theorem 2. For any t ∈ [0, 1], tuning parameter pair
(λ̂(1)(t), γ̂(2)(t)) achieves first-stage risk control at level α1

with a finite-sample guarantee and achieves second-stage risk
control at level α2 asymptotically, i.e.,

ER(1)(λ̂(1)(t)) ≤ α1, and

lim sup
n→∞

ER(2)(λ̂(1)(t), γ̂(2)(t)) ≤ α2.

Since Λ and Γ are finite sets, we further have the following
corollary.

Corollary 1. Uniform risk control for both stages can be
achieved in the set

R =
{
(λ, γ) ∈ Λ× Γ : λ = λ̂(1)(t), γ ≥ γ̂(2)

0 (λ), t ∈ [0, 1]
}
,

i.e.,

E sup
(λ,γ)∈R

R(1)(λ) ≤ α1, and

lim sup
n→∞

E sup
(λ,γ)∈R

R(2)(λ, γ) ≤ α2.

Finite-sample second-stage risk control
To ensure finite-sample guarantee for the second stage, a data-
splitting approach can be employed. Let calibration data be
divided into two non-overlapping parts with index sets I1 and
I2. Let α1, α2 ∈ (1/(1 + |I1|), 1]. Define

λ̃(1)
0 = inf

{
λ ∈ Λ :

∑
i∈I1

L(1)
i (λ) ≤ (|I1|+ 1)α1 − 1

}
.

To proceed, we need to impose the following additional as-
sumption to ensure finite-sample risk control in the second
stage:

Assumption 1. There exists a known constant λ0 ≤ 1 such
that L(2)

i (λ0, 1) ≤ α2 for i ∈ [n+ 1].

The above Assumption 1 enables feasibility of finite-sample
second-stage risk control. Next, for λ ∈ Λ ∩ [λ0, 1] define

γ̃(2)
0 (λ) = inf

{
γ ∈ Γ :

∑
i∈I2

L(2)
i (λ, γ) ≤ (|I2|+ 1)α2 − 1

}
.

We define γ̃(2)
0 (λ) = 1 when the set is empty. For t ∈ [0, 1],

we then define:

λ̃(1)(t) :=
⌈
t(λ̃(1)

0 ∨ λ0) + (1− t)
⌉
Λ
, and

γ̃(2)(t) = γ̃(2)
0 (λ̃(1)(t)).

(4)

Theorem 3. For any t ∈ [0, 1], tuning parameter pair
(λ̃(1)(t), γ̃(2)(t)) achieves finite-sample first-stage and second-
stage risk control at level α1, α2, respectively, i.e.,

ER(1)(λ̃(1)(t)) ≤ α1 and ER(2)(λ̃(1)(t), γ̃(2)(t)) ≤ α2.
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Note that for any t ∈ [0, 1], we have ER(2)(λ̃(1)(t), γ̃(2)(t)) ≤
α2. However, there is no guarantee that

E sup
t∈[0,1]

R(2)(λ̃(1)(t), γ̃(2)(t)) ≤ α2,

as no monotonic relationship exists. Therefore, to obtain a
finite-sample uniform risk control in the second stage, we de-
fine

γ̄(2) = inf

{
γ ∈ Γ :

∑
i∈I2

L(2)
i (λ̃(1)(1), γ) ≤ (|I2|+ 1)α2 − 1

}

Corollary 2. Uniform risk control for both stages can be
achieved in the set

R =
{
(λ, γ) ∈ Λ× Γ : λ = λ̃(1)(t), γ ≥ γ̄(2), t ∈ [0, 1]

}
,

i.e.,

E sup
(λ,γ)∈R

R(1)(λ) ≤ α1 and E sup
(λ,γ)∈R

R(2)(λ, γ) ≤ α2.

We remark that our data-splitting approach, which ensures
a uniform finite-sample risk control guarantee, can be re-
garded as a special case of the method proposed in Section
4.3 of [Angelopoulos et al., 2024].

4 Application to Ranked Retrieval
In this section, we apply our proposed methods to ranked re-
trieval problem. We begin by introducing the loss functions
defined for each stage.

4.1 Loss Function for Retrieval Stage
As defined in the Section 2, Yi is the set of relevant documents
with respect to the query qi, i.e., the set of documents with
ground truth relevance scores greater than 0. To represent
the set of documents fetched by Mretrieval used in the retrieval
stage, we define the retrieved document set Ĉ(1)(Xi;λ) for the
retrieval stage as:

Ĉ(1)(Xi;λ) = {di,j : Mretrieval(qi, di,j) ≥ 1− λ},

where λ ∈ [0, 1] and Mretrieval(qi, di,j) denotes the model
score for the query-document pair (qi, di,j), as computed by
the retrieval model Mretrieval. Note that a good retrieved doc-
ument set Ĉ(1)(Xi;λ) associated with the query qi should aim
to cover as many relevant documents in Yi as possible. To
measure the miscoverage of Yi by Ĉ(1)(Xi;λ), we define re-
trieval loss as:

L(1)
i (λ) = 1− |Yi ∩ Ĉ(1)(Xi;λ)|

|Yi|
. (5)

Note that the loss function defined in equation (5) is non-
increasing, right-continuous in λ, and bounded within [0, 1].
This form of loss function quantifies the missed fraction of
relevant documents retrieved by model Mretrieval. By choos-
ing an appropriate λ, we aim to control the risk at level α1.

4.2 Loss Function for Ranking Stage
Similarly, in the ranking stage, we first define the prediction
set Ĉ(2)(Xi;λ, γ) as:

Ĉ(2)(Xi;λ, γ) = {di,j : Mrank(qi, di,j) ≥ 1−γ}∩Ĉ(1)(Xi;λ).
(6)

In contexts like information retrieval, search engines, and
recommendation systems, nDCG [Järvelin and Kekäläinen,
2000] is widely used to evaluate the ranking quality of
algorithms or systems. Motivated by the intuition from
nDCG that a ranked list can be evaluated by rewarding
relevance while considering ranking positions, we slightly
modify the definition of nDCG to suit our setting, and define:

DCGmod

(
Ĉ(2)(Xi;λ, γ), Zi

)
=

|Zi|∑
j=1

1{di,(j)∈Ĉ(2)(Xi;λ,γ)}

log(j + 1)
.

Notably, when Ĉ(2)(Xi;λ, γ) contains all the r0-relevant doc-
uments, DCGmod attains its maximum value. To normalize
the DCGmod, we define the modified Ideal Discounted Cu-
mulative Gain (iDCGmod) for query qi as:

iDCGmod (Zi) =

|Zi|∑
j=1

1

log(j + 1)
.

Correspondingly, we define the modified Normalized Dis-
counted Cumulative Gain (nDCGmod) as

nDCGmod

(
Ĉ(2)(Xi;λ, γ), Zi

)
=

DCGmod(Ĉ(2)(Xi;λ,γ),Zi)
iDCGmod(Zi)

.

The loss function for the ranking stage is then defined as

L(2)
i (λ, γ) = 1− nDCGmod(Ĉ(2)(Xi;λ, γ), Zi). (7)

The proposed loss function in equation (7) addresses the rank-
ing order within the ground truth set Zi. When selecting
an appropriate γ that satisfies risk control guarantee, greater
weight is assigned to documents in Zi with higher ranking
positions, ensuring that the most relevant documents are pri-
oritized for inclusion in the prediction set. Note that, given λ
specified in the first stage, the ranking loss function is non-
increasing, right-continuous in γ, and bounded within [0, 1].
Our goal is to determine γ to control the ranking loss at spec-
ified level α2.

4.3 Parameter Pair Selection via Empirical Set
Size Minimization

Given a collection of tuning parameter pairs that achieve risk
control at both stages, we determine the tuning parameter pair
(λ̂, γ̂) through optimization with a objective function L:

(λ̂, γ̂) = argmin(λ,γ)∈R L (λ, γ; {Xi}ni=1) . (8)

In many applications (recommendation in mobile devices
etc.), it is desirable to produce a smaller prediction set in the
second stage. Therefore, in this paper, we consider objective
function

L (λ, γ; {Xi}ni=1) =
1

n

n∑
i=1

|Ĉ(2)(Xi;λ, γ)}|.
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We comment that, the choice of the loss function should be
driven by the specific problem at hand. For instance, in sce-
narios where the objective is to reduce computational cost
during the ranking stage, a smaller prediction set size in the
retrieval stage reduces the number of documents evaluated by
the computationally intensive ranking model. To address this,
the term 1

n

∑n
i=1 |Ĉ(1)(Xi;λ)| can be incorporated into the

loss function L, thereby systematically mitigating the com-
putational burden.

4.4 Experiments
We address the ranked retrieval problem using three ap-
proaches: the learn-then-test framework (LTT), two-stage
conformal risk control (tCRC), and two-stage conformal risk
control with data splitting (tCRC-s1). The tuning parame-
ter pairs (λ̂, γ̂) for these methods are determined by equa-
tion (8). Accordingly, these selected tuning parameter pairs
ensure expected risk control guarantees, as established in
Theorem 1, Corollary 1, and Corollary 2, respectively. Our
experiments are conducted on two datasets: MSLR-Web, and
Yahoo LTRC. For each dataset and experiment, we split the
data into a calibration set and a test set, and then apply dif-
ferent methods to the data. The calibration set is used to de-
termine the tuning parameter pair, while the test set is used
for evaluation. Using the test data and the tuning parameter
pair computed from the calibration data, we compute the fol-
lowing quantities for evaluation: empirical risks in two stages
(Risk (1) represents empirical risk in the first stage, Risk (2)
represents empirical risk in the second stage), average predic-
tion set size in the second stage, average recall for documents
with a relevance level greater than 2, average recall for docu-
ments with a relevance level equal to 1, and average precision
for documents with relevance level greater than 1. Then, we
replicate each experiment 10 times and report their averages.

In Table 1, we summarize results for the dataset MSLR.
From the table, we observe that both Recall (≥ 2) and Re-
call (1) exhibit relatively high values, indicating that the pre-
diction sets effectively cover a substantial proportion of rel-
evant documents. Additionally, Recall (≥ 2) consistently
achieves higher values than Recall (1). This confirms that
our proposed ranking loss effectively prioritizes documents
with higher relevance levels, resulting in prediction sets that
are more likely to include highly relevant documents. In
the table, we vary the risk levels and consider (α1, α2) ∈
{(0.1, 0.1), (0.01, 0.1), (0.1, 0.2)}. Notably, LTT exhibits the
lowest Risk (1) and Risk (2) values, indicating that LTT is the
most conservative approach. This can also be explained by
the fact that the size of the feasible set R for LTT is, on aver-
age, the smallest. Conversely, we observe that tCRC achieves
the smallest prediction set size after tuning parameter selec-
tion via equation (8), attributed to its larger feasible set R.
Notably, compared with tCRC-s, tCRC maintains a larger set
size in the second stage but achieves a smaller Recall (≥ 2).
While this seems counterintuitive, it can be explained by that
fact that tCRC-s has a larger risk in the first stage. This is

1While the required information λ0 for tCRC-s is unknown in
practice, we use the calibration data with index set I1 to obtain an
estimate.
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Figure 2: (λ̂, γ̂) and Risk under fixed α1 and varying α2

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(α1, α2) Method Risk (1) Risk (2) Set size Recall (≥ 2) Recall (1) Precision

tCRC 0.0069 0.0982 67.86 0.9537 0.8550 0.7504
(0.1, 0.1) tCRC-s 0.0986 0.0969 77.41 0.9279 0.8790 0.6673

LTT 0.0003 0.0772 70.25 0.9642 0.8857 0.7463

tCRC 0.0058 0.0994 68.08 0.9532 0.8533 0.7511
(0.01, 0.1) tCRC-s 0.0078 0.0967 68.44 0.9537 0.8577 0.7503

LTT 0.0002 0.0765 70.66 0.9646 0.8864 0.7467

tCRC 0.0051 0.2006 57.50 0.9084 0.7017 0.7578
(0.1, 0.2) tCRC-s 0.0972 0.1971 58.28 0.8825 0.7300 0.7575

LTT 0.0046 0.1718 60.22 0.9221 0.7440 0.7578

Table 1: Summary table for dataset MSLR

(α1, α2) Method Risk (1) Risk (2) Set size Recall (≥ 2) Recall (1) Precision

tCRC 0.0053 0.1001 27.50 0.9458 0.8157 0.9414
(0.1, 0.1) tCRC-s 0.0985 0.0974 28.80 0.9246 0.8577 0.9069

LTT 0.0052 0.0787 28.40 0.9572 0.8556 0.9383

tCRC 0.0025 0.0984 27.46 0.9466 0.8187 0.9414
(0.01, 0.1) tCRC-s 0.0078 0.0966 27.56 0.9464 0.8245 0.9405

LTT 0.0019 0.0748 28.43 0.9599 0.8610 0.9381

tCRC 0.0144 0.2014 23.36 0.8885 0.6325 0.9480
(0.1, 0.2) tCRC-s 0.0966 0.1991 23.60 0.8698 0.6682 0.9477

LTT 0.0047 0.1722 24.49 0.9070 0.6823 0.9472

Table 2: Summary table for dataset Yahoo

achieved by using a smaller λ̂, which results in fewer doc-
uments with higher relevance levels being retrieved in the
first stage, ultimately impacting the performance in the sec-
ond stage. When α1 is reduced from 0.1 to 0.01, the metrics
of tCRC and LTT exhibit limited variation, whereas tCRC-
s demonstrates greater sensitivity to this change. This in-
creased sensitivity can be attributed to the construction of the
feasible set by tCRC-s. Additionally, when α2 is increased
from 0.1 to 0.2, we observe that Risk (2) slightly exceeds the
target risk level of 0.2. This deviation can be explained by
approximation error and the asymptotic validity of tCRC, as
established in Corollary 1.

Figure 2 illustrates (λ̂, γ̂) and the corresponding risks
over two stages, with α1 = 0.1 and α2 varying in the
set 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2. Further visual-
izations are included in the appendix. All three methods ef-
fectively manage risk within the desired levels. Notably, as
α2 varies, tCRC achieves the smallest prediction set size in
the second stage, LTT attains the highest recall rate, and both
tCRC and LTT demonstrate superior precision. In practice,
we recommend using LTT or tCRC. When the sample size
is small, tCRC-s may suffer from lower sample efficiency,
compounded by the challenge of the unknown parameter λ0.
Lastly, we present similar results for the Yahoo dataset in Ta-
ble 2, with the corresponding figures deferred to the appendix.

5 Conclusion & Discussion
In this paper, we study expected risk control under a two-
stage setup. We propose methods aimed at simultaneously
controlling risk, and establish theoretical guarantees for these
methods. The effectiveness of our approach is validated

through experiments on two large-scale, widely used datasets:
MSLR-Web and Yahoo LTRC. Below, we discuss several ex-
tensions of the current framework.
Non-monotone risk function When risk function is non-
monotone, the following monotonization procedure can be
applied. At the first stage, the loss function is modified as
follows:

L̃(1)
i (λ) = sup

λ′∈[λ,1]∩Λ

L(1)
i (λ′).

At the second stage, we define the modified loss function as

L̃(2)
i (λ, γ) = sup

λ′∈[λ,1]∩Λ,
γ′∈[γ,1]∩Γ

L(2)
i (λ′, γ′).

With these modifications to the loss functions, the results
from the previous sections can be directly applied.
Multiple-stages We extend the problem to the scenario
where there are K > 2 stages. Let θ ∈ RK denote the
parameter of interest. At the k-th stage, the loss function
for sample i is denoted as L(k)

i (θ1:k), where θ1:k is shorthand
for (θ1, . . . , θk). The sequential nature of the problem deter-
mines that loss function at stage k only involves parameters
θ1:k. The goal is to determine parameter set θ that satisfies

P
(
∀k ∈ [K], L(k)

i (θ1:k) ≤ αk,
)
≥ 1− δ,

or alternatively,

EL(k)
i (θ1:k) ≤ αk for all k ∈ [K].

When loss functions at different stages are monotonic in each
parameter θi with i ∈ [K], one can develop analogous ap-
proaches to achieve risk control with high probability and ex-
pected risk control.
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