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Abstract

Single-cell sequencing technology provides deep
insights into gene activity at the individual cell
level, facilitating the study of gene regulatory
mechanisms. However, observed gene expression
is often influenced by confounding factors such as
batch effects, perturbations, and spatial position,
which obscure the true gene regulatory network
that governs the cell’s intrinsic state. To address
these challenges, we propose scConCRL, a novel
conditional causal representation learning frame-
work designed to extract true gene regulatory re-
lationships independent of confounding informa-
tion. By considering both fine-grained molecular
gene variables and coarse-grained latent domain
variables, scConCRL not only uncovers the intrin-
sic biological signals but also models the complex
relationships between these variables. This dual
function enables the separation of genuine cellu-
lar states from domain information, providing valu-
able insights for downstream analyses and biologi-
cal discovery. We demonstrate the effectiveness of
our model on multi-domain datasets from different
platforms and perturbation conditions, showing its
ability to accurately disentangle confounding influ-
ences and discover novel gene relationships. Exten-
sive comparisons across various scenarios illustrate
the superior performance of scConCRL in several
tasks compared to existing methods.

1 Introduction

With the rapid advancement of single-cell RNA sequenc-
ing (scRNA-seq) technology, vast datasets are being gen-
erated across diverse laboratories and experimental condi-
tions [Jovic et al., 2022]. These datasets often arise from dif-
ferent sequencing methods, perturbation conditions, or dis-
ease samples, resulting in significant heterogeneity. Effi-
ciently modeling, integrating, and comparing such multi-
domain data has become a major challenge [Stuart er al.,
2019; Argelaguet et al., 2021; Hao et al., 2021]. Addressing

*Corresponding author. Our code and supplementary informa-
tion are available at https://github.com/fdu-wangfeilab/scConCRL.

this issue is crucial for capturing cellular heterogeneity and
dynamic changes, ultimately uncovering molecular mecha-
nisms driving phenotypic diversity and disease susceptibility.

Deep generative models have shown great potential in an-
alyzing multi-domain single-cell data but struggle to distin-
guish biological signals within domains from non-biological
signals between domains. Current integration methods typ-
ically preserve shared information but often introduce spu-
rious correlations due to a limited identifiable foundation,
leading to confusion or loss of biological variations [Aliee et
al., 2024]. Consequently, generalization ability is restricted.
Causal Representation Learning (CRL), an emerging tech-
nique, offers a promising solution by identifying latent factors
and causal structures with causal explanations from observa-
tional data [Scholkopf ef al., 2021]. CRL accurately reflects
causal relationships in biological signals and enhances model
generalization in unseen scenarios.

In single-cell transcriptomics, gene expression levels rep-
resent cellular states but are often confounded by batch ef-
fects, drug perturbation, and other covariates. Existing inte-
gration methods focus on retaining invariant signals while re-
moving potentially confusing signals [Luecken et al., 2022].
While effective for tasks like cell type annotation, this ap-
proach oversimplifies the dynamic cellular generation process
and yields inaccurate reconstruction results. Methods like in-
VAE [Aliee et al., 2024] aim to only separate invariant and
domain-specific signals to solve the issue but lack semantic
understanding of latent variables and ignore dependencies be-
tween them, reducing model interpretability.

Many CRL methods assume independence among latent
variables [Tejada-Lapuerta et al., 2023]. However, biological
systems often exhibit strong dependencies, such as interac-
tions in gene regulatory networks (GRNSs). Ignoring these re-
lationships hinders the model’s ability to capture true causal
mechanisms and limits its applicability in biological contexts.
To effectively apply CRL to single-cell scenarios, it is essen-
tial to model these complex interactions and elucidate how
gene relationships influence cellular state changes.

To address these challenges, we propose scConCRL, an in-
terpretable conditional causal representation learning frame-
work for integrating and predicting multi-domain scRNA-seq
data. Our framework incorporates Structural Equation Mod-
eling (SEM) to explicitly capture relationships between con-
founding domain variables and intrinsic molecular variables.
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Genes are modeled as core molecular variables, while batch
effects, perturbation conditions, and other domain informa-
tion are encoded as latent domain variables. By leveraging
a conditional disentanglement strategy, scConCRL performs
batch effect correction and noise removal without requiring
standard references. Furthermore, it models latent domain-
molecular variable relationships, enabling robust perturbation
predictions and enhanced analysis of complex biological sys-
tems.
Our contributions are as follows:

* We propose scConCRL, a causal representation learn-
ing framework that identifies both invariant and domain-
specific signals, enabling reference-free integration in
molecular space and improving generalization across
datasets.

We introduce a strategy that employs Structural Equa-
tion Modeling (SEM) to model domain variables (e.g.,
batch effects, perturbation) and molecular variables, en-
abling the framework to capture interactions between
coarse-grained and fine-grained variables, thereby en-
hancing interpretability.

We conduct comprehensive experimental evaluations
comparing scConCRL with existing state-of-the-art
methods and demonstrate scConCRL’s superior perfor-
mance in several tasks such as GRN inference, data in-
tegration, and perturbation prediction.

2 Related Work
2.1 Single-cell Integration

Single-cell multi-domain integration aims to combine data
from various technical platforms or experimental conditions
to uncover cell types, states, and functions. Traditional meth-
ods, such as Canonical Correlation Analysis (CCA) [Hao et
al., 2023] and Mutual Nearest Neighbors (MNN) [Haghverdi
et al., 2018], align data from two domains by minimizing dis-
crepancies in their latent representations [Haghverdi et al.,
2018; Xu et al., 2022]. These approaches are practical and in-
terpretable but face challenges with multi-domain data. Deep
learning-based methods [Lopez et al., 2018; Li e al., 2020b;
Xiong et al., 2022; Yu et al., 2023] use unsupervised learn-
ing for data compression and align multi-domain distribu-
tions. However, this often achieves alignment only in the la-
tent space, lacking interpretability and limiting their broader
applicability in real-world scenarios.

For molecular-level integration tasks, some deep learning
approaches adopt reference-based strategies and map data
from different batches to a specific reference batch, but their
performance depends heavily on the quality of the refer-
ence [Xiong et al., 2022]. In contrast, reference-free meth-
ods, such as Scanorama [Hie et al., 2019] and Beaconet [Xu
et al., 2024], eliminate batch effects using global distribu-
tion information across datasets. While these methods avoid
reference bias, their broad constraints can introduce artifacts
that distort true biological variations. To address these issues,
we propose a reference-free approach that extracts invariant
signals and uses mechanism-driven constraints, enabling effi-

cient integration of multi-domain data in the original molec-
ular space while maintaining data quality.

2.2 Single-cell Condition Prediction

Single-cell condition prediction leverages sequencing data to
forecast gene expression changes under various conditions.
Variational Autoencoder (VAE)-based methods, such as sc-
Gen [Lotfollahi er al., 20191, achieve this by learning latent
data distributions and identifying distribution shifts. Exten-
sions like trVAE enhance cross-condition predictions by in-
corporating conditional variables, enabling the modeling of
more complex conditions. scPreGAN [Wei et al., 2022] fur-
ther improves prediction accuracy by capturing shared con-
ditional signals and simulating the perturbation transfer pro-
cess through adversarial training. Additionally, scShift [Dong
and Kluger, 2023] incorporates advancements in causal rep-
resentation learning to learn conditional and biological pat-
terns, enabling more precise condition prediction. On this
basis, scDisInFact [Zhang et al., 2024b] models two different
types of domains separately, enabling combined predictions
for multiple batches and conditions. Despite significant ad-
vances in single-cell condition prediction, challenges remain,
particularly regarding the interpretability of models. In this
context, scConCRL integrates latent condition and molecu-
lar variables, enabling the exploration of how condition influ-
ences molecular variables. This framework enhances inter-
pretability and improves condition prediction accuracy.

2.3 Causal Representation Learning

Causal Representation Learning (CRL) aims to identify la-
tent factors and uncover causal structures from observed data,
providing interpretable representations. While VAEs excel
at representation learning, they struggle to identify true la-
tent factors in nonlinear contexts. Recent improvements, in-
cluding the use of auxiliary variables and temporal struc-
tures, have enhanced VAEs’ ability to capture causal mech-
anisms [Hyvarinen et al., 2019; Khemakhem et al., 2020;
Yang et al., 2021]. In multi-domain settings, CRL extracts
causal invariances across domains (e.g., different experimen-
tal conditions, environments, or datasets), revealing shared
mechanisms [Zhang et al., 2024a]. For example, it has been
validated on fMRI datasets to identify common causal factors
affecting brain activity across conditions. In single-cell anal-
ysis, inVAE separated latent representations into invariant and
domain-specific components, aiding the study of causal in-
variance [Aliee er al., 2024]. However, it did not deeply ad-
dress the interpretation or relationships of latent variables. sc-
ConCRL advances this by explicitly modeling relationships
between domain-dependent and molecular latent variables,
enhancing interpretability and uncovering causal mechanisms
in cellular processes.

3 Method

To establish some notation, let X € R"*™ denote a single-
cell gene expression matrix, where n represents the number
of cells and m represents the number of genes. The matrix
X mixes both biological signals and domain-specific infor-
mation, such as technical noise or perturbation signals. We
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Figure 1: The overall architecture of scConCRL.

denote B as the variable encoding domain information (e.g.,
batch or condition). Our goal is twofold: first, to automati-
cally disentangle the k-dimensional latent components, corre-
sponding to batch effects, perturbation signals, and the basal
component of cell state signals; and second, to uncover the
underlying common GRN, represented by the weighted ad-
jacency matrix A" € R™*™_  which is independent of the
batch or condition to which each sample belongs, and the re-
lationship between conditions and genes, captured by the ma-
trix A*? € Rm¥F,

Confounding factors obscure the discovery of GRNs gov-
erning biological processes, leading to discrepancies across
GRNs from different domains. scConCRL aims to derive
common guidance across domains, inspiring GRN inference
and accurately generating cellular information. By incorpo-
rating domain-specific factors that affect gene expression, sc-
ConCRL accounts for domain information, effectively disen-
tangling true regulatory relationships from domain biases.

scConCRL comprises three main components: a Vari-
ational Autoencoder (VAE), a Structural Equation Model
(SEM), and a disentanglement module. The encoder maps
observed data X to both molecular and domain-specific latent
variables. The SEM and decoder reconstruct the observed
data using self-learned relationships. In addition, the disen-
tanglement module encourages the latent representations to
be partitioned into distinct variable sets. In this section, we
provide a detailed description of each component and the op-
timization objectives.

3.1 Assumptions on the Generative Process

We aim to model the generative process of multi-domain
scRNA-seq by exploring latent causal generative models. The
observed data x is assumed to be generated by underlying la-
tent causal variables, z, with the possibility of complex causal
relationships among these variables. In addition, we intro-
duce latent noise variables, n = {n® n®}, that are exogenous
to the system. Specifically, n® represents the basal biological
factors, and n® represents domain-specific factors from batch
effects or perturbations.

Furthermore, external domains b, such as technical bias
or experimental perturbations, can lead to changes in the
distribution of n’ that influence the data distribution. The
introduction of b allows us to model the effects of these
domain-specific factors, offering greater flexibility in adapt-
ing to varying conditions. The generative model is defined as

follows:
nf ~N(0,02), i=1,..,m
nj ~ N(Bja(0), B2(0), j=1,....k
n = {n® n®}
z=g(n)
x = f(z,€) )]

Here, the latent noise variables n® and n® follow Gaussian
distributions, with n® being modulated by the observed vari-
able b through two nonlinear mappings /3.1 and 3;2. The
choice of a Gaussian distribution is based on the identifia-
bility and expressiveness of latent variables. The latent cell
embedding z is directly generated by the function g, which
is defined within a SEM. Subsequently, a nonlinear mapping
function f transforms z into the observed data x, with € rep-
resenting independent noise. For flexibility, we do not impose
a discrete probability distribution on the observed data x.

To estimate the parameters of the scConCRL model, we
employ variational inference, which allows us to approximate
the posterior distribution of the latent variables. We factorize
the posterior distribution as follows:

q(z,n[x, b) = g(n[x,b)d(z = g(n))
= q(z|x,b)d(n = g~ '(2)) (2)
where 0(-) is the Dirac delta function. After this factorization,

the evidence lower bound (ELBO) can be derived through
straightforward computation:

Eg[log po(x|b)] > ELBO
By [Esneg, 08 0o (x]2, 1, b)]

~ KL (g (2, 0fx, b) || p(z n[p))]
~Eqx [Eanq, [108 po(x12)] ~ KL (g4(zIx, b) || p(2[b))

~ KL(gs(nfx,b) || p(u[b)] ©)

According to the above equation, the encoder processes the
observed expression data x and domain information b to de-
rive the conditional distribution g, (n|x, b). Another network
Dy uses the domain information to compute the prior distri-
bution p(n®|b). Then, n is transformed by the layer defined
by the SEM into causal representations z, which are subse-
quently fed into the function f to reconstruct observed data.

3.2 Structural Equation Model with Confounder

The Structural Equation Model (SEM) provides a structured
approach to generate observed gene expression data. SEM
is widely used in fields like economics and social science to
model dependency relationships between variables within a
system [Hair Jr et al., 2021]. In its traditional form, a stan-
dard SEM for a single domain is defined by the following
equations:

z° = ATz° 4 n,
z°=(I1-AT)"!n
n ~ N(0, diag(c7)T) )
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Here, z° represents the basic cell embedding data in a sin-
gle domain, where the matrix A is a learnable parameter
that encodes the relationships between different variables
in the observed data, such as gene-gene interactions. n
denotes independent Gaussian variables, and the Gaussian
distribution shows good performance in exponential family
distributions [Liu et al., 2023]. Previous studies, such as
DeepSEM [Shu er al., 2021], have utilized SEM to model
gene relationships.

However, when handling multi-domain scRNA-seq data,
the relationships modeled by SEM may be confounded by
some covariates, particularly due to batch effects [Kaltenpoth
and Vreeken, 2023]. Each domain, represented by b, has its
own domain-specific network G®. A common network G =
{V, A} is defined as the shared structure {G®}Z | across all
domains. This common structure excludes domain-specific
edges, helping to reveal the true relationships [Huang et al.,
2023].

To control the influence of confounding factors on common
structure, we apply the backdoor criterion to enhance causal
inference accuracy by controlling for confounding domain
variables creating “backdoor paths” between variables, illus-
trated in Figure 1a. To integrate both true regulatory relation-
ships and domain-specific interference, we use latent vari-
ables z” to represent domain-specific information associated
with domain information b. We then expand the SEM model
to include a larger set of variables, V = {v9}m, U {v’},
where g denotes gene variables. This expanded model cap-
tures both direct gene-gene interactions and domain-specific
effects, yielding a unified network structure consistent across
domains [Kaltenpoth and Vreeken, 2023]. The SEM model
for this extended set of variables is defined as:

=2"=g(n) = [I-A")'nlrim O

In this formulation, A represents the edges between do-
main variables and genes, while A™® captures the relation-
ships among the genes themselves. In accordance with the
common GRN structure, we set the weight to O for the first k
columns of A, corresponding to the edges from gene/domain-
related variables to domain-related variables.

Model identifiability refers to the extent to which model
parameters can be uniquely determined from the observed
data [Khemakhem et al., 2020]. Achieving model identifi-
ability is crucial as it ensures that the SEM efficiently cap-
tures the relationships among genes. Based on the assumption
of [Khemakhem et al., 2020; Kaltenpoth and Vreeken, 20231,
we provide the foundation of identifiability in Appendix A.
Further, we promote the adjacency matrix A to conform to a
directed acyclic graph (DAG) structure. Instead of employ-
ing a conventional combinatorial DAG constraint, we adopt
a continuous and differentiable constraint function [Zheng et
al., 2018]. This function achieves a value of 0 solely when
the adjacency matrix A represents a DAG. Specifically, we

define the constraint function as follows:
H(A) = tr(e®?) = (m+ k) =0 (6)

Here tr(_~) denotes the trace of a matrix. In addition, we use
Ls = ||Al|% to ensure sparsity.

To facilitate the training process, we introduce rough gene
relationships as guides on the latent space, incorporating the
concept of gene injection into the latent variables [Yang et al.,
2021]. Leveraging gene relationships, represented by the ad-
jacency matrix A**, we impose a specific constraint to mini-
mize the distance between the gene expression data x and its
regression form. This constraint, denoted as L, is formu-
lated as follows:

L, =E, [lx — (A*) x| < (7)
where « is a small constant.

3.3 Disentangling the Domain and Invariant
Factors

To disentangle the latent factors n* and n®, we follow the
principles outlined by [Chen ez al., 2016; Higgins et al., 2017]
promoting independence among the variables. Specifically,
we make the posterior distribution of n® approximate the
prior distribution conditioned on the domain information b.
This allows us to replace any potential correlation between
n? and n® with the correlation between n® and b.

We use adversarial learning to facilitate the disentangling
process. The goal is to minimize the mutual information be-
tween n” and b, ensuring that domain-specific information
contained in b does not influence the biological factors in n*.
Adpversarial learning has proven effective in domains such as
domain generalization and factor disentanglement [Zhou et
al., 2022].

The primary objective is to make n” indistinguishable by
a batch discriminator. This discriminator is implemented as a
multi-class classifier for categorical domain variables, which
predicts the batch or domain label based on the input fea-
tures and is parameterized by ¢4. The training process al-
ternates between updating the feature encoder to learn mean-
ingful features and training the discriminator to distinguish
between domains. The adversarial loss, denoted as L4y, is
defined as follows:

Laay = —Envng, , log gy, (bn”) (Generator)
Laay = Ensng, , loggs,(bn®) (Discriminator)  (8)

To tackle the issue of imbalanced sample difficulty in single-
cell analysis, we incorporate focal loss at the sample level,
which helps the model focus more on harder-to-classify sam-
ples [Li et al., 2020al]. At the domain level, we dynamically
adjust the loss weight for each domain based on its misclassi-
fication rate, using an Exponential Moving Average (EMA),
as described by the following equations:

Ny
1 (k) (k)
Tk N, ;]I <pZ < 2}2’,5 D; 9)
w = w4 1 —n)ry (10)
w® = softmax(w®) (11)
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Ny, is the number of domain k, pgk) is the logit of sample ¢

in domain k and I is the indicator function. In conclusion,
adversarial loss drives the model to separate domain-specific
information from biological information, resulting in a fea-
ture space invariant to domain variations. Minimizing this
loss ensures that the learned variables n” remain independent
of the domain information b.

3.4 Optimization and Inference of scConCRL

The training procedure of our model is formulated as the
maximization of ELBO subject to certain constraints, ex-
pressed as equations (7), (6), and (8). To tackle this con-
strained optimization problem, we utilize the augmented La-
grangian algorithm, which leads to the formulation of a new
loss function:

L =— aELBO + Ly + 7Ly
L+ AHA) +EHA)  (2)

Here «, (3, v, A, and p are hyperparameters that control the
influence of each constraint term in the optimization process.
Of note, in the inference process, we utilize the relationship
represented by A to obtain integrated clean scRNA-seq
data. For condition prediction, we set the condition domain
to generate data under the specified conditions.

4 Experiment

4.1 Setup

Dataset. We simulated scRNA-seq datasets using the sc-
MultiSim R package [Li er al., 2022] with default param-
eters and generated clean and noisy scRNA-seq data. For
real-world datasets, we combined data from mouse Embry-
onic Stem Cells (mESC) from four protocols, alongside four
different networks from the BEELINE benchmark [Pratapa
et al., 2020] for GRN inference. To evaluate data inte-
gration, we used 4 human pancreas datasets (hPancreas),
4 mouse cortex datasets (mCortex), 8 human Peripheral
Blood Mononuclear Cell datasets (hPBMC), and 14 human
heart datasets (hHeart), all with gold standard cell type la-
bels. For perturbation response prediction, we used a hu-
man PBMC dataset with seven cell types, including con-
trol and interferon-beta (IFN-{)-stimulated cells (PBMC).
All datasets were preprocessed with normalization, logarith-
mic transformation, high-variable gene selection, and max-
abs scaling. More information can be found in Appendix B.

Performance evaluation. For GRN inference evaluation,
given the sparsity and incomplete nature of biological ground
truths, we select EPR (Early Precision Rate), AUPRC ratio,
and AUROC. To assess data integration performance, we use
the scIB score [Luecken et al., 2022], which combines 8 met-
rics across two aspects: biological conservation and batch
correction. The former indicates the representation quality
while the latter assesses domain disentanglement. For pertur-
bation response prediction tasks, we evaluate prediction ac-
curacy using R? scores [Lotfollahi et al., 2019]. Adjusted R?
evaluates the relationship between predicted data for a spe-
cific cell type and real perturbed data across all cell types.
Further details on comparison methods, metrics, and imple-
mentation specifics can be found in Appendix C, D, and E.

4.2 GRN inference

GRN inference is one of the real application scenarios of
causal structure inference and we evaluate scConCRL on
multi-batch mESC dataset to assess its advantages, bench-
marking its performance against state-of-the-art methods. We
used two sets of highly variable genes (1000 and 2000 HVGs)
from mESC datasets and compared scConCRL with two deep
learning-based methods (DeepSEM and RegDiffusion [Zhu
and Slonim, 2023]) and two traditional methods (PIDC [Chan
et al., 2017] and GRNBOOST2 [Moerman et al., 2019]).
The performance of scConCRL and the four baseline meth-
ods was assessed on true biological networks of varying
scales. As shown in Table 1, scConCRL consistently outper-
forms the other methods, achieving higher accuracy in both
non-cell-type-specific and cell-type-specific GRN inference.
It excels with domain adaptation mitigating dataset domain
shift issues, which affects the performance of deep learning
baselines (DeepSEM and RegDiffusion). PIDC and GRN-
BOOST?2 perform well when handling 1,000 HVGs but per-
form poorly when handling 2,000 HVGs, which highlights
that scConCRL is a better choice in handling complex sce-
narios. Under the 2,000 HVGs setting, we further compared
the performance of combining data from all four batches with
using any single batch of data. We evaluated the four base-
line methods on each single batch (labeled “Batch 0-3”) and
on the complete dataset (labeled “All”). For these baseline
methods, combining the four batches does not improve per-
formance compared to using individual batches, primarily
due to variations in data quality and noise levels (Supplemen-
tary Tables 2-3). In contrast, scConCRL consistently outper-
forms using any single batch, demonstrating the importance
of eliminating batch-related noise and bias for multi-batch
data downstream analysis.

4.3 Integration in molecular space

Data integration was conducted to disentangle true biolog-
ical variability from confounding variation. We have val-
idated the model’s ability to integrate data in the molecu-
lar space across multiple datasets, which requires not only
achieving distributional alignment but also preserving high-
quality data. We compared scConCRL with other end-to-end
molecular-level integration methods, as well as denoising +
batch-correction two-step strategies which can recover data
quality. As shown in the results of Table 2 and Supplemen-
tary Table 4, scConCRL significantly outperforms all other
methods across all datasets. Specifically, scConCRL leads
by 20-30% in batch correction on the hPBMC, mCortex, and
hHeart datasets, and by 5% on the hPancreas dataset. In
terms of biological conservation, scConCRL excels beyond
all end-to-end molecular-level integration methods, preserv-
ing biological signals better than other end-to-end methods.
Overall, two-step strategies can better preserve and restore
biological signals, while their fusion results are less satis-
factory. Seurat performs well on the hPancreas dataset but
falls short on other datasets, indicating its limited applicabil-
ity to large-scale datasets. The MNN and SCALEX meth-
ods may be constrained by the chosen reference batch, limit-
ing their performance. Reference-free methods Beaconet and
Scanorama fail to outperform reference-based methods due
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Method Non Spec Spec STR lofgof

EPR AUPRCR. AUROC EPR AUPRCR. AUROC EPR AUPRCR. AUROC EPR AUPRCR. AUROC
1000 HVGs
PIDC 2.8817 1.8668 0.6113  1.2406 1.2500 0.6055  5.0771 3.2920 0.6676  1.3872 1.4123 0.6035
GRNBOOST2 2.5718 1.5749 0.5809  1.1396 1.1873 0.5572  3.9712 2.5503 0.6316  1.5569 1.4953 0.6074
DeepSEM 2.8701 1.6027 0.5627  1.1685 1.1960 0.5623  5.4415 3.2936 0.6607  1.3950 1.3846 0.5732
RegDiffusion ~ 3.2303 1.7525 0.5667  1.0034 1.0759 0.5028  5.3598 3.2888 0.6597  1.1721 1.1919 0.5136
scConCRL 3.5386 2.0316 0.5947  1.2836 1.2898 0.6101  5.4415 3.5424 0.6956  1.6512 1.5167 0.6179
2000 HVGs
PIDC 3.4309 1.7206 0.5789  1.1258 1.1290 0.5559  4.7304 2.6867 0.6324  1.2092 1.2359 0.5393
GRNBOOST2 2.2946 1.3605 0.5532  1.0870 1.1241 0.5372  2.9336 1.6689 0.5799  1.3873 1.3382 0.5585
DeepSEM 2.8982 1.4037 0.5409  1.1255 1.1571 0.5483  4.7029 2.1031 0.5752  1.3663 1.3122 0.5512
RegDiffusion ~ 3.5156 1.5565 0.5355  0.8701 1.0363 0.5029  4.9916 2.3251 0.5979 1.1114 1.1210 0.5141
scConCRL 3.9699 1.8833 0.5797 1.1548 1.1835 0.5649  5.4026 2.9010 0.6418  1.5097 1.4081 0.5816

Table 1: GRN inference performance comparison of different methods in mESC dataset with 1000 HVGs and 2000 HVGs. “Non Spec”
denotes the ground truth dataset from non-specific ChIP-seq, ”"Spec” represents the ground truth dataset from cell-type-specific ChIP-seq
data, ”STR” is the STRING network, and “lofgof” is the lofgof network. The numbers in bold indicate the best performance, while the

underlined ones denote the second best.
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Figure 2: UMAP visualization comparing the reference data
(clean_ref), query data (clean_query), predicted results of the ref-
erence data (ref), and the predicted results of the query data (query)
from different methods. The top plot is color-coded by dataset la-
bels, while the bottom plot is color-coded by cell type labels.

to weaker constraints. Supplementary Figures 1-4 confirmed
scConCRL’s dual strengths of batch correction and biological
conservation. scConCRL demonstrates superior performance
in data integration in the molecular space. Moreover, an abla-
tion study based on the task (Appendix F and Supplementary
Table 1) proves the effectiveness of our design.

Further, we tested the ability of our scConCRL algorithm
for online integration analysis, where the model is trained on
reference datasets and applied to infer data from a new query
dataset. For each experiment, a single-batch subset was used
as the query dataset, with the remaining datasets as the ref-
erence. We compared scConCRL to the SCALEX algorithm
using the scIB score. In this experiment, batches were simpli-
fied into “reference” and “query” categories. As shown in Ta-
ble 3, scConCRL outperforms SCALEX in both batch correc-
tion and biological feature preservation, especially achieving
a 3% improvement in batch correction metrics. To assess the
impact of data integration on data quality, we performed ex-
periments on simulated datasets and visualized the integrated
datasets alongside clean datasets, including both query and
reference data. We compared scConCRL with two widely
used denoising methods, MAGIC and DeepImpute, as well as
SCALEX. scConCRL outperforms them, with seamless inte-
gration of the predicted reference (red) and query (blue) data,
and the integrated dataset closely approximating the clean
dataset. This demonstrates scConCRL’s superior ability to

a  scPreGAN scConCRL
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Figure 3: Evaluation of scConCRL’s accuracy in predicting pertur-
bation responses. a: UMAP visualization comparison of gene ex-
pression of PBMC dataset under different conditions. b: R? and
adjusted R? for the mean of gene expression in predicting responses
versus actual responses for top-100 DEGs in the PBMC dataset. c:
Heatmap of detailed R? results on the PBMC dataset.

denoise and integrate both observed and unseen data, restor-
ing true expression levels (Figure 2).

4.4 Perturbation prediction

When it comes to the condition domain, scConCRL excels at
disentangling the condition information and predicting per-
turbation responses, a crucial intervention task for analyzing
drug effects. A typical perturbation dataset includes control
data and real perturbed data, and models are used to predict
the perturbed data. We trained models separately for each
cell type using the rest and inferred unseen perturbed data
based on the control data. Using the PBMC dataset, we com-
pared the performance of scConCRL with baselines includ-
ing scPreGAN [Wei et al., 2022], scDisInFact [Zhang et al.,
2024b], and scShift [Dong and Kluger, 2023]. We visual-
ized the distribution of control data, real perturbed data, and
predicted perturbation data in Figure 3a and Supplementary
Figure 5. scConCRL shows the best performance, with the
predicted data closely matching the real perturbed data and
clearly separated from the control data. In contrast, scPre-
GAN produces two separate prediction clusters, distanced
from real data. scDisInFact was directionally correct but
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Method hPancreas hPBMC mCortex hHeart
Bio. Batch  Total Bio. Batch  Total Bio. Batch  Total Bio. Batch  Total
Raw 0.4932 0.3161 0.4223 0.3854 0.4277 0.4108 0.2866 0.4536 0.3534 0.5333 0.4704 0.5082
denoise + batch effect removal method Combat
MAGIC 0.7436 0.3164 0.5727 0.6318 0.3665 0.5257 0.6894 0.3842 0.5673 0.7216 0.3743 0.5827
DeepImpute  0.6897 0.4700 0.6018 0.6167 0.4775 0.5610 0.6142 0.4055 0.5308 0.6442 0.4875 0.5815
SAVERX 0.7417 0.5046 0.6469 0.6849 0.4480 0.5901 0.6992 0.4343 0.5932 0.6433 0.4815 0.5786
Bis 0.7163 0.5036 0.6312 0.6582 0.4698 0.5828 0.6625 0.4646 0.5833 0.5621 0.4855 0.5314
scVI 0.7235 0.4594 0.6179 0.6761 0.4638 0.5912 0.6770 0.4529 0.5873 0.7076 0.4431 0.6018
integration in molecular space
Seurat 0.7448 0.6742 0.7166 0.4198 0.3195 0.3797 0.4837 0.3990 0.4499 0.4130 04734 0.4371
MNN 0.7177 0.5056 0.6329 0.6531 0.5004 0.5920 0.6649 0.4658 0.5853 0.6886 0.4877 0.6082
SCALEX 0.6870 0.5685 0.6396 0.6404 0.4895 0.5800 0.6595 0.5704 0.6239 0.6597 0.4891 0.5914
Beaconet 0.7080 0.5280 0.6360 0.6330 0.4924 0.5768 0.6489 0.5543 0.6110 0.6622 0.5487 0.6168
Scanorama ~ 0.7223 0.4866 0.6281 0.6413 0.4162 0.5513 0.6578 0.4443 0.5724 0.7219 0.4835 0.6265
scConCRL  0.7579 0.7492 0.7544 0.6700 0.6984 0.6814 0.6873 0.7378 0.7075 0.7326 0.7031 0.7208
Table 2: Integration performance comparison of different methods across four datasets.
Method hPancreas hPBMC mCortex hHeart
Bio. Batch  Total Bio. Batch  Total Bio. Batch  Total Bio. Batch  Total
SCALEX  0.6624 0.4759 0.5505 0.6527 0.5558 0.5946 0.6737 0.5292 0.5871 0.6553 0.5796 0.6099
scConCRL 0.7072 0.5152 0.5920 0.6628 0.5988 0.6244 0.6740 0.5593 0.6051 0.6664 0.6237 0.6408
Table 3: Online molecular-level integration performance comparison of different methods across datasets.
Method AUPRC AUROC EP To evaluate the performance of scConCRL versus scDisIn-
. Fact, we assessed CKG detection accuracy on the PBMC
scDisInFact 0.1412 0.4978 0.1266 ; . . :
. F h 1 k- -
«cConCRL 0.8222 09471 07388 dataset. First, we used the Wilcoxon rank-sum test to iden

Table 4: Comparison of methods using AUPRC, AUROC, EP.

tify the differentially expressed genes (DEGs) between real
perturbed and control data, and then the ground truth was
subsequently established based on p-values. For scConCRL,
the absolute values of A% are the CKG score for each gene,

a b Immune System s . . .
2 100 Interleukin-10 Signaling reflecting the likelihood of a gene being a CKG. As shown
& 300 Receptors Bind Ghemokines in Table 4, scConCRL consistently outperforms scDisInFact,

Signaling In Immune System

c " N . . . .

g 200 Pepide L:‘éeal;té°gmgazg§enc‘;';$2 demonstrating superior performance in CKG detection and

§ 100 Innate Immune System highlighting the enhanced interpretability. To further vali-
Signal By Interleukil . .

# onsin-like Raceptors date scConCRL, we examined the overlap between predicted
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0 200 400 Interferon Signaling |
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Figure 4: Performance of key gene detection. a: Number of common
DEGs for ground truth and inference results of scConCRL with ten
experiments. b: Highly correlated response pathways obtained from
gene enrichment analysis using the top 100 predicted DEGs from
the PBMC dataset with the Reactome 2022 gene database.

struggled to match real perturbed data. scShift’s predictions
are more scattered, further limiting its performance. We also
calculated R? and adjusted R? to quantify performance. The
average results per cell type are shown in Figure 3b, and the
overall similarity between predicted and actual perturbed data
is presented in Figure 3c. These results further demonstrate
scConCRL’s superior performance.

4.5 Key gene detection

In the scConCRL framework, the matrix AZ® captures
the relationship between conditions and genes, identifying
condition-related key genes (CKGs) [Zhang er al., 2024b].

DEGs and ground truth. As shown in Figure 4a, scConCRL
achieves nearly 70% overlap, indicating high accuracy. Path-
way analysis of the top 100 predicted DEGs (Figure 4b) re-
vealed strong associations with immune system functions and
signaling pathways involved in immune modulation and viral
defense.

5 Conclusion

In this paper, we introduce scConCRL, conditional causal
representation learning that tackles the challenges of inte-
grating and analyzing heterogeneous single-cell data. By
modeling the relationships between latent domain variables
and gene variables through SEM, scConCRL captures both
coarse- and fine-grained variables’ interactions. Evaluations
on multi-domain scRNA-seq datasets demonstrate its supe-
rior performance in several tasks including GRN inference,
data integration, perturbation prediction, and key gene detec-
tion. scConCRL reveals complex dependencies, offering an
interpretable solution for understanding cellular diversity and
dynamic gene regulatory mechanisms.
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