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Drafting and Revision: Advancing High-Fidelity Video Inpainting

Zhiliang Wu , Kun Li , Hehe Fan and Yi Yang†

ReLER, CCAI, Zhejiang University, China

Abstract
Video inpainting aims to fill the missing regions
in video with spatial-temporally coherent contents.
Existing methods usually treat the missing contents
as a whole and adopt a hybrid objective contain-
ing a reconstruction loss and an adversarial loss to
train the model. However, these two kinds of loss
focus on contents at different frequencies, simply
combining them may cause inter-frequency con-
flicts, leading the trained model to generate com-
promised results. Inspired by the common cor-
rupted painting restoration process of “drawing a
draft first and then revising the details later”, this
paper proposes a Drafting-and-Revision Comple-
tion Network (DRCN) for video inpainting. Specif-
ically, we first design a Drafting Network that
utilizes the temporal information to complete the
low-frequency semantic structure at low resolution.
Then, a Revision Network is developed to hal-
lucinate high-frequency details at high resolution
by using the output of Drafting Network. In this
way, adversarial loss and reconstruction loss can
be applied to high-frequency and low-frequency
respectively, effectively mitigating inter-frequency
conflicts. Furthermore, Revision Network can be
stacked in a pyramid manner to generate higher res-
olution details, which provide a feasible solution
for high-resolution video inpainting. Experiments
show that DRCN achieves improvements of 7.43%
and 12.64% in Ewarp and LPIPS, and can handle
higher resolution videos on limited GPU memory.

1 Introduction
Video inpainting aims to fill the missing regions of a video
with spatial-temporally coherent contents, which is a fun-
damental visual restoration task. High-quality video in-
painting can benefit general users in various applications,
such as object removal [Wu et al., 2023c], video restora-
tion [Wang et al., 2024], autonomous driving [Zhang et al.,
2023], and so on. Unlike image inpainting [Liu et al., 2024a;
Zhuang et al., 2024], which primarily focuses on the spatial

†Corresponding author.
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Figure 1: Results comparison of ProPainter [Zhou et al., 2023],
WaveFormer [Wu et al., 2024], and our method. Due to frequency
conflict, ProPainter and WaveFormer fail to generate the missing
details. In contrast, our method successfully generates richer and
more realistic textural details. EMD denotes the Earth Mover’s Dis-
tance [Rubner et al., 2000] between the ground-truth histogram and
the result histogram in the low-frequency (LF)/high-frequency (HF),
where a lower value indicates better result.

dimension, video inpainting pays more attention to the tem-
poral information. Directly using image inpainting methods
to individual frames for video inpainting will neglect the mo-
tion continuity between frames, resulting in flicker artifacts.

Recently, several deep learning-based video inpainting
methods [Li et al., 2020; Liu et al., 2021; Zhang et al., 2022c;
Wang et al., 2023; Wu et al., 2021] have been proposed and
have achieved significant results. Nevertheless, these meth-
ods always treat the missing regions as a whole and employ
a hybrid objective consisting of a reconstruction loss (L1/L2
norm) and an adversarial loss to train the model, resulting
in over-smooth generated missing contents compared to re-
veal realistic detail, as illustrated in Fig. 1. On the one hand,
these methods treat the missing regions as a whole, i.e., all
pixels are viewed equally. They do not distinguish between
flat regions and texture details, which are contained in low-
frequency and high-frequency components respectively. In
this way, the trained models will be easily dominated by flat
regions which are the most common [Wu et al., 2023b]. On
the other hand, the reconstruction loss and the adversarial loss
tend to synthesis contents at different frequencies, i.e., the
former focuses on recovering the low-frequency global struc-
tures [Pathak et al., 2016], while the latter prefers to generate
the high-frequency texture details [Yu et al., 2021]. Simply
combining these two losses may cause inter-frequency con-
flicts, leading to much less favourable results.
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Recall the process of a painter inpainting a corrupted paint-
ing, we can find that a common practice, especially for a
beginner, is to draw a draft first to capture the global struc-
ture of the painting, and then gradually revise the local de-
tails based on the global structure, rather than directly com-
pleting the final inpainting part-by-part. Inspired by such a
“drawing a draft first and revising the details later” man-
ner [Lin et al., 2021], we propose a novel Drafting-and-
Revision Completion Network (DRCN) for video inpainting.
DRCN decomposes the video frame into low-frequency and
high-frequency components, and designs the a Drafting Net-
work and a Revision Network to complete them respectively.
In this way, we can not only avoid inter-frequency conflicts by
applying adversarial loss and L1 loss to the high-frequency
and low-frequency branches separately, but also solve the
problem of varying difficulties in generating low-frequency
semantics and high-frequency details.

Specifically, we first adopt Laplacian transform to decom-
pose the frames into low-frequency and high-frequency com-
ponents. By doing this, flat regions common in frame are
recorded in low-resolution low-frequency components, while
texture details are mainly concentrated in high-resolution
high-frequency components. Next, we develop a Drafting
Network to complete the semantic structure of missing re-
gions in low-frequency components at low resolution, ben-
efiting from its larger receptive field and less local details.
Thereafter, a Revision Network is designed to revise the high-
frequency local details of the missing contents at 2× resolu-
tion. The Revision Network utilizes the draft generated by
Drafting Network to guide the high-frequency components in
generating the missing contents. Finally, the completed low-
frequency and high-frequency components are aggregated to
yield the final inpainting result by inverse Laplacian trans-
form. Notably, our Revision Network can be stacked in a
pyramid manner to complete high-frequency details at higher
resolution, which can provide a feasible solution for the high-
resolution video inpainting. Extensive experimental results
demonstrate that DRCN can generate the missing contents
with richer textures compared to baselines.

To sum up, our contributions are summarized as follows:
• A novel Drafting-and-Revision Completion Network

(DRCN) is designed to effectively mitigate the inter-
frequency conflict in video inpainting.

• A feasible high-resolution video inpainting solution is
first attempted. Our network can handle higher resolu-
tion videos on limited GPU memory.

• Extensive experiments on two benchmark datasets, in-
cluding Youtube-vos [Xu et al., 2018] and DAVIS [Per-
azzi et al., 2016], demonstrate the superiority of our
DRCN in both quantitative and qualitative evaluations.

2 Related Work
Video Inpainting. Recently, several deep learning based
video inpainting methods have been proposed and achieved
great progress. According to the network architectures in-
volved, these methods can be summarised into three groups.

3D CNNs-based Methods: Some researchers [Chang et
al., 2019; Kim et al., 2019] utilize 3D CNNs to integrate

spatial-temporal information and fill in missing regions. Al-
though they have produced promising results, the computa-
tional complexity of 3D CNNs is relatively higher, which lim-
its their practical application [Wu et al., 2023a].

Optical Flow-based Methods: Unlike 3D CNNs-based
methods, optical flow-based methods [Xu et al., 2019; Gao
et al., 2020; Zhang et al., 2024] formulated the video inpaint-
ing as a flow-guided pixel propagation task. They first com-
pleted the optical flow by a flow completion network, and
then propagated the relevant pixels using the completed flow
into missing regions. Despite achieving encouraging results,
they still suffer from challenges in propagating valid pixels
from distant frames. In a sense, their performance signifi-
cantly decrease when the missing regions are large and slow-
moving [Zhou et al., 2023].

Attention-based Methods: Attention [Li et al., 2023;
Li et al., 2025a; Wang et al., 2025; Liu et al., 2024b;
Li et al., 2024; Li et al., 2025b] has been proven to model
long-distance dependencies, some methods [Liu et al., 2021;
Zhang et al., 2022b; Zhou et al., 2023; Wu et al., 2024] incor-
porated attention mechanism to extend the limited temporal
receptive field. These methods retrieve relevant information
from long-distance frames by this mechanism and adopted
weighted operation to generate missing contents. Among
these methods, Zeng et al. [Zeng et al., 2020], Liu et al. [Liu
et al., 2021], Zhang et al. [Zhang et al., 2024], and Wu et
al. [Wu et al., 2024] employed transformers to retrieve similar
features in a considerable temporal receptive field, resulting
in high-quality video inpainting.

In spite of the promising results shown by these methods,
over-smoothed missing contents are generated, failing to in-
fer realistic details. Meanwhile, these methods can only han-
dle low resolution videos (typically smaller than 1K) due to
constraints in GPU memory and computation time, and are
ineffective for high-resolution videos in real-world scenarios.
Coarse-to-Fine Strategy. In the field of visual restoration,
the coarse-to-fine strategy has been proposed and utilized in
various tasks, such as image super-resolution [Tian et al.,
2021], video super-resolution [Xiao et al., 2023], and so on.
Although these methods have achieved remarkable results
by coarse-to-fine strategy, they usually treat the content as a
whole and adopt a hybrid objective consisting of reconstruc-
tion loss and adversarial loss to train the network, leading the
trained model to generate compromised results.

Unlike the coarse-to-fine approach, our drafting-and-
revision strategy employs the Laplace transform to decom-
pose the frame into low-resolution low-frequency compo-
nents and high-resolution high-frequency ones, and processes
them separately in the drafting and revision stages. Such a
design not only avoids inter-frequency conflicts by applying
adversarial loss and L1 loss to different frequency branches
separately, but also enables stacking the Revision Networks
in a pyramid manner to process high-resolution video.

3 Proposed Method
3.1 Formulation and Overview
Problem Formulation. Assume X = {xi ∈ Rh×w×3}T1
is a corrupted video with length T . The binary mask M =
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Figure 2: Overview of our framework. We first generate image pyramid {li, hi}t+n
t−n from video frames {xi}t+n

t−n by using Laplacian transform.
Then, Drafting Network generates rough low-resolution completed result l̂t, which has complete semantics but lacks detailed information.
Next, Revision Network completes high-frequency residual ht at high-resolution to obtain the completed high-frequency component ĥt.
Finally, the final inpainting result ŷt is obtained by aggregating the pyramid outputs l̂t and ĥt. Remarkably, in our framework, the adversarial
(or L1) loss is applied to the high-frequency (or low-frequency) branch separately to mitigate the inter-frequency conflicts.

{mi ∈ Rh×w×1}T1 denotes the missing regions of corre-
sponding frames. For each mask mi, “0” indicates that the
valid region of xi, and “1” stands for the missing regions.
The goal of video inpainting is to generate a completed video
Ŷ = {ŷi ∈ Rh×w×3}T1 , which should be consistent with
ground truth video Y = {yi ∈ Rh×w×3}T1 in both spatial
and temporal dimensions.

In practice, we usually use a deep neural network DNN (·)
to predict ŷt frame by frame i.e., ŷt = DNN (xt,Xt+n

t−n,mt).
Here, xt is the current frame that needs to be inpainted, called
target frame. Xt+n

t−n = {xt−n, . . . , xt−1, xt+1, . . . , xt+n} de-
notes a short clip of neighboring frames with a center moment
t and a temporal radius n, namely reference frames. Existing
methods [Yu et al., 2019; Zeng et al., 2020; Liu et al., 2021;
Zhang et al., 2022b; Zhou et al., 2023; Wu et al., 2024] al-
ways treat the missing contents as a whole and employ a hy-
brid objective Lhy to train the DNN (·),

Lhy = λreLre + Ladv, (1)

where Lre is the reconstruction (L1 or L2) loss, Ladv is the
adversarial loss, and λre is the trade-off parameter.

We argue that these methods treat all pixels equally, re-
sulting in the completed regions being too smooth and lack-
ing realistic details. On the one hand, the reconstruction
objectives of the missing regions are not consistent regard-
ing different low-level frame elements, e.g., smoothness pre-
serving for flat regions, sharpening for edges and textures.
On the other hand, the reconstruction loss Lre prefers to fo-
cus on low-frequency global structures [Deng et al., 2019;
Yu et al., 2021], while the adversarial loss Ladv tends to
concentrate on high-frequency texture details [Pathak et al.,
2016]. Simply combining them like Eq.(1) will lead to

inter-frequency conflicts. To alleviate such conflicts, existing
methods [Yu et al., 2019; Zeng et al., 2020; Liu et al., 2021;
Zhang et al., 2022b; Zhou et al., 2023; Wu et al., 2024] at-
tempt to balance the Lre and Ladv by adjusting the parameter
λre. However, the missing contents in spatial domain are still
generated with mixed frequency [Yu et al., 2021]. Not only
is this strategy sub-optimal, but adjusting hyper-parameters
λre is trivial. Therefore, separate treatment of low-frequency
and high-frequency of missing regions and explicitly apply-
ing the Ladv and Lre losses to different branches, is necessary
to generate the missing contents with more realistic details.
Network Design. In this paper, we propose a Drafting-
and-Revision Completion Network, named as DRCN. The
pipeline of our DRCN is illustrated in Fig. 2. Given the target
frame xt and the reference frame xr ∈ Xt+n

t−n, we first decom-
pose them into low-frequency component lt, lr ∈ Rh

2 ×
w
2 ×3

and high-frequency component ht, hr ∈ Rh×w×3 by Lapla-
cian transform. Notably, lt and lr mainly record the global
semantic structure, while ht and hr generally contain their
corresponding detailed information, e.g., edges and textures.
Then, the low-frequency component lt and high-frequency
component ht are fed into Drafting Network and Revision
Network to conduct the completion, respectively. Finally,
the completed low-frequency and high-frequency compo-
nents are aggregated to generate final inpainting result ŷt ∈
Rh×w×3 by the inverse Laplace transform. In this way, L1
loss Lre and adversarial loss Ladv can be applied to low-
frequency and high-frequency components independently, ef-
fectively mitigating inter-frequency conflicts. Furthermore,
Revision Network can be stacked in a pyramid manner to in-
paint high-resolution video. In the following, we will intro-
duce the Drafting Network and Revision Network in detail.
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3.2 Drafting Network
At low resolution, the semantic structure is easier to complete
due to the large receptive field and less local details [Wu et
al., 2023b]. Based on this fact, we design a Drafting Network
to complete the semantic structures of the missing regions at
low resolution. As shown in Fig. 2, our Drafting Network
is built upon an encoder-decoder architecture, which consists
of a frame-level encoder, a temporal alignment module, a fea-
ture aggregation module and a frame-level decoder. Temporal
alignment and feature aggregation modules are the core com-
ponents of the Drafting Network. The former performs the
feature alignment to eliminate image variations between the
reference frame and the target frame, while the latter aggre-
gates the aligned features of the reference frame to generate
the missing contents of the target frame.
Self-Supervised Flow-Guided Temporal Alignment. Since
the movement of the camera or object cause the image vari-
ation, it is difficult to directly utilize the reference frames
to complete the the missing regions of target frame. There-
fore, an extra alignment module is necessary to eliminate the
image variation between the reference frame and the target
frame. Benefit from the capability of deformable convolution
(DCN) [Dai et al., 2017] to handle complex geometric trans-
formations, some works [Wang et al., 2019; Tian et al., 2020;
Wu et al., 2023b] have proposed various forms of DCN-
based temporal alignment module to achieve alignment be-
tween reference frame and target frame. Although these mod-
ules achieve excellent alignment results, they often suffer
from offset overflow during training, thereby having a neg-
ative impact on model performance. To alleviate this prob-
lem, researchers [Chan et al., 2022; Zhang et al., 2022a;
Liang et al., 2022; Wu et al., 2023a] used the optical flow
between reference frame and target frame as base offset of
DCN to train the network. However, these alignment module
still face the following challenges:

• They typically relied on a heavyweight pre-trained DNN
(e.g., PWC-Net [Sun et al., 2018]) to generate the opti-
cal flow, which significantly increases the computational
cost, thus limiting their practical application.

• They were difficult to converge due to the lack of con-
straints during the training.

In fact, the optical flow in these alignment module only
serves as a base offset to guide the training of DCN, which
means that a coarse-grained optical flow is sufficient for the
requirements [Zhang et al., 2022a; Wu et al., 2023a]. In other
words, precise optical flow generated by the heavyweight
DNN is redundant for these alignment module. Furthermore,
target frames can act as labels to force the reference frames
closer to them in a self-supervised manner during alignment,
achieving fast convergence of the model.

For this purpose, we design a self-supervised flow-guided
temporal alignment module. Specifically, we estimate the op-
tical flow using a lightweight motion estimator that stacks 3
convolutional layers. Such a design not only significantly re-
duces the computational cost, but also allows the network
to be trained from scratch to generate more suitable optical
flows for video inpainting. Besides, we introduce an align-
ment loss La as a self-supervised constraint.
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Figure 3: Illustration of flow-guided temporal alignment module.

As shown in Fig. 3, for the features f r and features f t corre-
sponding to lr and lt are extracted by the frame-level encoder,
we first estimate the optical flow or→t by a lightweight mo-
tion estimator M(·), and generate warped features f r by a
warping operation [Wang et al., 2019] W(·),

or→t = M(f r, f t), (2)

f r = W(f r, or→t). (3)

Then, the warped features f r and the features f t are used
to compute the offsets θr and modulation masks ωr,

θr = or→t + Cθ([f t, f r]), (4)

ωr = σ(Cω([f t, f r])), (5)
where Cθ(·) and Cω(·) presents 2D convolution, [·, ·] denotes
the concatenation, and σ(·) indicates sigmoid function. No-
tably, when calculating the offsets θr based on Eq.(4), we
consider the residuals of optical flow or→t as a base offset of
DCN instead of directly computing the offsets. Such a strat-
egy can effectively mitigate the offset overflow [Chan et al.,
2022; Wu et al., 2023d] of DCN during the training.

Next, the aligned reference frame features f̃ r can be ac-
quired by a DCN layer DCN (·):

f̃ r = DCN (f r; θr, ωr). (6)

Finally, to obtain a more robust alignment feature, we fuse
f r calculated by Eq.(3) and f̃ r calculated by Eq.(6) to gener-
ate the final aligned features far ,

far = Cf (f̃ r, f r), (7)

where Cf (·) denotes feature-level fusion operation consisting
of convolutional layers.
Temporal-Adaptive Feature Aggregation. Due to occlu-
sion, blurry regions and parallax problems, different refer-
ence frames are not equally beneficial for reconstructing the
missing contents [Wu et al., 2023a; Chen et al., 2025]. To
solve this issue, we construct a temporal-adaptive feature ag-
gregation module to generate the missing semantic structures.

Specifically, we first compute the attention weight sr of the
aligned reference frame features far by a softmax function:

sr =
exp

(
Cq(f t)

T · Ck(far)
)

∑
r exp

(
Cq(f t)

T · Ck(far)
) , (8)

where Cq(·) and Ck(·) denote 1 × 1 2D convolution. Then,
the attention-modulated features qr can be obtained by qr =
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Cv(far)⊙ sr, where Cv(·) indicates 1× 1 2D convolution and
⊙ presents the element-wise multiplication.

After obtaining the all attention-modulated features qr, r ∈
{t−n, . . . , t− 1, t+1, . . . , t+n}, the completed features f̂ t
can be generated by a aggregation convolutional layer Ca(·),

f̂ t = Ca([qt−n, . . . , qt−1, qt+1, . . . , qt+n, f t,mt]). (9)

Here, the size of the mask mt is resized to fit the size of the
features f t. The final completed low-frequency component l̂t
can be obtained by decoding f̂ t with the frame-level decoder.

3.3 Revision Network
The low-frequency component l̂t generated by Drafting Net-
work contains the complete semantic structure but lacks de-
tailed information, e.g., edges and textures. Adding the high-
frequency information to the l̂t will produce clearer result
with richer details. Therefore, it is quite necessary to design
a Revision Network to complete the high-frequency compo-
nent ht. A naive design of Revision Network is to directly
replicate our Drafting Network. Nevertheless, such a design
will consume a lot of GPU memory since Revision Network
needs to search for relevant information from multiple ref-
erence frames simultaneously, which is extremely detrimen-
tal to high-resolution video inpainting. For this purpose, we
develop a Revision Network that exploits the inpainted low-
frequency component l̂t to guide the completion of the high-
frequency component ht. In the real implementation, due to
the high sparsity of the ht, directly summing or concatenat-
ing l̂t and ht to generate ĥt will greatly suppress the high-
frequency information. Therefore, aligning the l̂t with the ht

is a crucial step in generating consistent and realistic high-
frequency missing contents.

Specifically, we first encode the ht into the feature gt by the
frame-level encoder, where gt = {g1t , . . . , get} ∈ Rh

2 ×
w
2 ×c

and e = h
2 × w

2 . Then, the self-attention score wi,j of the
feature f̂ t obtained by Eq.(9) is calculated as follows,

wi,j =
exp(Ĉk(f̂

i

t)
T · Ĉq(f̂

j

t ))∑
i exp(Ĉk(f̂

i

t)
T · Ĉq(f̂

j

t ))
, (10)

where 1 ≤ i, j ≤ e, Ĉk(·) and Ĉq(·) denote 1 × 1 2D convo-
lutions. The acquired attention map w depicts the correlation
among the completed low-frequency feature. We aggregate
the high-frequency feature of the valid regions to reconstruct
the missing contents of gt by

zi =
∑

j wi,j · Ĉv(git), (11)

where zi is i-th aggregation feature and Ĉv(·) is a 1 × 1 2D
convolution layer.

Due to the sparseness of high-frequency feature, the mag-
nitude of aggregation feature in Eq.(11) is relatively small.
Inspired by frequency region attentive normalization [Yu et
al., 2021], we employ the parameter-free positional normal-
ization [Li et al., 2019] to normalize z while the preserving

Data Methods PSNR↑ SSIM↑ Ewarp ↓ LPIPS↓

Y
ou

tu
be

-v
os

VINet 26.174 0.8502 0.1694 1.0706
FGVC 24.244 0.8114 0.2484 1.5884

E2FGVI 30.064 0.9004 0.1490 0.5321
FGT 30.811 0.9258 0.1308 0.4565

STTN 28.993 0.8761 0.1523 0.6965
FuseFormer 29.765 0.8876 0.1463 0.5481

CPVINet 28.534 0.8798 0.1613 0.8126
ProPainter 29.906 0.9050 0.1458 0.4962

WaveFormer 33.264 0.9435 0.1184 0.2933
Ours 33.658 0.9532 0.1096 0.2565

D
AV

IS

VINet 29.149 0.8965 0.1846 0.7262
FGVC 28.936 0.8852 0.2122 0.9598

E2FGVI 31.941 0.9188 0.4579 0.6344
FGT 32.742 0.9272 0.1669 0.4240

STTN 28.891 0.8719 0.1844 0.8683
FuseFormer 29.627 0.8852 0.1767 0.6706

CPVINet 30.234 0.8997 0.1892 0.6560
ProPainter 31.967 0.9250 0.1655 0.4370

WaveFormer 34.169 0.9475 0.1504 0.3137
Ours 34.676 0.9582 0.1287 0.2868

Table 1: Quantitative results on Youtube-vos and DAVIS datasets.

structural information. Similarly, the parameter-free posi-
tional normalization is also applied to f̂ t. The aligned low-
frequency feature et is computed as follows,

et = Cγ(z)
f̂ t − µf

σf
+ Cβ(z), (12)

where µf and σf are the mean and standard deviation of f̂ t
along the channel dimension, respectively. Cγ(·) and Cβ(·)
denote convolution operation. Finally, the completed high-
frequency feature ĝt is generated by a 1 × 1 2D convolution
layer Cg(·), i.e., ĝt = Cg(et, gt).

4 Experiments
4.1 Experimental Setting
Datasets. Following previous works [Ren et al., 2022;
Zhou et al., 2023; Wu et al., 2024], two most commonly
used datasets (Youtube-vos [Xu et al., 2018] and DAVIS [Per-
azzi et al., 2016]) are considered to verify the effectiveness
of our method. The Youtube-vos [Xu et al., 2018] dataset
contains 4453 videos with various scenes, and is split into
three parts containing 3471, 474 and 508 videos for training,
validation and testing, respectively. As for the DAVIS [Per-
azzi et al., 2016] dataset, it contains 150 high-quality videos
of challenging motion-blur and appearance motions. Consis-
tent with existing studies [Zhou et al., 2023; Yu et al., 2023;
Zhang et al., 2024; Wu et al., 2024], 60 videos are used for
training and 90 videos are utilized for testing.
Baselines and Evaluation Metrics. We select nine re-
cently video inpainting methods as our baselines, includ-
ing VINet [Kim et al., 2019], CPVINet [Lee et al., 2019],
FGVC [Gao et al., 2020], STTN [Zeng et al., 2020],
FuseFormer [Liu et al., 2021], E2FGVI [Li et al., 2022],
FGT [Zhang et al., 2022b], ProPainter [Zhou et al., 2023],
and WaveFormer [Wu et al., 2024]. To ensure the fairness
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Figure 4: Qualitative results compared with FuseFormer [Liu et al., 2021], E2FGVI [Li et al., 2022], FGT [Zhang et al., 2022b],
ProPainter [Zhou et al., 2023], and WaveFormer [Wu et al., 2024] under three mask setting.

of the results, these baselines are fine-tuned using their re-
leased models and codes, and we report best results. Further-
more, PSNR [Haotian et al., 2019], SSIM [Lin et al., 2021],
LPIPS [Zhang et al., 2018], and Ewarp [Lai et al., 2018] are
used to evaluate inpainting quality.

4.2 Experimental Results and Analysis
Quantitative Results. Tab. 1 shows quantitative results on
Youtube-vos and DAVIS datasets under 256×256 resolution.
As can be seen from Tab. 1, our method significantly outper-
forms all competitive baselines in four metrics. In particu-
lar, our method achieves 1.18%, 1.03%, 7.43% and 12.64%
relative improvements on Youtube-vos dataset and 1.48%,
1.13%, 14.43%, and 8.57% relative improvements on DAVIS
dataset regarding the PSNR, SSIM, Ewarp, and LPIPS. These
quantitative results validate that our proposed method can
generate results with more visually realistic (PSNR, SSIM,
and LPIPS), and more temporally consistent (Ewarp).
Qualitative Results. In Fig. 4, we visually compare the
qualitative results of our method with five baselines (Fuse-
Former [Liu et al., 2021], E2FGVI [Li et al., 2022],
FGT [Zhang et al., 2022b], ProPainter [Zhou et al., 2023],
and WaveFormer [Wu et al., 2024]) under three different set-
ting: (a) curve mask, (b) stationary mask, and (c) object mask.
As can be seen, frames inpainted by our method have more
realistic details which are significantly better than baselines.
Our inpainted results not only have complete semantic struc-
ture, but also their details are more vivid and clear. Further-
more, to verify the effectiveness of “Drafting and Revision”
framework, we compare the inpainting results of our method
with ProPainter and WaveFormer on different frequencies in
Fig. 5. As can be seen, the low-frequency semantics among
these three methods exhibit negligible differences, whereas
our method significantly outperforms ProPainter and Wave-
Former in capturing high-frequency details. This indicates
that our proposed “Drafting and Revision” framework can
generate richer high-frequency details.

4.3 High Resolution Video inpainting
Recently, significant progress has been made by deep learning
based video inpainting methods. However, due to the mem-

ProPainter WaveFormer OursInput

Figure 5: Visual comparisons at different frequencies, where the red,
yellow and green boxes are the local slices, and its high-frequency
and low-frequency components.

ory limitations of hardware devices, these methods can only
complete videos with resolutions smaller than 1K. Naively
using the“down-sampling−inpainting−up-sampling” techni-
cal pipeline to complete high-resolution video merely yield
blurry results, which is disadvantageous in real-world appli-
cations. In our framework, Revision Network can be stacked
more layers to handle high-resolution video. Tab. 2 shows the
quantitative results at three different resolutions on Youtube-
vos [Xu et al., 2018] dataset, which were tested under a RTX
2080 Ti GPU. As shown in Tab. 2, as the video frame reso-
lution increases, the baseline models suffer from GPU mem-
ory overflow. In contrast, our DRCN constructed by stack-
ing three layers of Revision Network can effectively inpaint
videos at a resolution of 2048 × 2048. Furthermore, Fig. 6
illustrates inpainted examples of our method at 2048 × 2048
resolution. It can be observed that DRCN generates missing
contents with rich details for high-resolution videos.

4.4 Ablation Study
Drafting Network. To demonstrate the effectiveness of
Drafting Network, we replaced the Drafting Network in our
framework with two baseline models (STTN [Zeng et al.,
2020], and E2FGVI [Li et al., 2022]) and compared their re-
sults with our full model. As shown in Tab. 3, our model
outperforms STTN+ Revision and E2FGVI+Revision on four
metrics. These results demonstrate that the proposed Draft-
ing Network is beneficial and necessary for completing the
global semantic structure of the video frame.
Revision Network. In Fig. 7, we visually compared the in-
painting results of E2FGVI+Revision and our full model. As
observed from Fig. 7, the E2FGVI+Revision and our full
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512×512 / 1024×1024 / 2048×2048 (Resolutions)Methods PSNR ↑ SSIM ↑ Ewarp ↓ LPIPS ↓
VINet 26.363 / − / − 0.8770 / − / − 0.1642 / − / − 0.9926 / − / −
FGVC 24.411 / − / − 0.8453 / − / − 0.2120 / − / − 0.9812 / − / −

E2FGVI 32.558 / − / − 0.9293 / − / − 0.1221 / − / − 0.4031 / − / −
FGT 31.236 / − / − 0.9309 / − / − 0.1034 / − / − 0.3701 / − / −

STTN 28.176 / − / − 0.8486 / − / − 0.1587 / − / − 0.7074 / − / −
FuseFormer 29.613 / − / − 0.8754 / − / − 0.1479 / − / − 0.5605 / − / −
ProPainter 34.001 / − / − 0.9345 / − / − 0.0994 / − / − 0.3961 / − / −

WaveFormer 34.437 / − / − 0.9471 / − / − 0.1081 / − / − 0.2063 / − / −
CPVINet 31.629 / 32.117 / − 0.9265 / 0.9379 / − 0.1052 / 0.1031 / − 0.7211 / 0.6917 / −

Ours 34.534 / 34.692 / 34.701 0.9537 / 0.9514 / 0.9634 0.0825 / 0.0964 / 0.1147 0.1860 / 0.1725 / 0.1767

Table 2: Quantitative results of high resolution video on Youtube-vos dataset under a RTX 2080 Ti GPU. Note that certain models cause
Out-Of-Memory (OOM) error when tested on 1K or 2K videos, thus the corresponding cells are empty, denoted as “−”.
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t

Curve Mask Stationary Mask Object Mask

Figure 6: Inpainted results of our method at 2048×2048 resolution.

Modules PSNR↑ SSIM↑ Ewarp ↓ LPIPS↓
STTN 28.993 0.8761 0.1523 0.6965

STTN+Revision 30.258 0.8901 0.1485 0.6648
E2FGVI 30.064 0.9004 0.1490 0.5321

E2FGVI+Revision 31.416 0.9171 0.1402 0.5165
Drafting 31.291 0.9237 0.1423 0.3918

Full model 33.658 0.9532 0.1096 0.2565

Table 3: Ablation Study of Drafting Network and Revision Network.

model generate more reasonable and detailed missing con-
tents than the E2FGVI [Li et al., 2022] and Drafting Network.
These results indicate that Revision Network has significant
benefits for the final video inpainting results, which further
verifies the necessity of the proposed “Drafting and Revision”
framework in video inpainting task.
Alignment Manner. This section compares different tem-
poral alignment manner. From Tab. 4, the following conclu-
sions are confirmed: i) Performing temporal alignment can
improve the performance (2nd-6th rows). ii) The reference
frame alignment effect of our alignment module (6th row)
outperforms traditional flow-based warping alignment meth-
ods (2nd row) and traditional deformable convolution align-
ment methods (3rd row). iii) Utilizing a lightweight esti-
mator to calculate optical flow between frames does not sig-
nificantly reduce the performance of the temporal alignment
module (5th row). iv) The strategy of aggregating the aligned
reference feature f̃ r and warped reference feature f r by Eq.(7)
can obtain more a robust alignment feature (6th row). v)
Using the alignment loss La to train the temporal alignment
module in a self-supervised manner can further improve the
alignment performance of reference frame (7th row).

E2FGVI+Revision

Input

E2FGVI

Drafting Full model

Figure 7: Visual comparisons of inpainted results on E2FGVI, Draft-
ing, E2FGVI+Revision, and our full model.

Alignment Manner PSNR↑ SSIM↑ Ewarp ↓ LPIPS↓
w/o align 27.696 0.8698 0.1567 0.5893

flow warping 32.108 0.9236 0.1491 0.4425
DCN 32.916 0.9279 0.1462 0.4110

flow + DCN 33.082 0.9303 0.1417 0.3971
ME + DCN 33.018 0.9296 0.1424 0.3979

ME + DCN + agg 33.363 0.9310 0.1406 0.3955
ME + DCN + agg + La 33.658 0.9532 0.1096 0.2565

Table 4: Ablation study of diverse temporal alignment.

5 Conclusion
This paper propose a novel Drafting-and-Revision Comple-
tion Network (DRCN) for video inpainting, which contains
two main sub-networks, i.e., Drafting Network and Revision
Network, where the former learns to complete the semantic
information at low resolution, and the latter aims to gener-
ate the detailed information at high resolution. Such a design
can flexibly supervise the inpainting of high-frequency and
low-frequency component separately to effectively mitigate
the inter-frequency conflicts. Furthermore, our DRCN can
provide a feasible solution for high resolution video inpaint-
ing by stacking the Revision Network in a pyramid manner.
Comprehensive experiments demonstrate the effectiveness of
our model in both quantitative and qualitative evaluations.
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