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Abstract

Understanding small visual objects is crucial in
fields such as video surveillance, remote sensing,
and autonomous driving. In this paper, we in-
vestigate the capability of advanced large vision-
language models (LVLMs) to recognize and in-
terpret small objects in visual data. To this end,
we curate a specialized dataset for evaluating fine-
grained visual hallucinations, incorporating two
object categories and three types of hallucinations.
First, we assess 11 state-of-the-art LVLMs, yield-
ing several key insights, as anticipated, LVLMs per-
form significantly worse on queries related to small
objects compared to regular-sized ones, with per-
formance on regular objects proving to be an unreli-
able predictor of that on small objects. This finding
underscores the need for dedicated research on fine-
grained visual hallucinations. Second, we evalu-
ate three training-free methods: Scaffold, Chain of
Thought (CoT), and Image Resizing, all of which
result in varying degrees of improvement. Further-
more, we conduct a series of detailed ablation stud-
ies on the visual encoders of Eagle-X5, examining
their performance across fine-grained visual hallu-
cination tasks. Our findings reveal that ConvNeXt
architecture is critical for object existence recogni-
tion tasks. In contrast, for mitigating other types of
hallucinations, integrating information from multi-
ple visual encoders is significantly more effective
than relying on a single encoder. These results
highlight several promising directions for advanc-
ing small object recognition with LVLMs.

1 Introduction

In recent years, large language models (LLMs) [Achiam et
al., 2023; Touvron et al., 2023] achieve significant break-
throughs in natural language processing, excelling in tasks
such as language understanding [Hendrycks e al., 2020]
and generation [Fernandes er al., 2023]. These advance-
ments also propel the emergence of large vision-language
models (LVLMs) [Liu et al., 2024a; Achiam et al., 2023;
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Caffagni er al., 2024], which further enhance performance
on multimodal tasks, e.g., image captioning [Agrawal et al.,
2019] and visual question answering [Goyal et al., 2017].

However, hallucinations in LVLMs, where generated out-
puts deviate from the input images, pose significant chal-
lenges to their deployment in critical domains such as health-
care and autonomous driving [Li ef al., 2023b; Bai et al.,
2024]. Addressing these hallucinations is essential for en-
suring the reliability of multimodal models. First and fore-
most, establishing a reliable evaluation framework is the top
priority. Existing benchmarks, such as CHAIR [Rohrbach et
al., 2018], an early framework for assessing object hallucina-
tions in image captioning tasks, and POPE [Li er al., 2023b]
that frames hallucination evaluation as a binary classification
task, primarily assess general object understanding. How-
ever, these benchmarks inadequately capture LVLMs’ capa-
bilities in scenarios involving small objects, which are critical
for applications like video surveillance [Zhu et al., 2021] and
autonomous driving [Pang et al., 2020]. Our preliminary ex-
periments in Section 4 reveal that low hallucination rates for
regular objects do not necessarily correlate with low halluci-
nation rates for small objects, underscoring a critical gap in
current evaluation methodologies.

To address this gap, we curate a specific dataset for evalu-
ating and analyzing visual detail hallucinations. The dataset
categorizes scenes into two types: detailed and regular, and
includes three key hallucination types: existence, color, and
position. This dataset enables a comprehensive analysis of
visual detail hallucinations and supports meaningful compar-
isons between detailed and regular scenes.

Using this dataset, we perform extensive experiments on
11 state-of-the-art models, yielding several notable observa-
tions. First, the use of a mixture of visual encoders proves
to be highly effective, consistently outperforming single-
encoder approaches. Second, increasing the resolution of
input images significantly enhances small-object recognition
for models capable of processing images at varying resolu-
tions. Third, the Chain of Thought (CoT) prompting method
substantially improves performance on complex visual tasks,
such as determining positional relationships. Additionally,
we evaluate another training-free method, Scaffold [Lei ez al.,
2024], which adds anchor positions to input images. The re-
sults show mixed performance across the three hallucination

types.
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To gain deeper insights, we investigate the role of individ-
ual visual encoders within the mixture used by the EAGLE-
X5 [Shi et al.,, 2024] model, focusing on their impact on
small-object recognition. Our findings reveal that the Con-
vNeXt encoder predominantly determines performance for
existence hallucination questions. For other hallucination
types, the model effectively integrates features from multi-
ple visual encoders, leading to consistent improvements com-
pared to using a single encoder. These results highlight the
complementary strengths of different encoders in addressing
various hallucination challenges.

In summary, our key contributions are as follows:

¢ A Specialized Dataset: We curate a dataset for vi-
sual detail hallucination assessment, encompassing two
scene types and three hallucination categories, enabling
robust evaluation.

* Model and Method Analysis: We evaluate multiple
models and methods, revealing that most models strug-
gle with detailed visual information. We show that a
combination of visual experts and larger resolutions mit-
igate visual detail hallucinations.

* Analytical Insights: We investigate other design fac-
tors influencing visual detail hallucinations, including
the contributions of various visual encoders in mixed ar-
chitectures, the impact of image resizing, and the role of
training data distribution, offering valuable guidance for
future research.

This work establishes a pipeline for curating a dataset specif-
ically to evaluate visual detail hallucinations in large vision-
language models (LVLMs). We assess the performance of
current LVLMs on this dataset and systematically evaluate
several improvement strategies, providing in-depth analyses
of their effectiveness. Additionally, we investigate underly-
ing factors contributing to visual detail hallucination issues,
offering valuable insights and identifying key directions for
future research and efforts to enhance LVLM performance on
small-object recognitions.

2 Related Work

This work focuses on evaluating the visual detail hallucina-
tion of large vision-language models. For clarity, we intro-
duce the related work with the following three categories.

2.1 Large Vision-Language Models

Large Vision-Language Models(LVLMs) typically comprise
three key components: an LLM backbone for user interaction,
one or more visual encoders, and vision-to-language adapter
modules [Caffagni et al., 2024]. The visual encoder is crit-
ical for perceiving visual information. Early LVLMs [Li et
al., 2023a; Liu et al., 2024b] commonly use CLIP [Radford
et al., 2021] as the visual encoder. For example, LLaVA [Liu
et al., 2024b] projects CLIP-encoded visual features into the
text space through linear projection or MLP, integrating them
with textual embeddings for further processing. Subsequent
research has explored LVLMs with a hybrid visual encoder
structure[Shi et al., 2024; Lin et al., 2023; Fan et al., 2024],

demonstrating that combining multiple visual encoders sig-
nificantly improves the model’s visual capabilities. However,
these structures are typically limited to processing images at
fixed resolutions. Recently, some studies [Wang et al., 2024;
Wu et al., 2024] have enabled models to handle arbitrary
resolutions. For instance, Qwen2-VL [Wang et al., 2024]
enhances Visual Transformer(ViT) [Dosovitskiy, 2020] by
replacing absolute position embeddings with 2D-RoPE, en-
abling the model to effectively capture the two-dimensional
positional information of images. Overall, models with dif-
ferent structures exhibit varying capabilities in perceiving vi-
sual details. The effectiveness of methods for mitigating vi-
sual detail hallucinations depends on the model’s structure.
In this work, we conduct detailed experiments and analyses
to explore these differences.

2.2 Hallucination Benchmarks for LVLMs

In vision-language models, hallucinations [Bai et al., 2024]
refer to scenes where the generated output does not align
with the input image. Existing research primarily focuses
on object hallucinations, and so do the evaluation bench-
marks. CHAIR [Rohrbach et al., 2018], an early work pre-
dating the advent of large models, evaluates object halluci-
nations in image captioning tasks. It evaluates how many
generated words correspond to objects present in the image
by leveraging ground truth sentences and object segmenta-
tions within a fixed set of objects. However, CHAIR’s ap-
plicability is confined to traditional image captioning tasks
with predefined object sets, making it unsuitable for assessing
the diverse outputs of contemporary vision-language mod-
els. More recently, POPE [Li ef al., 2023b] has emerged as a
widely used benchmark for evaluating object hallucinations.
POPE transforms hallucination evaluation into a binary clas-
sification task by asking yes-or-no questions about relevant
objects. While POPE is reliable and flexible for evaluating
existence hallucinations, it narrowly focuses on this specific
type of hallucination, limiting its broader applicability. Ad-
ditionally, several other benchmarks [Lovenia er al., 2023;
Liu et al., 2023a] have been introduced to provide a more
structured evaluation of hallucinations in multimodal mod-
els. In comparison, we focus on visual detail hallucinations
and propose a pipeline for constructing related datasets and
evaluation methods.

3 Evaluation Dataset Construction

In this section, we introduce our curated dataset, which eval-
uates hallucinations across three categories, further divided
into small and regular objects. The small object dataset eval-
uates the model’s ability to handle visual detail hallucina-
tions, while the regular object dataset assesses hallucinations
in standard scenarios. By comparing performance across both
datasets, we quantify the model’s performance degradation
when handling small objects. We begin by defining the prob-
lem and categorizing hallucinations. Next, we describe the
methods for data collection and filtering.

3.1 Task Definition and Hallucination Categories

We define Small Objects based on the small object detection
task [Cheng et al., 2023] in computer vision to identify vi-
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Existence Color Position
Model Scope Total PP
Accuracy Precision Recall F1 Score Accuracy Precision Recall FI1 Score Accuracy Precision Recall F1 Score
S 737 746 718 732 590 565 780 655 55.8 535 880 665 1885
LLaVA-1.5-78 R 86.0 818 927 869 710 657 880 752 66.8 606 960 743 2238 3
S 743 772 689 728 620 600 720 655 573 542 945 689 1936
LLaVA-1.5-138 R 86.6 8.1 920 8§73 750 719 820 766 673 610 960 746 2289 3
, s 753 816 653 726 63.0 651 560 602 523 519 630 569 1906
Deepseek-VL-7B-Chat 88.4 882 887 884 83.0 837 820 828 633 505 830 693 2347
s 736 748 713 730 68.0 645 800 714 585 Ss1 920 689 2001
Qwen-VL-Chat-78 R 86.7 826 927 874 83.0 837 820 828 633 505 830 693 2330 29
s 65.7 940 335 494 640 8.8 360 500 618 697 415 520 1915
CogVLM2-19B R 90.1 955 843 895 85.0 27 760 835 67.0 677 650 663 2421 00
SPHINX s 733 796 626 701 65.0 632 720 673 62.8 €02 755 670 2011
R 88.0 875 887 881 81.0 772 880 822 740 683 895 715 2430 b
s 810 790 843 8L6 700 679 760 717 63.5 600 810 689 2145
EaglegiqQ5Bhat R 89.5 847 963 901 820 776 900 833 730 69 910 771 2445 00
, . s 765 734 831 719 63.0 724 420 532 63.8 731 435 545 2033
DecpeeghVL2-Tiny R 86.0 795 971 874 89.0 953 820 882 74.8 770 705 736 2498 63
s 723 917 491 639 730 829 580 682 645 746 440 553 2098
Qwen2-VL-Chat-78 R 90.1 920 878 899 82.0 864 760 809 730 777 645 705 2451 O3
s 673 953 365 527 65.0 727 480 578 60.0 857 240 375 1923
Qwen-VL-MAX R 88.7 955 812 878 80.0 813 780 796 675 843 430 570 2362 B
GPTdo s 75.1 783 693 736 63.0 724 420 532 0.0 625 500 556 1981 o
R 89.2 887 898 892 85.0 889 800 842 618 622 600 611 2360

Table 1: Accuracy(%), Recall(%), Precision(%), F1(%) of different models on three categories. S represents small objects, which
correspond to visual detail hallucinations, while R represents regular objects. Total is calculated as the sum of accuracies across the three
types of hallucinations, while Performance Penalty (PP) represents the difference in Total scores between the two scenarios. The best scores
for small objects are highlighted in bold, and the best scores for regular objects are indicated with underlining.

sual details. Specifically, objects with a bounding box area
smaller than 1024 pixels or occupying less than 2% of the
total image area are classified as Small (S), while all others
are categorized as Regular (R). The classification of visual
detail hallucinations aligns with that of regular object hallu-
cinations. Since POPE [Li et al., 2023b] only evaluates exis-
tence hallucinations and does not assess other categories, we
expand the categorization of object hallucinations into three

types:

» Existence: Misperceptions about the existence of an ob-
ject, such as describing an object that does not exist.

* Color: Misperceptions about the primary color of an ob-
ject.

 Position: Misperceptions about the relative positioning
of two objects.

3.2 Data Collection

Data Annotation Inspired by the previous work [Li et al.,
2023b; Rohrbach et al., 2018], we choose MSCOCO [Lin et
al., 2014] as the source for our dataset. Since the dataset
lacks annotations for color and positional relationships, we
generate this information separately. For the color category,
we manually annotate the data by using bounding boxes to
locate selected objects and label their primary colors. For
positional relationships, we derive the information from the
bounding boxes of the objects, specifically by analyzing the
relative positions of their center points. The positional re-
lationships are categorized as: [ ”bottom right,” “top right,”
“bottom left,” "top left”].

Small Object Data Filtering Our evaluation dataset is di-
vided into two parts based on object size: small objects and
regular objects. Additionally, it is categorized into three types

of hallucinations. For each type, the number of data points is
balanced between the two object categories, with the distinc-
tion based on whether filtering is applied. Different filtering
methods are employed for each type of hallucination:

» Existence: All detected bounding boxes for each object
are recorded. If the largest bounding box area falls below
a given threshold, the image is classified as containing
small objects.

* Color: An object is classified as a small object only if
it has a unique bounding box and its area is below the
specified threshold.

* Position: All unique objects in an image are paired, and
at least one pair must include a small object for the com-
bination to be considered valid.

Each small object must have a unique standalone bound-
ing box (Color category), and only non-duplicate objects in
the image will be paired (Position category). The validation
set of MS COCO2014 contains fewer than 20 images with a
total pixel count below 51,200 (1,024 pixels occupy 2% of the
total 51,200 pixels). A bounding box area smaller than 1,024
pixels typically occupies less than 2% of the image area, re-
ducing computational costs during filtering. We thus adopt
the bounding box area as the filtering criterion. Through this
filtering process, we obtain an annotated dataset of small ob-
jectimages and generate an unfiltered dataset of the same size
for regular objects. Using these datasets, we create yes-or-no
questions from the existing images to evaluate hallucinations.

Question Generation We employ a template-based ap-
proach to generate questions for each image by incorporat-
ing the corresponding annotated information: object name,
color, and the positional relationship between two objects.
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Existence Color Position
Model Method Scope
Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall FI Score
Baseline S 73.7 74.6 71.8 732 59.0 56.5 78.0 65.5 55.8 535 88.0 66.5
R 86.0 81.8 92.7 86.9 71.0 65.7 88.0 75.2 66.8 60.6 96.0 743
Scaffold S 724 76.9 64.0 69.9 55.0 533 80.0 64.0 56.3 54.0 85.0 66.0
LLaVA-1.5-7B R 86.7 84.5 89.8 87.1 72.0 65.7 92.0 76.7 62.3 57.7 915 70.8
CoT s 59.0 554 92.0 69.2 533 523 73.0 61.0
0 R - - - - 66.0 59.8 98.0 742 59.3 56.5 80.0 66.3
tmage Re Ay S 722 78.8 60.7 68.6 57.0 54.1 92.0 68.1 495 497 95.0 65.3
& & R 86.9 853 89.1 87.1 66.0 60.5 92.0 73.0 51.8 50.9 99.5 67.3
L el S 723 91.7 49.1 63.9 73.0 82.9 58.0 68.2 64.5 74.6 44.0 553
25elrg R 90.1 92,0 87.8 89.9 82.0 86.4 76.0 80.9 73.0 717 64.5 705
- S 715 93.2 46.5 62.1 69.0 88.0 44.0 58.7 62.8 83.1 32,0 46.2
Qwen2-VL-Chat-7B R 90.5 95.1 85.3 90.0 81.0 91.9 68.0 782 70.5 82.0 525 64.0
CoT S 73.0 78.0 64.0 703 65.5 718 51.0 59.6
R - 5 S - 84.0 85.4 82.0 83.7 75.0 75.8 735 74.6
Imase Resizin S 75.1 91.0 55.6 69.0 75.0 72.7 80.0 76.2 70.0 75.0 60.0 66.7
& e R 911 92.1 899 910 83.0 85.1 80.0 825 75.3 754 750 752
Bascline S 81.0 79.0 84.3 81.6 70.0 67.9 76.0 717 63.5 60.0 81.0 68.9
: R 89.5 84.7 96.3 90.1 82.0 776 90.0 833 73.0 66.9 91.0 77.1
Scaffold S 713 80.5 72.1 76.0 70.0 67.2 78.0 722 60.5 58.5 72.0 64.6
Eagle-X5-13B-Chat R 89.1 86.6 924 89.4 83.0 77.0 94.0 84.7 715 66.9 85.0 74.9
CoT S 68.0 71.4 60.0 65.2 60.5 57.7 78.5 66.5
R . - - - 80.0 78.8 82.0 80.4 68.8 62.7 925 74.7
Image ResidS S 81.3 81.3 813 813 70.0 67.2 78.0 722 65.0 61.4 81.0 69.8
mage Resizing 90.3 86.3 95.7 90.8 82.0 758 94.0 83.9 723 66.8 88.5 76.1

Table 2: Experiment results of different methods on three kinds of models. The Scaffold method adds anchor positions to input images as
visual prompts to improve model performance. The CoT method enables the model to generate bounding boxes as intermediate information
for better reasoning. The Image Resizing method upscales images by a factor of 2 before inputting them into the model.

For positive examples, we directly use the correct informa-
tion. To generate negative examples, we follow a method
similar to POPE’s [Li et al., 2023b] negative example genera-
tion. First, we collect all object names (or colors, or positional
relationships) from the positive examples. Then, for each in-
stance, we randomly or adversarially select an object name
(or color, or positional relationship) from this collection that
differs from the instance to create a negative example. The
templates we used are as follows:

Existence: Is there {article} {object} in
the image?
Color: Is the main color of the {object} in

the image {color}?
Position: Is {object1} to the {direction}
of {object@} in the image?

We create the evaluation dataset using this generation
method. The statistical details for the data are summarized
in Table 3. The data examples can be found in Appendix
A3.

Metrics We evaluate the model using four metrics: Accu-
racy, Precision, Recall, and F1 Score. Additionally, we cal-
culate the total accuracy across the three hallucination cat-
egories, with separate scores for regular and small objects.
The difference between these two scores highlights the per-
formance degradation when processing visual details.

4 Evaluation of Models and Methods

In this section, we first evaluate the performance of 11 state-
of-the-art LVLMs on the annotated dataset, leading to several
notable observations. Next, we examine the effectiveness of
three training-free data augmentation methods in mitigating
hallucinations.

Category | # Questions #P/#N
Existence 3000 1500/1500
Color 100 50/50
Position 400 200/200

Table 3: The statistical summary of the dataset. ”# Questions” de-
notes the number of questions in the corresponding category, while
”# P/ # N” indicates the number of positive and negative examples
for the respective category.

4.1 Evaluation of LVLMs on Visual Detail
Hallucination

We evaluate several LVLMs, including LLaVA-1.5 [Liu er
al., 2024a], DeepSeek-VL [Lu et al., 2024; Wu er al.,
2024], Qwen-VL [Bai et al., 2023; Wang et al., 2024],
CogVLM2 [Hong et al., 2024], SPHINX [Lin et al., 2023],
Eagle-X5 [Shi et al., 2024], and GPT-40 [Achiam er al.,
2023]. These models exhibit diverse architectural de-
signs. Specifically, LLaVA, DeepSeek-VL, Qwen-VL, and
CogVLM?2 employ CLIP or its variants as visual encoders,
which map images to a fixed resolution for processing.
Sphinx and Eagle utilize a mixture of visual encoders with
varying architectures. Deepseek-VL2 and Qwen2-VL adopt
distinct approaches to enable models to process images of any
resolution. Qwen-VL-MAX and GPT-40 are closed-source
commercial models. We assess these models on our dataset
to evaluate their performance in answering questions about
visual detail hallucination. The results are shown in Table 1.

Our initial observations reveal that all models, including
GPT-40, experience varying degrees of performance degra-
dation when transitioning from regular object scenes to those
with smaller objects. Moreover, a model’s ability to perceive
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Accuracy
Methods Scope Color Position
S 62.0 60.0
Qwen-VL-MAX o e
S 590(1 3.0) 735(113.5)
w. CoT R 83.0(12.0) 853(117.8)

Table 4: Experiment results of CoT method on Qwen-VL-MAX.
CoT significantly improves the accuracy of answering positional
questions but shows minimal or negative impact on color questions.

small objects does not consistently align with its performance
on normal scenes. For example, CogVLM excels in recogniz-
ing regular objects, outperforming Eagle in the existence and
color categories. However, its performance on small objects
declines significantly, particularly in the existence category,
where it underperforms relative to other models. This dis-
crepancy suggests that improving a model’s performance on
regular objects does not necessarily lead to enhanced perfor-
mance on visual details, highlighting the importance of devel-
oping datasets specifically designed to evaluate visual detail-
related hallucinations. Furthermore, the performance of the
same model varies across different categories, underscoring
the necessity of categorical evaluation.

Among these models, Sphinx and Eagle, which employ a
mixture of visual encoders, demonstrate strong performance
on both small and regular objects. Eagle achieves the highest
total accuracy score on the small object evaluation set. This
success is largely attributed to the fact that most models typ-
ically rely on a single ViT-based visual encoder. While this
approach excels at aggregating long-range interactions due
to its training process, it often struggles to capture neighbor-
ing dependencies [Lin et al., 2023]. The mixed visual en-
coder partially addresses this limitation. We will provide fur-
ther analysis about it in Section 5.1. Additionally, Deepseek-
VL2 and Qwen2-VL outperform models that can only handle
fixed resolutions, as they reduce information loss when high-
resolution images are mapped to a fixed resolution.

4.2 Evaluation of Training-Free Methods for
Hallucination Mitigation

We evaluate several training-free methods across different
models. Scaffold [Lei er al., 2024] is a visual prompt method
that overlays a dot matrix within the image to serve as visual
information anchors, utilizing multidimensional coordinates
as textual positional references. Chain of Thought(CoT)
[Wei et al., 2023] typically prompts models to generate the
reasoning process before outputting the final answer. In this
task, we specifically prompt models to utilize bounding boxes
of objects mentioned in the question as intermediate informa-
tion for generating the reasoning process. For the color cat-
egory, the model first detects the bounding box of the object
and then determines whether the color within the bounding
box is correct. For the position category, the model detects the
bounding boxes of two objects, calculates their center points,
and judges the positional relationship based on the relative
positions of these points. For the existence category, detect-
ing bounding boxes is more challenging than directly deter-
mining existence, so we did not conduct experiments in this
category. The prompts we used can be found in Appendix

A.l. Image Resizing is a straightforward approach to ad-
dressing small object hallucinations. We use bicubic interpo-
lation to resize the images by a factor of 2 before evaluation.
We conduct experiments on three methods using three dis-
tinct models: LLaVA, which employs a standard visual en-
coder; Qwen2-VL, which handles images of any resolution;
and Eagle, which integrates multiple visual experts. The ex-
perimental results are summarized in Table 2.

The Scaffold method enhances performance in specific
models and hallucination categories compared to the base-
line, particularly in regular object scenes. However, its ef-
fectiveness is limited for small objects, often resulting in per-
formance degradation. This decline occurs because adding
visual prompts directly to an image has little impact on regu-
lar objects but can obscure small objects, making them harder
for the model to perceive.

61 Pretraining Data
[ Instruction-Tuning Data

Density
N

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Object Area Distribution of LLaVA’s Training Data.
The x-axis represents the ratio of the object’s bounding box area to
the total image area, while the y-axis represents the corresponding
density. In both data categories, small objects exhibit a high proba-
bility density.

For Qwen2-VL, which handles images of any resolution,
upsampling provides additional visual details, achieving the
best performance across all three hallucination categories.
The image resizing method also enhances Eagle’s accuracy
in answering existence and positional relationship hallucina-
tion questions. This improvement stems from Eagle’s mix
of visual experts, which includes models like SAM [Kirillov
et al., 2023] that can process higher-resolution images. In
contrast, the LLaVA model exhibits suboptimal performance
with the image resizing method. This is primarily due to the
visual encoder’s preprocessing step, which resizes images to
a fixed resolution. Upsampling the image before this resiz-
ing does not change the final resolution but degrade image
quality, resulting in a lower-quality representation compared
to the original.

The improvement from the CoT method is more lim-
ited across all models, partly because smaller models have
less advanced language capabilities and struggle to com-
prehend complex instructions. To explore this, we test the
CoT method on Qwen-VL-MAX, a commercial model with
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L Accuracy
Combination  Scope Existence Color Position
A S 79.1 64.0 59.3

R 87.9 75.0 63.5
S 79.6 66.0 60.3
AB R 86.8 76.0 64.5
S 79.6 66.0 60.5
ABC R 86.7 76.0 64.5
S 80.8 68.0 61.8
ABCD R 89.5 81.0 73.3
S 81.0 70.0 63.5
ABCDE R 89.5 82.0 73.0

Table 5: Accuracy of EAGLE with different combinations of vi-
sual encoding features. In this table, visual encoders are denoted as
follows: A for ConvNeXT, B for CLIP, C for SAM, D for EVA-02-
L, and E for Pix2Struct. By incorporating information from differ-
ent encoders, the model’s performance improves to varying extents
across the respective categories, thereby highlighting the contribu-
tion of each encoder in addressing specific categories of problems.

stronger language capabilities. The results in Table 4 re-
veal that the CoT method significantly improves performance
in answering positional relationship questions on Qwen-VL-
MAX. However, it provides only minor enhancements for
color-related questions and even exhibits a slight performance
decline when addressing small object issues. We analyze the
outputs and derive the following insights. First, Qwen-VL-
MAX performs poorly in object existence perception, with
over 40% of responses in the color category stating ‘can’t de-
tect the object.” This significantly degrades performance on
small objects. Furthermore, for data points where the model
with CoT answers “can’t detect the object”, it answers "no”
95% of the time without CoT, indicating that object detection
capability directly impacts color perception. Additionally, we
find that CoT with bounding box as intermediate information
highly relies on the models’ ability to perceive object exis-
tence. Overall, the CoT method does not directly enhance the
model’s visual perception capabilities. Second, the primary
advantage of CoT lies in its ability to infer information be-
yond direct visual perception. For example, we observe a case
where the model struggles to detect the bounding box of a
very small phone. However, by identifying the position of the
person holding the phone, it infers the likely location of the
phone and correctly answers the question. This example can
be found in Appendix A.2. In summary, the image resizing
method mitigates hallucinations by providing the model with
more detailed visual information, whereas the CoT method
leverages the model’s reasoning ability to infer additional in-
formation for hallucination mitigation.

5 Analysis of Design Factors

In this section, we analyze the architecture of mixed visual
encoders and examine the distribution of object area across
different training stages using LLaVA-1.5 as an example, to
infer their potential effect on hallucinations related to small
objects. Then, we analyze how the resize factor affects mod-
els that can handle images of any resolution.

5.1 Influence of Mixed Visual Encoders

In Section 4, we observe that models with mixed visual ex-
perts generate fewer hallucinations. To further explore this
phenomenon, we conduct training-free experiments using the
Eagle-X5-13B-Chat model, which exhibits superior perfor-
mance in Table 1. This model processes visual information
through a mixture of vision encoders combined via channel
concatenation and utilizes a three-stage training recipe in-
cluding vision expert pre-alignment. Firstly, we evaluate Ea-
gle’s performance using features from a single visual encoder
across all three hallucination categories. Secondly, we com-
bine information from multiple encoders and analyze their
individual contributions to solving specific problems. To as-
sess the impact of each encoder, we selectively mask its en-
coded features, disabling its contribution both individually
and in combination. We test five visual encoders: CLIP,
ConvNeXt [Woo et al., 2023], SAM [Kirillov et al., 2023],
Pix2Struct [Lee et al., 2023], and EVA-02-L [Fang et al.,
2024]. While ConvNeXt is based on a convolutional net-
work, the others utilize the ViT architecture and are trained
with distinct processes or for specific tasks.

From Table 6, we observe that task-specific models like
SAM (segmentation) and Pix2Struct (OCR) perform poorly
when relying solely on features from a single visual encoder
for existence hallucination problems. While CLIP’s encod-
ing outperforms these two, it still underperforms compared
to models trained exclusively with CLIP, such as LLaVA-
v1.5. In contrast, ConvNeXt’s encoding yields the best re-
sults for existence hallucinations, even surpassing some mod-
els listed in Table 1. Moreover, augmenting ConvNeXt’s en-
coding with other encoders’ information does not substan-
tially improve performance. This suggests that the model re-
lies mainly on ConvNeXt’s information and treats other en-
coder data as auxiliary. This also explains why performance
drops more significantly when using only CLIP’s encoding,
compared to models trained with CLIP, as the model treats
CLIP’s information as secondary. For other types of halluci-
nation problems, ConvNeXt’s encoding still provides an ad-
vantage, though the effect is less pronounced compared to
existence hallucinations. Incorporating information from en-
coders such as CLIP and EVA-02-L results in significant im-
provements, indicating their substantial contribution to solv-
ing these problems.

The results reveal several interesting insights. When mul-
tiple visual encoders process an image, each encoder gener-
ates distinct encoded features due to variations in architec-
ture, training procedures, and objectives. These encoders can
be likened to an LVLM equipped with multiple “eyes”, akin
to human vision, where each eye may perceive the same scene
differently. Similar to the human brain, which processes vi-
sual information asymmetrically from both eyes [Khan and
Crawford, 20011, a visual language model exhibits a “dom-
inant” encoder after joint training. In such cases, the model
prioritizes information from one encoder, analogous to the
dominant eye, while treating input from the other encoders as
supplementary. This structure shows potential for reducing
small object hallucinations, suggesting that targeted training
could enable the model to leverage different visual inputs for
small object detection while using others for general scenes.
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Figure 2: Influence of resizing factors on the accuracy of responses to three categories of hallucination problems. The x-axis represents
the resize factor. The two red lines in each figure represent the performance with original resolution in both R(regular) and S(small). For
Existence and Position, accuracy improves as the image size increases, while no significant correlation is observed for Color category.

Visual Expert  Scope Existence Acéirliiy Position
ConvNeXt 7‘3 ;2; 2?8 ggg
cLIp 2 .\t 650 305
saM R a4 700 518
BVAOL R g3 g0 s
Pix2Struct 753 322 238 Zég

Table 6: Accuracy of EAGLE in answering three categories of
hallucination using only a single visual encoding feature. No-
tably, ConvNeXt excels in handling the existence hallucination prob-
lem, making it the primary contributor to the response for this issue.
For other types of hallucinations, multiple visual encoders contribute
to varying extents.

5.2 Small Object Distribution in Training Data

We analyze the distribution of small objects in its training
data. The LLaVA-1.5 training process involves two main
stages: pre-training for modality alignment and visual in-
struction tuning. The pre-training utilizes a 558K subset
of the LAION-CC-SBU dataset with BLIP captions, while
the instruction tuning phase incorporates from COC0O2017,
GQA [Hudson and Manning, 2019], OCR-VQA [Mishra
et al., 20191, TextVQA [Sidorov et al., 2020], and Visu-
alGenome [Krishna et al., 2017]. Since OCR-VQA and
TextVQA focus on text within images, we exclude them from
our analysis.

We extract the objects from the training data using part-of-
speech tagging methods and apply Grounding DINO [Liu et
al., 2023b] to obtain their bounding boxes. We then analyze
the distribution of bounding box areas for all mentioned ob-
jects. The results in Figure 1 indicate that the probability den-
sity of small objects is relatively high in both pre-training and
instruction tuning data. Therefore, the proportion of small
objects in the training data does not appear to be the primary
cause of the model’s tendency to hallucinate small objects.

5.3 Influence of Resizing Factors

Furthermore, we explore the influence of different resize fac-
tors on accuracy. Specifically, we set 16 factors ranging from

0.5 to 2.0 incremented by 0.1. We resize the image with a
factor : when r > 1, the image is upsampled with bicubic
interpolation, and when r» < 1, the image is downsampled
with Lanczos interpolation. While LLaVA-1.5 preprocesses
images by resizing them to a fixed resolution, we explore the
use of Qwen2-VL here, which can handle images of any res-
olution, to provide a more flexible analysis.

The experimental results are summarized in Figure 2. For
Existence category (Figure 2a), a clear positive correlation
between the resize factor and accuracy is observed, particu-
larly for small objects. As the image size increases, accuracy
consistently improves, indicating that upscaling enhances the
model’s ability to detect small objects. In contrast, for regu-
lar objects, accuracy remains stable, suggesting that the resize
factor has little effect on their detection. For Color category
(Figure 2b), no significant correlation between resize factor
and accuracy is observed for either small or regular objects.
The performance fluctuates without a clear trend, implying
that color recognition is less sensitive to changes in image
size. For Position category (Figure 2c), accuracy improves
as the resize factor increases, particularly for small objects.
This trend highlights the importance of upscaling in enhanc-
ing spatial reasoning for small objects, whereas the perfor-
mance for regular objects remains consistent.

In summary, the resize factor significantly affects the exis-
tence and position categories, particularly for small objects,
but has minimal impact on the color category.

6 Conclusion

In this work, we curate a dataset to evaluate and analyze vi-
sual detail hallucinations, filtering data based on automatic or
manual annotations for corresponding categories. We evalu-
ate multiple models and methods, revealing that architectures
like the mixture of visual experts and visual encoders capa-
ble of handling images of any resolution effectively mitigate
these hallucinations. Additionally, the CoT and Image Re-
sizing methods exhibit strong potential in mitigating visual
detail hallucinations. Through an ablation study on model ar-
chitecture, we find that ConvNeXt architecture is critical for
object existence recognition tasks, and integrating informa-
tion from multiple visual encoders is significantly more ef-
fective than relying on a single encoder for mitigating other
types of hallucinations.
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