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Abstract

Detecting anomalous nodes in dynamic graphs is
challenging due to sample imbalance, which arises
from the rarity of anomalous samples and biases
in feature representation. Existing approaches, typ-
ically based on unsupervised or semi-supervised
learning, attempt to identify anomalies from unla-
beled data but often fail to collect sufficient anoma-
lous instances because of their infrequent occur-
rence. Additionally, GNN-based methods tend to
focus on abundant normal samples, further over-
looking rare anomalies. To overcome these lim-
itations, we introduce the Anomaly Balance Net-
work (ABNet), a framework specifically designed
to mitigate sample imbalance and improve anomaly
detection. ABNet comprises three main compo-
nents: a feature extractor that compares node fea-
tures across temporal snapshots to reduce bias, an
anomaly augmenter that enhances anomaly char-
acteristics and generates diverse anomalous sam-
ples, and an anomaly detector that leverages meta-
learning to adapt to evolving graph structures.
Experiments on three real-world datasets demon-
strate that ABNet consistently outperforms exist-
ing methods and effectively addresses the sample
imbalance problem.

1 Introduction

Dynamic graphs are characterized by evolving nodes and
edges, reflecting changes in structure over time. In real-
world scenarios such as social networks [Wang et al., 2023a;
Wang et al., 2023b] and financial systems, anomaly detec-
tion is particularly challenging due to severe sample im-
balance—normal samples vastly outnumber anomalous ones
[Hong et al., 2024]. While normal nodes exhibit expected be-
haviors, anomalous nodes display irregular actions that may
indicate underlying problems. For instance, in a financial
payment system (see Figure 1), most users (nodes) perform

*corresponding author

o RN

7

N )
- ~  Fi ial Netw ~
e R . -1nan;1a S or! !! N
A2, T & T 22 2y
YPS b 4 - 2 o\
- ™ /
2 & 2, 2 0T/
\ —< 2 2 2 e 2 /F
S~ /\\ - s I .‘.%’ or :

J——

Figure 1: The phenomena of sample imbalance in the task of anoma-
lous node detection in dynamic graphs.

routine transactions (edges), but a small minority may engage
in fraudulent activities like credit card theft, deviating from
typical patterns. Detecting these rare anomalous users is dif-
ficult because their scarcity limits the availability of training
examples, making it hard for traditional methods to learn dis-
tinguishing features of anomalies. Therefore, effectively ad-
dressing sample imbalance is crucial for advancing anomaly
detection in dynamic graphs.

Existing approaches for anomaly detection in dynamic
graphs often depend on mining anomalies from unlabeled
data. Unsupervised methods, for example, identify anoma-
lous nodes by measuring reconstruction errors in autoen-
coders [Zhou and Paffenroth, 2017] or by analyzing residuals
from matrix decomposition techniques [Bandyopadhyay er
al., 2019]. Semi-supervised strategies, such as SAD proposed
by Tian et al. (2023), utilize large volumes of unlabeled data
to detect anomalies in dynamic graph streams. Nevertheless,
due to the inherent rarity of anomalies, unlabeled datasets fre-
quently lack a sufficient number of anomalous samples, mak-
ing it difficult to overcome the sample imbalance problem.

Addressing this issue requires tackling two main chal-
lenges. First, there is a need to reduce reliance on unlabeled
data, which typically does not contain enough anomalous ex-
amples for robust model training. Since anomalous events are
infrequent by nature, models that depend solely on unlabeled
data struggle to learn diverse and representative anomaly pat-
terns, limiting their ability to detect rare anomalies. Second,
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feature representation bias poses a significant obstacle. Graph
Neural Network (GNN)-based methods often exhibit a bias
toward the majority class (normal nodes) because they ag-
gregate information from neighboring nodes. In imbalanced
datasets, this aggregation process predominantly reflects the
characteristics of normal nodes, causing the model to over-
look the distinctive features of anomalous nodes.

To address these challenges, we propose the Anomaly Bal-
ance Network (ABNet), which is composed of three main
modules: (i) Feature Extractor, (ii) Anomaly Augmenter,
and (iii) Anomaly Detector. The Feature Extractor miti-
gates feature representation bias by emphasizing temporal
variations in node features, rather than aggregating infor-
mation solely from neighboring nodes. By capturing how
a node’s behavior changes over time, this component re-
duces the overwhelming influence of normal nodes and en-
hances the detection of anomalies. The Anomaly Aug-
menter tackles the scarcity of anomalous samples by gen-
erating synthetic anomalies through a combination of dis-
crete wavelet transforms—which retain important feature de-
tails—and autoencoder-based perturbations. This strategy en-
riches the training set with diverse anomalous examples. The
Anomaly Detector leverages a meta-learning framework that
enables the model to adapt to evolving graph structures, im-
proving its ability to identify new and emerging anomalies
as the network changes. Experimental results on benchmark
datasets demonstrate that ABNet surpasses existing methods,
particularly by alleviating the sample imbalance problem and
boosting anomaly detection performance.

We summarize the main contributions of this paper as fol-
lows:

* We introduce the Anomaly Balance Network (ABNet),
which addresses feature representation bias by employ-
ing a feature extractor that emphasizes temporal varia-
tions in node behavior, rather than relying solely on in-
formation from neighboring nodes.

L]

We develop an anomaly augmentation method that gen-
erates synthetic anomalous samples by combining dis-
crete wavelet transforms—preserving essential feature
details—with autoencoder-based perturbations to enrich
anomaly diversity.

L]

We design a meta-learning framework that enables the
model to adapt to the evolving structure of dynamic
graphs, improving its ability to detect newly emerging
anomalies and generalize to unseen data.

We conduct comprehensive experiments on real-world
benchmark datasets, demonstrating that ABNet effec-
tively detects anomalous nodes and mitigates sample im-
balance. !

2 Related Work

Anomalous node detection in dynamic graphs has emerged
as a critical research area due to the complex and evolving
nature of real-world networks [Wang et al., 2021]. Early ap-
proaches, such as the local density-based method proposed

'The code is available at an anonymous repository: https://
anonymous.4open.science/r/ABNet_sample-F626.

Symbol Definition Symbol Definition
Gy Dynamic graph at time ¢. Vi Nodes at time ¢.
Ey Edges at time ¢. H; Node feature matrix at time ¢.
T End time in the dynamic graph. ) Anomalous scores of nodes.
[N Feature difference in G;. wy Anomalous part of ;.
Wi, Wy  Weight matrices of the encoder. | W3, Wy  Weight matrices of the decoder.
St Generated anomalous features. Y: Predicted label for node v;.
DWT  Discrete wavelet transform. A, Normalized adjacency matrix of G
Y; Ground truth label for node v;. 0 Model parameters.
€t random perturbations. Dyasi; Input of meta-tasks.
b Inner loop learning rate. [ Outer loop learning rate.
Ay Adjacency matrix of Gy. Dy Degree matrix of GY.

Table 1: Notations

by [Breunig et al., 20001, identify anomalies by comparing
a node’s density to that of its neighbors. While effective in
some settings, these methods often falter in the presence of
severe class imbalance, as the scarcity of anomalies means
their influence on local density is minimal, resulting in missed
detections.

The development of dynamic graph learning has led to
more sophisticated models. For example, TGAT [Xu et
al., 2020] employs self-attention mechanisms and functional
temporal encoding to capture temporal dependencies and dy-
namic node interactions. By embedding temporal informa-
tion directly into the graph structure, TGAT can model evolv-
ing relationships. However, its performance is constrained by
the need for large amounts of labeled data, making it less suit-
able for unsupervised or semi-supervised anomaly detection
where labeled anomalies are rare.

To address the challenge of limited labeled data, Ding et
al. (2021) introduced GDN, a graph neural network that
leverages a small set of labeled anomalies to learn normal
behavior patterns. GDN incorporates meta-learning, transfer-
ring knowledge from auxiliary networks to the main model,
thereby enhancing adaptability to changing graph conditions
and improving anomaly detection performance [Vilalta and
Drissi, 2002]. This approach is particularly advantageous
in highly dynamic environments where node behaviors shift
rapidly.

Building on this, Tian et al. (2023) proposed SAD, a semi-
supervised anomaly detection framework that utilizes a mem-
ory bank to store the statistical distribution of normal sam-
ples. This memory provides valuable prior knowledge, aid-
ing in the identification of anomalies. Nonetheless, SAD still
faces significant challenges from class imbalance, as the over-
whelming prevalence of normal data can obscure the detec-
tion of rare anomalous nodes.

Despite these advancements, a fundamental limitation per-
sists: most existing methods depend heavily on unlabeled
data. In imbalanced settings, the lack of sufficient anoma-
lous samples within the unlabeled pool restricts the model’s
ability to learn diverse anomaly patterns, ultimately hindering
performance in practical anomaly detection scenarios.

3 The Problem

Consider a dynamic graph G represented as a sequence of
graph snapshots G = {G1,Gs,...,Gr}, where each snap-
shot G; = (V;, E}) consists of a set of nodes V; and edges F;
at time ¢. Our objective is to identify anomalous nodes in the
most recent snapshot Gr.
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Formally, we seek to compute the set A7 = {(v,d) | v €
Vr,6 € [0,1]}, where each node v € Vr is assigned an
anomaly score ¢ that reflects the degree of abnormality, pri-
marily based on its temporal feature evolution. Ideally, truly
anomalous nodes would have § = 1, while normal nodes
would have § = 0. The notations and symbols used through-
out this work are summarized in Table 1.

4 ABNet

Overview. Figure 2 illustrates the overall architecture
of ABNet, which is composed of three main modules: (i) Fea-
ture Extractor, (i) Anomaly Augmenter, and (iii) Anomaly
Detector.

The Feature Extractor is responsible for capturing and
processing informative features from the dynamic graph, with
a particular focus on the temporal evolution of node be-
haviors. The Anomaly Augmenter addresses the scarcity
of anomalous samples by generating synthetic anomalies,
thereby enriching the training set and enhancing the model’s
robustness. The Anomaly Detector leverages the features
produced by the previous modules to identify nodes exhibit-
ing abnormal patterns. The following sections provide de-
tailed descriptions of each component.

4.1 Feature Extractor

The feature extractor in ABNet takes as input a sequence of
normalized adjacency matrices {1210,1417 . AT} and cor-
responding node feature matrices {Hy, Hy,...,Hp}. It
employs multiple layers of Graph Convolutional Networks
(GCNs) [Yao et al., 2019] to iteratively update node represen-
tations by aggregating information from each node’s neigh-
bors at every time step.

At the initial time step (tf = 0), node features Hy are typ-
ically initialized randomly [Hamilton ez al., 2017; Wang and
Zhang, 2022]. The GCN then updates these features as fol-
lows:

Hj = o(AgHoWp), (1)

where H|) denotes the updated node features after applying
the GCN at time step 0, W, is the learnable weight matrix at
time 0, and the normalized adjacency matrix at time step 0 is
given by:

Ao =Dy * A4yD5 %, @)

where Dy is the degree matrix of the adjacency matrix A.
For each subsequent time step ¢ > 0, the node features
are updated by incorporating both the current graph structure
G and the node features from the previous time step ¢ — 1.
Specifically, the features for nodes present in both G;_; and
G are initialized using the updated features from the previous
step:
Hy[: Ny1] = HLD 3)

where N;_; denotes the number of nodes at time ¢ — 1, en-
suring feature continuity across time. The GCN then refines
these features for the current snapshot:

H) = o(AHW), 4)

where Hj is the updated node feature matrix at time ¢, /lt
is the normalized adjacency matrix, and W} is the learnable
weight matrix for this step.

A common issue with GCNs is feature smoothing, which
can mask anomalous behaviors by blending node features
with those of their neighbors. To address this, we intro-
duce a projection-based approach that emphasizes the tempo-
ral change in node features between consecutive time steps.
The temporal feature difference, denoted as ®;, is computed
as:

(Dt = prOj(Ht,th) = Ht —

where proj(+, -) denotes the projection operation, follow-
ing the approach in [Qin ef al., 2020]. In this context, ®;
captures the temporal change in node features from time step
t — 1 to t by projecting H, onto H,_; and subtracting the
aligned component. Specifically, let H;_;, H, € RV*¥ be
the node feature matrices at time steps t — 1 and ¢, where
N is the number of nodes and F' is the feature dimension.
The term (H;_1, H;) denotes the inner product between the

two feature matrices, and || H;_1 ||? is the squared L2 norm of

H;_,. The expression H; — HHF 1 yields the com-

ponent of H; orthogonal to H;_, effectively quantifying the
novel or changed information in the node features between
consecutive time steps.

This projection-based difference, ®; = proj(Hi—1, Ht),
thus isolates the temporal variation in node features, retain-
ing the same shape as the original matrices (®, € RV*F),
By focusing on the orthogonal component, ®; highlights the
degree and direction of feature evolution from ¢ — 1 to ¢, pro-
viding a sensitive indicator for detecting abnormal or abrupt
changes in node behavior over time.

4.2 Anomaly Augmenter

The anomaly augmenter in ABNet is designed to address the
scarcity of anomalous samples by generating diverse syn-
thetic anomalies, thereby enriching the training set and im-
proving model robustness [Reddy et al., 2017]. Our aug-
menter is built upon an autoencoder framework, which con-
sists of an encoder and a decoder, with additional mechanisms
to preserve and enhance critical anomaly-related features.

Encoder. The encoder maps the input features of anoma-
lous nodes into a compact latent representation. A key chal-
lenge in this process is the potential loss of fine-grained
details that are crucial for distinguishing anomalies. To
mitigate this, we integrate the Discrete Wavelet Transform
(DWT) [Edwards, 1991] into the encoding pipeline. DWT
decomposes the input into frequency components, allowing
the model to retain high-frequency (detail-rich) information
that may be indicative of anomalous behavior.

The input to the anomaly augmenter is the set of temporal
feature differences for anomalous nodes, denoted as {w; | t €
[0,T — 1]}, where each w; is a subset of ®; corresponding to
anomalous nodes at time ¢. The encoder processes each w; as
follows:

z = f (W -ReLU (W; - DWT(wy))), (6)
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Figure 2: The architecture of ABNet, encompassing: a feature extractor, an anomaly augmenter, and an anomaly detector.

where W3 and W are learnable weight matrices, DWT(+) ap-
plies the discrete wavelet transform, and f(-) denotes a non-
linear transformation (e.g., a feedforward layer). This design
ensures that the encoder captures both the global structure
and the subtle, high-frequency variations present in anoma-
lous node features.

Decoder. The decoder reconstructs the input from its la-
tent representation and is responsible for generating synthetic
anomalous samples. To achieve this, we inject random per-
turbations into the latent space by adding noise drawn from
a standard normal distribution, ¢; ~ N(0, 1), to the encoded
vector z:

Sy = g(Wy4 -ReLU(W3 - (2 + ¢4))), @)

where W3 and W, are the decoder’s learnable weight matri-
ces, g(+) denotes a nonlinear transformation (such as a feed-
forward layer), and S; is the resulting synthetic anomalous
feature. The addition of ¢; introduces stochasticity, enabling
the generation of diverse anomalous samples that extend be-
yond the original data distribution. This process enhances
the model’s exposure to a broader range of anomaly patterns,
thereby improving its ability to recognize and generalize to
unseen anomalies.

To effectively balance the proportion of normal and anoma-
lous samples in the training set, we repeat the perturbation
and decoding process as necessary, generating a sufficient
number of synthetic anomalous features to achieve the de-
sired distribution for model training. This approach allows
us to directly address sample imbalance by augmenting the
minority class.

The autoencoder is optimized by minimizing the Mean
Squared Error (MSE) loss [Wang and Bovik, 2009] between
the original anomalous input w; and its reconstructed output
Stl

1 T-1
2
MSE = - ; looe = Sell* ®)

where w; denotes the original features of anomalous nodes
at time step ¢, .S is the corresponding generated anomalous
feature, and T is the total number of time steps. We employ
an enhanced version of the Adam optimizer [Bock and WeiB,
2019] to update the autoencoder parameters, ensuring stable
and efficient convergence.

By generating diverse synthetic anomalies through random
perturbations in the latent space, the anomaly augmenter en-
riches the training data and exposes the model to a broader
spectrum of anomalous patterns. The integration of DWT in
the encoder further preserves high-frequency, detail-rich fea-
tures, enhancing the model’s ability to detect subtle and com-
plex anomalies.

4.3 Anomaly Detector

The anomaly detector in ABNet is responsible for identify-
ing anomalous nodes by leveraging both temporal and aug-
mented feature representations. To achieve robust detection,
we construct meta-tasks by sampling node features at various
time steps, enabling the model to learn from diverse temporal
contexts and synthetic anomalies.

To effectively capture information at multiple levels of ab-
straction, we design a dual-channel architecture. One chan-
nel focuses on extracting deep, abstract features, while the
other captures shallow, surface-level characteristics. This
complementary structure ensures that both intricate patterns
and immediate cues relevant to anomaly detection are uti-
lized. Specifically, for each meta-task, the input Di,si
is sampled from the union of synthetic anomalous fea-
tures {Sp,S1,...,S7—1} and temporal feature differences
{®y, P1,...,Pr_1}. The combined feature representation
is formulated as:

f = afD(Dtask:) + (1 - a)fS(Dtask)a (9)
where « is a fusion coefficient balancing the contributions of
the two channels. Here, fp denotes the deep feature extractor,
implemented as a stack of five convolutional layers to capture
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Algorithm 1 ABNet training process-flow.

Input:{flo,fll,--- ,AT} and {HQ,Hh"- ,HT}. The
learning rate for the inner loop . The learning rate for
the outer loop .
Extracting node features {®q, @1, -+ , D7} by (1)-(5).
Generate anomaly features {Sp, S1,- -, S7—1} by (7).
Sampling meta-tasks from the set {Sg,S1, -+, Sr—1} U
{(DOa(I)la e a(I)T Y - 1}
for each training iteration do
for each meta-task input D, in meta-tasks do
Compute dual-channel features by (9).
Compute Detection Loss by (10).
The parameter 6/ is updated by (11).
end for
The parameter 6’ is updated by (12).
end for

complex and abstract representations. fg denotes the shal-
low feature extractor, consisting of two convolutional layers
to retain more immediate, low-level information. This dual-
channel design enables the model to comprehensively repre-
sent node behaviors, as supported by prior work [Kiranyaz et
al.,2021]. .

The anomaly detector outputs a prediction Y;(6) for each
node, where 6 encompasses all learnable parameters. The
ground truth anomaly label is denoted by Y;. We employ the
binary cross-entropy loss to supervise training:

Li(8) = — (Yilog(¥i(0)) + (1 = Yi) log(1 — i(0)) ) .
(10)
To enable rapid adaptation to evolving graph structures and
distributions, we adopt a meta-learning framework with two
nested optimization loops. The inner loop adapts the model
to a specific meta-task, allowing it to quickly specialize to the
sampled data. The outer loop aggregates experience across
multiple meta-tasks, promoting generalization to new, unseen
tasks. The parameter update in the inner loop is given by:

0; = 0 —yVL;(0), an

where 6 is the initial parameter set, 6, is the adapted param-
eter set for the i-th meta-task, L;(#) is the task-specific loss,
and v is the inner loop learning rate.

In the outer loop, the model parameters are updated by ag-
gregating gradients across all meta-tasks:

0 =6—8> VLi(6)), (12)

where 6’ is the updated parameter set, 3 is the outer loop
learning rate, and L;(6}) is the loss evaluated with the adapted
parameters from the inner loop for each meta-task. This hi-
erarchical optimization enables the model to learn both task-
specific and shared representations, enhancing its ability to
detect anomalies in dynamic and imbalanced graph environ-
ments.

The complete training procedure for ABNet is detailed in
Algorithm 1.

Datasets Nodes  Edges  Anomalies Timespan
Wikipedia 9,227 157,474 217 30 days
Reddit 10,984 672,447 366 30 days
Mooc 7,074 333,734 4,066 30 days

Table 2: Statistics of datasets

Time Complexity. The overall time complexity of AB-
Net is determined by its three core modules: the feature
extractor, the anomaly augmenter, and the anomaly detec-
tor. Specifically, the total complexity can be formulated as
O(TLN? + KDM + Ioyer M Lipner ), where T is the number
of time steps, L is the number of GCN layers, and [V is the
number of nodes (feature extractor); K is the number of en-
coder/decoder layers, D is the input feature dimension, and
M is the number of training samples (anomaly augmenter);
M’ is the number of meta-tasks, and Iiger and oy, are the
numbers of inner and outer loop iterations in meta-learning
(anomaly detector).

5 Experimentation

In this section, we present a comprehensive experimental
study to assess the effectiveness of ABNet on standard bench-
mark datasets, comparing its performance with several state-
of-the-art baseline methods. The following subsections pro-
vide detailed descriptions of the experimental setup, datasets,
baselines, and evaluation protocols.

5.1 Experimental Settings

Datasets. We evaluate our approach on three real-world dy-
namic graph datasets [Kumar et al., 2019], summarized in
Table 2:

Wikipedia: This data captures user edit events, with labels
indicating if a user was blocked.

Reddit: This data captures user activity in subreddits, labeled
by whether a user was banned.

Mooc: This data captures student interactions on online
learning platforms, labeled by course dropout status.

Baseline Methods. We benchmark our framework against
the following state-of-the-art baselines:

LOF [Breunig et al., 2000]: Identifies local outliers by com-
paring node density with neighbors.

GDN [Ding et al., 2021]: A few-shot anomaly detector using
cross-network meta-learning with limited labeled anomalies.
TGAT [Xu et al., 2020]: Learns temporal graph representa-
tions via self-attention and time encoding.

SAD [Tian er al., 2023]: Semi-supervised method combin-
ing a time-aware memory bank and pseudo-label contrastive
learning.

TADDY [Liu et al., 2023]: Transformer-based model captur-
ing spatial and temporal information for anomaly detection in
dynamic graphs.

Evaluation Metrics. We use the Area Under the Curve
(AUC) as the primary metric to assess the performance of
all methods. To ensure statistical reliability and reduce the
influence of randomness, each experiment is independently
repeated 20 times under the same settings.
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Experimental Setup. We split each dataset into five tem-
poral segments; the last segment is used for testing (75% for
test, remainder for training/validation). Node features have
dimension k = 128, with a batch size of 100. The anomaly
augmenter uses a S-layer autoencoder, and training employs
an improved Adam optimizer [Bock and Wei$3, 2019]. Exper-
iments run on an Intel Xeon Gold 6132 CPU, 64GB RAM,
and NVIDIA A100 GPU, with results averaged over 20 runs.
We also conduct ablation, parameter sensitivity, clustering,
and heatmap analyses.

5.2 Performance Comparison

Table 3 reports the AUC scores for all compared methods on
the Wikipedia, Reddit, and Mooc datasets. ABNet achieves
the highest AUCs across all datasets—92.21% on Wikipedia,
75.78% on Reddit, and 75.34% on Mooc—demonstrating
strong adaptability to dynamic graph environments and re-
silience to class imbalance.

Among the baselines, LOF yields the lowest performance,
with AUCs of 76.41% on Wikipedia and 54.41% on Mooc,
indicating its limited capacity to handle evolving network
structures. TGAT and GDN show moderate but inconsistent
results: TGAT achieves 79.13% on Wikipedia, 67.06% on
Reddit, and 66.88% on Mooc, while GDN attains 85.12% on
Wikipedia but drops to 67.82% and 66.21% on Reddit and
Mooc, respectively. The performance of GDN is likely hin-
dered by insufficient anomaly diversity. SAD outperforms
LOF and GDN on Mooc with an AUC of 69.44%, but its de-
pendence on a small set of labeled anomalies limits its effec-
tiveness. TADDY, which uses subgraph sampling, achieves
68.47% on Mooc; however, the use of duplicate samples may
reduce the diversity of learned features.

Overall, ABNet consistently outperforms the baselines by
combining meta-learning and data augmentation, which to-
gether improve anomaly diversity and enable the model to
better capture dynamic changes in the graph.

5.3 Ablation Experiments

To assess the impact of each major component in ABNet, we
conduct a series of ablation experiments, each removing or
altering a specific module:

Without High-Frequency Feature Extraction (-E).
Here, we exclude the high-frequency feature extraction from
the anomaly augmenter. This leads to a clear reduction in
performance, indicating that high-frequency features are
essential for emphasizing fine-grained anomalies. Their
absence makes it more difficult for the model to distinguish
subtle abnormal patterns from normal behavior.

Without Dual-Channel Structure (-D). In this setting, we
remove the dual-channel structure from the anomaly detec-
tor. The resulting performance drop suggests that the dual-
channel design, which enables parallel processing of different
data aspects, is important for learning richer and more diverse
representations. Its removal reduces the model’s robustness
and accuracy in detecting anomalies.

Without Both High-Frequency Feature Extraction and
Dual-Channel Structure (-D&E). When both high-
frequency feature extraction and the dual-channel structure

=— Wikipedia Reddit Mooc =— Wikipedia Reddit Mooc
L 1.0
0.9 0
% 0.8
3 0.8 =0
0.7 0.7
06— 0.6-— -
0 0.10.20.30.40.50.60.70. 0.9 1 3 4 5 6
o Moment

(a) (b)

Figure 3: Parameter sensitivity analysis on fusion weight « in dual-
channel structure and partitions of the number of time.

are removed, the model suffers the largest decrease in perfor-
mance. As shown in Table 3, this combined ablation severely
limits the model’s ability to both amplify anomaly details and
capture diverse information, highlighting the complementary
roles of these two components.

Without Feature Projection (—P). In this experiment, we
remove the feature projection module. Feature projection is
responsible for capturing temporal changes in node features
between consecutive time steps, which is critical for identi-
fying subtle behavioral shifts [Wang et al., 2022]. Without
it, the model’s ability to track temporal dynamics is dimin-
ished, resulting in a noticeable decline in anomaly detection
performance, as reflected in Table 3.

These ablation results collectively demonstrate that each
component—high-frequency feature extraction, dual-channel
structure, and feature projection—plays a vital role in the
overall effectiveness of ABNet.

5.4 Parameter Sensitivity Analysis

In this section, we perform a parameter sensitivity analysis
to assess the stability and robustness of ABNet under varying
parameter configurations. Specifically, we investigate how
changes in the fusion weight a within the dual-channel struc-
ture and the number of time steps affect the model’s perfor-
mance.

Figure 3 presents the results of ABNet under different pa-
rameter settings. As illustrated in Figure 3a, the model’s
performance remains stable as the fusion weight « varies,
indicating that ABNet effectively integrates both deep and
shallow features and is resilient to changes in the weighting
scheme.

We further examine the AUC scores obtained when train-
ing with different numbers of time steps, ranging from 3 to 6,
across all datasets. As shown in Figure 3b, the model demon-
strates only minor fluctuations in performance, underscoring
its robustness to the choice of time window and its consistent
effectiveness across datasets.

5.5 Visual Analyses

To gain deeper insights into the workings of ABNet and as-
sess the impact of its feature extraction strategies, we present
a set of visualization analyses. These visualizations demon-
strate how the model responds to evolving network structures
and differentiates between normal and anomalous nodes. The
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Method LOF TGAT GDN SAD TADDY ABNet -E -D -D&E  -P
Wikipedia 7641 79.13 85.12 86.71 84.72 92.21 9042 8922 8554 71.46
Reddit 67.68 67.06 6782 68.77 6792 75.78  75.12 69.98 6892 68.33
Mooc 5441 66.88 6621 6944  68.47 7534  69.87 70.61 69.02 64.56

Table 3: Performance comparisons of different methods and ablation experiments on all datasets in terms of AUC (%). Boldface scores

indicate the best results.

(a) ABNet’s features without
feature projection

(b) ABNet’s features with fea-
ture projection

Figure 4: Visualization of node features on Reddit. Red points indi-
cate abnormal samples. Green points indicate normal samples.
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Figure 5: Heatmap of feature distributions across different time
points before and after training on the Wikipedia dataset.

following subsections offer detailed visual evidence and in-
terpretations drawn from these analyses.

(a) Visualization of Node Features: Impact of Feature
Projection.

We visualize the effect of feature projection on node repre-
sentations to evaluate its role in anomaly detection.

On the Reddit dataset, we use 2D t-SNE [van der Maaten
and Hinton, 2008] to reduce node features from 128 to 2 di-
mensions. Figures 4a and 4b show node features from AB-
Net with and without orthogonal feature projection. Feature
projection produces more distinct, compact clusters, making
normal and anomalous nodes easier to separate. This indi-
cates that projection improves the model’s ability to capture
temporal changes in node behavior.

By computing differences between node features across
time steps, feature projection highlights temporal dynamics
crucial for anomaly detection. Without this step, the model
relies more on static features, which can cause overfitting and
reduced sensitivity to evolving or subtle anomalies.

(b) Temporal KL Divergence Analysis. To assess our

model’s adaptation to temporal shifts in feature distributions,
we compute the Kullback-Leibler (KL) divergence [Hershey
and Olsen, 2007] between node features at different time
points. Visualizing these divergences as heatmaps before and
after training reveals how the model aligns feature distribu-
tions over time, which is important for robust anomaly detec-
tion in dynamic graphs.

Figure 5 shows KL divergence heatmaps for the Wikipedia
dataset, with M denoting each time point. The fifth column,
representing divergence between moment 5 and moments 1—
4, initially shows high KL values before training, indicating
large differences in feature distributions. After training, these
values drop significantly, demonstrating that the model better
aligns feature distributions across time. This reduction high-
lights improved adaptation to temporal distribution shifts and
greater consistency in feature modeling.

5.6 Error analyses

We performed error analysis on a test set with both normal
and anomalous nodes over multiple time steps to identify mis-
classification sources. Errors mainly fell into two categories:
(a) False Positives, i.e., normal nodes flagged as anoma-
lies. These include: (1) Temporal Fluctuations: Short-term
behavioral changes in nodes, though normal, are sometimes
misclassified as anomalies.

(2) Structural Changes: Network topology changes, like edge
additions or removals, can be mistaken for anomalies.

(b) False Negatives, i.e., missed anomalies. These include:
(1) Subtle Anomalies: Some anomalies closely resemble nor-
mal behavior, making detection difficult.

(2) Anomaly Blending: Anomalies that overlap with broader
network changes are less distinct and may be missed.

Most errors were false positives, often due to the net-
work’s dynamic nature—normal nodes sometimes show un-
usual behavior that the model flags as anomalous. False neg-
atives were less frequent and usually occurred when anoma-
lies mimicked normal patterns or were masked by network
changes.

6 Conclusion

We proposed the Anomaly Balance Network (ABNet), a
framework addressing sample imbalance in anomalous node
detection for dynamic networks. Experiments on three real-
world datasets show that ABNet outperforms state-of-the-art
methods and mitigates sample imbalance. Future work will
focus on improving anomaly augmentation and exploring dy-
namic network evolution to further enhance adaptability and
robustness.
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