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Abstract

Vision-language models have achieved remarkable
performance across various tasks by leveraging
large-scale multimodal training data. However,
their ability to generalize to out-of-distribution
(OOD) domains requiring expert-level knowledge
remains an open challenge. To address this,
we investigate cross-domain transfer learning ap-
proaches for efficiently adapting diffusion classi-
fiers to new target domains demanding expert-level
domain knowledge. Specifically, we propose Ex-
pertDiff, a head-less model reprogramming tech-
nique that optimizes the instruction-following abili-
ties of text-to-image diffusion models via learnable
prompts, while leveraging the diffusion classifier
objective as a modular plug-and-play adaptor. Our
approach eliminates the need for conventional out-
put mapping layers (e.g., linear probes), enabling
seamless integration with off-the-shelf diffusion
frameworks like Stable Diffusion. We demonstrate
the effectiveness of ExpertDiff on the various OOD
datasets (i.e., medical and satellite imagery). Fur-
thermore, we qualitatively showcase ExpertDiff’s
ability to faithfully reconstruct input images, high-
lighting its potential for both downstream discrim-
inative and upstream generative tasks. Our work
paves the way for effectively repurposing powerful
foundation models for novel OOD applications re-
quiring domain expertise.

1 Introduction

Vision-language models trained on internet-scale datasets
have shown ground-breaking performance improvements
across various downstream tasks. Many of these large-
scale models have surpassed human capabilities in in-
distribution (ID) generalization tasks, with some even achiev-
ing comparable out-of-distribution (OOD) generalization per-
formances [Jaini ef al., 2024]. The use of large-scale datasets
has significantly enhanced vision-language models’ capabil-
ities (e.g., emergent abilities [Wei et al., 2022; Zhou ef al.,
2024]) by effectively bridging textual and visual information.

*Correspondng author.
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Figure 1: Conceptual comparison of different transfer learning ap-
proaches. (Left) Traditional fine-tuning adjusts the entire model or
specific layers. (Middle) Model reprogramming focuses on modi-
fying input transformations and output mappings while keeping the
foundation model fixed. (Right) Our proposed head-less reprogram-
ming method eliminates the need for an output mapping layer, di-
rectly leveraging the foundation model for the target domain task.

This integration of textual data is crucial as it infuses seman-
tic depth into visual embeddings, which enriches the model’s
ability to generate more contextually accurate and semanti-
cally coherent images.

Building on these advancements, recent studies have inves-
tigated the robustness of off-the-shelf diffusion models (e.g.,
Stable Diffusion [Rombach et al., 2022]) through diffusion
classifiers [Li et al., 2023; Clark and Jaini, 2023], which
utilize the approximated likelihood to calculate the posterior
probabilities via Bayes’ theorem (see Section 3.2). These dif-
fusion classifiers have shown an ability to generalize shapes
in a manner similar to human perception [Jaini et al., 2024],
enabling them to develop a detailed understanding of ob-
jects and generate even spuriously correlated images under
language drift [Gandelsman et al., 2024; Ruiz ef al., 2023;
Huang et al., 2024].

However, whether suitability of off-the-shelf diffusion
models as a foundation model [Bommasani et al., 2022] for
OOD tasks requiring expert-level domain knowledge remains
a topic of debate. For example, performance of diffusion clas-
sifiers on complex tasks like tumor diagnosis with histolog-
ical images remain near chance levels [Radford et al., 2021;
Clark and Jaini, 2023; Fini et al., 2023]. In a similar manner,
previous studies have found that vision-language models gen-
eralize very well with known concepts and data types [Udan-
darao et al., 2024a; Yang et al., 2023b], but they require an
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exponential amount of data for linear performance gains on
new concepts [Udandarao et al., 2024b]. Hence, it is evi-
dent that while large diffusion models excel in certain gen-
eralization tasks, their ability to adapt to new and unfamiliar
domains is still largely underexplored. This gap in their ca-
pability forms a compelling ground for further exploration.

Model reprogramming [Chen, 2024] has emerged as an ef-
ficient transfer learning technique which only require train-
ing the input transformation and output mapping projections,
while keeping the pre-trained backbone model fixed. First,
the input transformation for diffusion models convention-
ally utilize prompt learning methods, which transforms the
initial prompt embedding for target downstream task. In-
tuitively, prompt learning shifts the focus from directly ad-
justing model weights to crafting prompts that “instruct” the
model to better perform the target downstream tasks. Then,
the output mapping projections (e.g., linear probing heads)
pools the discrimintative features from the pretrained back-
bone model.

Drawing from these insights, we introduce head-less model
reprogramming leveraging diffusion classifiers, a novel ap-
proach that eliminates the need for output mapping projec-
tions while enabling efficient adaptation of text-to-image dif-
fusion models to OOD tasks (see Figure 1). Our key contri-
butions include:

* We propose a fully modular plug-and-play model repro-
gramming technique that is applicable to both upstream
and downstream tasks, paving the way for effectively re-
purposing powerful foundational text-to-image diffusion
models for novel OOD applications requiring expert-
level domain knowledge.

* Our approach is highly efficient, as it only requires train-
ing a single parameter for the input prompt.

» The proposed method achieves state-of-the-art perfor-
mance in zero-shot, few-shot domain generalization, as
well as fully supervised learning scenarios.

2 Related Works

2.1 Generative Classifiers

Generative classifiers have long been explored as an alterna-
tive to discriminative approaches, with early works demon-
strating their potential benefits [Ng and Jordan, 2001]. Re-
cent advances in diffusion models have led to a resurgence of
interest in generative classification, particularly in the form of
diffusion classifiers [Jaini et al., 2024; Clark and Jaini, 2023;
Li et al., 2023; Prabhudesai et al., 2023; He et al., 2023;
Chen et al., 2024; Chen et al., 2023; Bhattacharya and
Prasanna, 2024; Vilouras et al., 2024; Krojer et al., 2023].
These approaches leverage the approximate likelihood of
conditional diffusion models to estimate the class probabil-
ities, showing impressive zero-shot generalization capabili-
ties. A key advantage of diffusion-based classifiers is their fo-
cus on geometric and shape-based features of data, in contrast
to traditional models that may overly rely on texture [Jaini
et al., 2024]. This property aligns well with human percep-
tion and contributes to their strong OOD performance. Addi-
tionally, text-to-image diffusion models integrate the genera-

tive capabilities of diffusion models with the semantic under-
standing of vision-language models (VLMs) like CLIP [Rad-
ford et al., 2021], thereby further improving their zero-shot
classification performance [Clark and Jaini, 2023]. However,
challenges remain in adapting these models to domains with
characteristics that are difficult to express in layman’s terms
or fall outside their training distribution. Our work addresses
this gap by proposing efficient learning techniques for im-
proving classification performance on such domains.

2.2 Prompt Learning and Model Reprogramming

Prompt learning has emerged as an effective technique for
adapting large pre-trained VLMs like CLIP to downstream
tasks without full fine-tuning. Early works like CoOp [Zhou
et al., 2022b] and CoCoOp [Zhou et al., 2022a] focused on
learning continuous prompt vectors for the text encoder of
CLIP. More recent approaches like Visual Prompt Tuning [Jia
et al., 2022] and MaPLe [Khattak et al., 2023] have explored
prompt learning in both visual and textual modalities. How-
ever, most of these works focus on CLIP-based classification.
To the best of our knowledge, we are the first to propose a
prompt learning technique for diffusion-based classifiers.

In parallel, model reprogramming [Chen, 2024] has
emerged as an efficient transfer learning technique that adapts
pre-trained models to new tasks by modifying only the in-
put transformation and output mapping, while keeping the
pre-trained backbone fixed. In the context of VLMs, in-
put transformation often take the form of prompt learning,
while output mapping typically involve linear probing or
other lightweight classification heads. However, recent ob-
servations suggest that using projected features from out-
put mapping layers can result in lower classification perfor-
mance compared to using backbone features directly [Bordes
et al., 2022]. This has led to some VLMs discarding out-
put mapping projections during inference. Our work builds
on these insights by proposing a head-less model reprogram-
ming approach that leverages diffusion classifiers, offering a
fully modular, plug-and-play adaptor for off-the-shelf diffu-
sion models without the need for output mapping layers.

3 Preliminary

In this section, we first briefly derive the approximate like-
lihood in discrete-time conditional diffusion models [Sohl-
Dickstein et al., 2015; Ho et al., 20201, and use Bayes’ the-
orem to calculate the class conditional density estimates for
diffusion classifiers [Li et al., 2023; Clark and Jaini, 2023].

3.1 Diffusion Models

Diffusion models are a class of probabilistic generative mod-
els that are based on principle of reversing a diffusion process.
The forward diffusion process incrementally adds Gaussian
noise to the original input x := x¢ € R” into a sequence

of noisy latent variables x1.7 := {xy,...,xr} with a fixed
schedule defined by:
T
g(x1rlxo) := [ [ a(xelxi-1),
=1 (1)
Q(Xt|xt—1) = N(Xt; V1= Bixe_1, 5t1),
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Figure 2: Schematic overview of our proposed ExpertDiff head-less model reprogramming approach. The method combines a pre-trained
diffusion model with prompt tuning techniques, utilizing learnable additive and suffix prompts intialized with text prompt embedding (e.g.,
embedding of “x-ray of pneumonia chest”). The model is optimized using a triplet log-sum-exp loss, with fine-tuning applied only to the
prompt parameters while keeping everything else fixed. + denotes element-wise addition, and & denotes concatenation.

where [ is a hyperparameter for variance schedule.
The conditional reverse diffusion process approximates
the reverse step conditionally with pp(x:—1|xt,c) =
N (x¢—1; po(Xt, ¢, 1), X (X4, ¢,t)) by gradually denoising
from xp ~ N (x7;0,1):

T
po(x | c) = / p(xr) Hpe(xt—l | ¢, c)dxir.  (2)
X1:T t=1

The parameter 6 can be trained by optimizing the variational
lower bound on the log likelihood:

logpg(x | C) 2 _Et,e I:’u}tHEQ(Xt,Cﬂf) - 6”2] +C

@3
po(x | €) = exp {~Eq e [willes(xs, ¢, 1) —€]*] }, )

where w;, is the timestep weighting and C' is a small constant
that is negligible. Stable diffusion [Rombach er al., 2022]
and Imagen [Saharia et al., 2022] use wy = SNR(¢), i.e.,
signal-to-noise ratio, whereas w; = exp(—7¢) have empiri-
cally resulted in better performance for diffusion classifiers
across different backbone models and tasks [Clark and Jaini,
2023].

3.2 Diffusion Classifiers
p(c)pe(x|c)

Bayes’ theorem states py(c|x) = S o ()ps (x]ay and assum-
ing class probabilities p(c) are uniform,

po(x | c)

Pole]X) = e 1O

where ¢ € C is set of all possible classes. Inserting the ap-
proximate likelihood of conditional diffusion model in Eq. 3
into Eq. 4, the predictive posterior probability is derived as

exp {—E¢.e [we|l€g(xs, ¢, t) — €]|?] }

cec €xXP {—Ere [welleg(xe, €, 1) — €[]}
&)

where the expectation term can be approximated using the

Monte Carlo sampling [Li et al., 2023]. Finally, diffusion

“

pg(C‘X): Z

classifier typically makes its decision based on the most prob-
able class assignments, i.e.,

y* = argmax p(c = ¢; | X)
i

(6)

= argmin E; [wy|lea(x¢, ¢, t) — e||2] ,
1

where ¢; € Rlken!xdim ¢ the prompt embedding for i-th
class label y;. These prompts are typically generated using
a task template [Zhang er al., 2023] which transforms a class
name into a task-specific prompt, for example, class name
‘car’ combined with the task template ‘a photo of [y]” can be
transformed into ‘a photo of car’. Refer to Appendix C for
templates used in this paper.

4 ExpertDiff: Head-less Model
Reprogramming with Diffusion Classifiers

In this section, we present ExpertDiff for head-less repro-
gramming of text-to-image diffusion model for cross-domain
classification tasks. Specifically, ExpertDiff builds upon dif-
fusion classifier [Li er al., 2023; Clark and Jaini, 2023] by
optimizing the prompt embeddings for better instructions-
following capabilities on the target downstream task. By re-
programming the diffusion model in a head-less manner and
aligning it with the diffusion classifier’s objective, ExpertD-
iff eliminates the need for a traditional output mapping layer.
Consequently, this approach enables the diffusion model to
effectively handle cross-domain data for both downstream
classification and upstream generation tasks. Our model in-
tegrates seamlessly with off-the-shelf diffusion frameworks
(e.g., Stable Diffusion [Rombach et al., 2022]), making it a
fully modular plug-and-play adaptor for a wide range of OOD
classification tasks.

The proposed ExpertDiff converts the prompts c used as
conditions in text-to-image diffusion models into learnable
parameters, while keeping the weights of the rest of the
model. The design of this parameter is detailed in Section 4.3.
We then replace the traditional output mapping layer (e.g.,
MLP classifier head) with the diffusion classifier’s objec-
tive as described in Eq. 5. Consequently, the negative log-
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likelihood of diffusion classifier is

L= logps(c|x)
(x,c)
_ Z log exp {—]Et)e [wt||e(9(xt,c,t) — e\ﬂ}
D cec exXP{—Ere[wileo(xe, €,t) —€l|?]}

(x,¢)

)
where (x,c) € (X, C) represents all possible pairs of image
and prompt. However, calculating the likelihood py(c|x) re-
quires calculating the expectation over ¢ and € for each class.
This makes the training exponentially inefficient for datasets
with many classes. In the following sections, we propose an
efficient form of the likelihood (Section 4.1) and explain how
to search for the optimal timestep t* to replace the expecta-
tion E; (Section 4.2).

4.1 Efficient Likelihood Calculation

In this section, we derive an upper-bound of negative log-
likelihood for diffusion classifiers, which we use for a more
efficient learning paradigm:

Theorem 4.1. (Proof in Appendix A.3)
The upper-bound of expected negative log-likelihood in diffu-
sion classifier is given by

£ = _E(x,c) logpg(c | X) (8)
< log IE(x,c),é,t,e €xXp {wtd(xa C, év ta 6)} )

where (x,c) € (X,C) represent pairs of image and prompt,

¢ € C represent all possible prompts, and d(x, ¢, ¢,t,€) :=

leo(xi, ¢, t) — €l” — lleg(xt, €,1) — €|

To this end, we use Monte-carlo estimate of the expecta-
tion E(x,c).e.+,c by sampling tuples of {(x,c),¢,t,€}. This
transforms the negative log-likelihood loss into a log-sum-
exp form of the triple loss, where € is the anchor, €y(x¢, ¢, )
is the positive sample, and €y(x;, ¢, t) is the negative sample:

anc.
=
Lrrse = logZexp{wt(H eo(x,c.t) e |2
~ \W—/
{(x,c),8,t,€} s
pos. sample

C))

anc.
o =~
—ll eo(xs,€,8) = "€ |1?)}-
————

neg. sample

This triplet Log-Sum-Exp (TLSE) loss exhibits several de-
sirable properties that make it well-suited for reprogramming
diffusion models (see Section 4.4).

4.2 Optimal Timestep Search

Previous studies on diffusion classifiers have employed a
monotonically decreasing timestep weighting in Eq. 6, such
as w; = SNR(¢) [Li ef al., 2023] and w; = exp(—7t) [Clark
and Jaini, 2023], based on the assumption that scores from
less noisy latents are more discriminative. However, recent
findings have challenged this assumption [Mukhopadhyay
et al., 2023; Yue et al., 2024]. In accordance to these re-
cent findings, we have also observed that less noisy latents
can sometimes be less discriminative, and that scores from

Algorithm 1 Training ExpertDiff with Optimal Timestep

Require: Paired dataset D = {(x,y)}, learnable prompt em-
beddings C = {(c);}, pre-trained diffusion model €g,
learning rate 7, timestep search iterations N

1: for i = 1 to # of class do > Initialize Prompt Emb.
2: c; < task-template(y; )
3: scores < zeros(7T')
4: fori =1to N do > Optimal Timestep Search
5 Sample (x,c) ~D,é~C,e ~N(0,I)
6: fort =1to T do
. 1 oY Vagd(x,c,é,t,€)
7: score < 3 {1 erf (QW )}
8: scores|[t] < scores|t] + score
9

: t* + arg max scores|t]
t

—_
=]

: while not converged do > Prompt Optimization
Sample (x,c) ~ D,é ~C,e ~ N(0,1)

L1083 ¢ (x.0)e.e) EXPLd(X, C,E,t7, €)}

Update ¢ <~ ¢ — VL

: return Prompt embeddings c, timestep t*

—_— = = =
L S

most timesteps contribute minimally to the predictive poste-
rior, with some even consistently degrading performance (see
Figure 5). These findings suggest a more nuanced relation-
ship between timestep, noise level, and discriminative power
than previously assumed. Moreover, we observe that a single,
carefully chosen timestep can yield performance comparable
to using all timesteps, suggesting the potential for a more effi-
cient approach that eliminates the need for timestep iteration
during both training and inference.

To this end, we propose a modified version of the class
attribute loss introduced by [Yue et al., 2024] to search for the
optimal timestep ¢* that maximizes the discriminative power
of the latents:

1 vaogd C,t
t* ;= argmax— |1 — erf 0ud(x,c,&,t ) , (10)
¢ 2 2/2(1 — ay)

where @ is the variance schedule, d(-) is the triplet distance
in Eq. 8, and erf(z) = =% [ e~*"dt denotes the error func-

™
tion which normalizes the triplet distances. This equation

calculates the pixel-level difference between images condi-
tioned on different classes, serving as a measure of their dis-
tinguishability at a given timestep . However, for tasks where
diffusion classifier (i.e., Eq. 6) perform at chance levels, the
class attribute loss is ineffective in identifying the optimal
timepoint prior to training. In such cases, we can instead se-
lect a timepoint that has empirically demonstrated consistent
effectiveness across diverse datasets (for Stable Diffusion, we
found ¢* = 200 to be a reliable choice across domains).

Finally, we reformulate the TLSE training loss in Eq. 9
and the decision rule in Eq. 6 with this optimal timestep (see
Algorithm 1):

Lypsp =log Y exp{d(x,c,¢& ", €)}, (11)
{(x,c),¢,€e}
y* =argmin E, [lleo(x¢x, €i, t*) — eHQ] . (12)
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M Zero-shot Fully Supervised
ethod (%)
CLIP  MedCLIP DiffCLS DiffTTA | Ours CoOp  CoCoOp MaPLe DiffTTA | Ours
Breast 69.11 81.23 52.13 56.69 | 7398  76.19 77.04 81.20 59.23 | 79.44
Chest 62.52 87.52 63.12 5724 | 65.23  85.88 86.06 87.11 65.32 | 88.62
Camelyon 58.07 65.40 51.31 53.00 | 64.91 61.35 59.29 67.29 59.29 | 93.70
EuroSAT 58.13 36.24 12.40 7234 | 62.33 8347 75.74 91.67 75.39 | 93.22

Table 1: Comparison across different methods on various datasets in zero-shot and fully supervised settings (measured in accuracy (%),
highest value is bolded, second highest value is underlined). ExpertDiff demonstrates competitive performance in both zero-shot and fully
supervised settings, with the exception of MedCLIP, which excel on medical data but struggle with non-medical domains like EuroSAT.

4.3 Prompt Design

We design the prompt c as a learnable parameter in the dif-
fusion model. This design allows us to optimize the prompt
specifically for the downstream task, enhancing the model’s
ability to follow task-specific instructions. Our prompt de-
sign incorporates two visual prompting techniques commonly
used in transformer architectures [Li and Liang, 2021]: (1) an
additive prompt, and (2) a suffix prompt. The additive prompt
is added to the input embeddings, while the suffix prompt is
concatenated with the input embeddings. We initialize the
additive prompt using the transformed task template (e.g., ‘a
photo of airplane’), while the suffix prompts are initialized as
zero vectors. The suffix prompt is then concatenated with the
additive prompt embedding, resulting in a learnable prompt
embedding c; € R2[kenlxdim 1 off the-shelf Stable Diffu-
sion models, the number of tokens (i.e., |token|) is typically
77, and the embedding dimension (i.e., dim) is 1024. This
configuration allows for flexible and learnable prompt repre-
sentations within the established Stable Diffusion framework.

4.4 Interesting Properties of the TLSE Loss

Proposition 1 (Proof in Appendix A.1). The TLSE loss is
robust to outlier negative samples, assigning them lower gra-
dients compared to boundary negative samples.

Proposition 2 (Proof in Appendix A.2). The TLSE loss is
smooth with respect to the model parameters 0, allowing for
stable optimization.

The TLSE loss’s robustness to outlier negatives prevents
overfitting to difficult samples, which is particularly benefi-
cial when reprogramming diffusion models for new domains
where some class distinctions may be subtle. Additionally,
the smoothness of TLSE with respect to model parameters al-
lows for stable optimization, enabling effective fine-tuning of
the prompt embeddings without destabilizing the pre-trained
diffusion model weights.

S Experiments

In this section, we present a comprehensive evaluation of our
proposed ExpertDiff method across various experimental set-
tings. Our experiments are designed to assess ExpertDiftf’s
performance and adaptability in three key OOD scenarios:
zero-shot learning, few-shot domain generalization, and fully
supervised learning. Through these experiments, we aim to
answer couple of important questions: (1) How well does
ExpertDiff perform in domains requiring expert knowledge,

particularly in scenarios with limited labeled data? (2) Can
ExpertDiff effectively generalize to unseen domains, espe-
cially in challenging medical imaging tasks? Additionally,
we conduct qualitative evaluations to examine ExpertDiff’s
ability to reconstruct input images and perform image edit-
ing, demonstrating its potential for both downstream discrim-
inative and upstream generative tasks. Finally, we present
ablation studies to analyze the impact of various components
of our method.

5.1 Experimental Setup

In this section, we briefly describe the experimental setup for
evaluating the proposed method. Further details are provided
in Appendix C.

Dataset

To test the effectiveness of our proposed method, we con-
duct experiments across 3 medical datasets (Breast ultra-
sound [Al-Dhabyani ef al., 2020], Chest X-ray [Kermany
and others, 2018], and Camelyon17-WILDS breast cancer
miscropy [Sagawa er al., 2022]) and the EuroSAT satel-
lite dataset [Helber et al., 2018]. This diverse selection of
datasets is designed to encompass a broad spectrum of do-
mains and modalities, each demanding varying degrees of ex-
pert knowledge.

Implementation Details

For our proposed method, we utilize the publicly available
pre-trained Stable Diffusion' as the backbone architecture.
However, our method is not limited to this specific model
and can be applied to most text-to-image diffusion models.
The core components of our method, i.e., the TLSE loss
(Eq. 9, 11) and optimal timestep search (Eq. 10), are model-
agnostic and only require access to the noise prediction net-
work, which is a standard component in most text-to-image
diffusion models. We trained our model for 100,000 itera-
tions for fully supervised learning and 20,000 iterations for
few-shot learning using a single Nvidia RTX 4090. Follow-
ing DiffTTA’s zero-shot setting [Prabhudesai er al., 2023], we
sample random Gaussian noise xr ~ N (x7;0,I), pair it
with each class’s prompt embedding c, and partially reverse-
diffuse it via Eq. 2, producing synthetic triplets (x;«,c, €).
Then, we train the model for 1,000 iterations using these syn-
thetic samples.

"https://hf.co/stabilityai/stable-diffusion-2- 1
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Method \ 1-Shot 10-Shot  100-Shot Full
ContriMix | 50.0+121  50.0+097 53.1+142 94.6+027
CoOp 56.2+348 57.3+132 59.3+176  61.4+062
CoCoOp | 5724336 58.34208 59.1+261 59.2+1.73
MaPLe 62.3+402 64.2+137 66.4+064 67.2+055
CLIP-LP | 61.24+083 61.6+072 69.3+038 85.4+0.16
DiffTTA 52.54+125 54.4+108 55.0+097 59.2+0.79
Ours \ 83.7+3.05 83.7+t191 84.2+068 93.7+0.41

Table 2: Performance comparison of different methods on the
Camelyon17-WILDS dataset for few-shot and fully supervised do-
main generalization (measured in accuracy (%), best results in bold,
standard deviation calculated across 25 random seeds). While Ex-
pertDiff shows consistent improvement with increased data, other
methods struggle to scale effectively, and the discriminative model
excels only with full supervision but performs at change levels in
few-shot scenarios.

5.2 Quantitative Evaluation

To evaluate the effectiveness of our proposed ExpertDiff
method, we conducted extensive experiments in zero-shot,
fully supervised, and few-shot domain generalization settings
(see Table 1 and 2).

Zero-shot and Fully Supervised Learning
We compared ExpertDiff against three categories of methods:

1. CLIP-based zero-shot learning: CLIP [Radford et al.,
2021] and MedCLIP [Wang er al., 2022],

2. Diffusion classifiers: DiffCLS [Clark and Jaini, 2023],
DiffTTA [Prabhudesai et al., 20231,

3. Prompt learning: CoOp [Zhou er al., 2022b], Co-
CoOp [Zhou et al., 2022a], and MaPLe [Khattak er al.,
2023].

We use the ViT-H/14 CLIP model® for all of the meth-
ods and use Stable Diffusion V2.1! for diffusion classifiers.
For fully supervised learning, all prompt learning methods
were trained for 20 epochs, and ExpertDiff and DiffTTA was
trained for 100,000 iterations. For a fair competition, we
fixed the number of Monte-carlo sampling to 1,000 for dif-
fusion classifiers (i.e., 50 uniformly distributed timepoints X
20 noise samples per timepoint) and ExpertDiff (i.e., 1 op-
timal timepoint x 1,000 noise samples). As shown in Ta-
ble 1, ExpertDiff achieves competitive performance across all
datasets in the zero-shot and fully supervised settings. While
MedCLIP shows superior performance on medical datasets in
the zero-shot scenario, it’s important to note that MedCLIP is
specifically pre-trained on medical data, resulting in a detri-
mental OOD performance on EuroSAT dataset.

Few-shot Domain Generalization

To evaluate the generalizability of our proposed ExpertD-
iff method, we conducted extensive experiments using the
Camelyon17-WILDS dataset [Koh and others, 2021], where
the task is to classify samples from unseen domains in domain
generalization settings (see Table 2). Specifically, this dataset

*https://github.com/mlfoundations/open_clip

Inversion

Null-Text
Inversion

Figure 3: Image reconstruction results. DDIM inversion and Null-
text inversion were performed using the prompt “a histopathologi-
cal image of lymph node containing metastatic tumor tissue.”

presents a challenging task of classifying breast cancer metas-
tases in whole-slide histological images of lymph node sec-
tions, with images sourced from multiple hospitals represent-
ing different domains. We compared ExpertDiff against Con-
triMix [Nguyen er al., 2024], which is the highest ranking
discriminative model in the official leaderboard® at the time
of writing, CLIP-LP [Radford et al., 2021], which is the fine-
tuned linear probe with CLIP embeddings, prompt learning
methods, and DiffTTA.

Notably, ExpertDiff’s performance shows consistent supe-
riority across all data regimes, from zero-shot to fully super-
vised. This is in contrast to other methods like CoOp, Co-
CoOp, and DiffTTA, which show limited improvement or
even decreased performance as more training data becomes
available. The discriminative model ourperforms the pro-
posed method in fully supervised settings, but tends to overfit
or perform at near chance levels in few-shot scenarios. These
results demonstrate that ExpertDiff can effectively adapt to
challenging domain generalization scenarios, showing robust
performance even with limited data.

5.3 Qualitative Evaluation

To assess our proposed method’s modularity and its ability to
preserve crucial visual information, we evaluated its perfor-
mance on the original upstream generative task. Specifically,
we examined its capacity to faithfully reconstruct input im-
ages, which is a critical feature, particularly in domains like
medical imaging where precise detail is paramount. Figure 3
presents reconstructions using three methods: DDIM inver-
sion, null-text inversion [Mokady et al., 20231, and DDIM in-
version with the fine-tuned prompt embedding from the pro-
posed ExpertDiff. DDIM inversion employs a reverse appli-
cation of the DDIM sampling algorithm to recover an input
image’s latent representation. Null-text inversion [Mokady
et al., 2023], on the other hand, optimizes the unconditional
embedding used in classifier-free guidance while maintaining
model weights and conditional embedding.

As shown in Figure 3, DDIM inversion produces an unreal-
istic reconstruction, while null-text inversion fails entirely in
this context. This rather supurising result adds evidence that

*https://wilds.stanford.edu/leaderboard/#camelyon17


https://github.com/mlfoundations/open_clip
https://wilds.stanford.edu/leaderboard/#camelyon17

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.

Do not cite
Dataset | Add. Suffix Both | Linear
Breast 78.23 78.11 79.44 | 80.15
Chest 82.44 87.64 88.62 | 83.26
Camelyon | 92.13 91.23 93.70 | 91.61
EuroSAT | 92.33 9222 9322 | 92.63

. The final version will appear in the IJCAI 2025 proceedings.

Table 3: Comparison of classification accuracy (%) across different
datasets using various prompt designs (additive, suffix, both) and a
linear projector.
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Figure 4: Classification accurary with regards to number of noise
samples used for inference on Breast dataset. Model is trained and
tested using all timepoints (i.e., Eq. 9 and 6).

off-the-shelf diffusion models do not generalize well to new
and unfamiliar concepts. In contrast, ExpertDift’s head-less
reprogramming approach can effectively leverage the pre-
trained diffusion model’s capabilities for upstream generative
tasks in novel domains. The enhanced reconstruction quality
not only indicates ExpertDiff’s successful adaptation to new
classification tasks but also highlights its ability to retain the
model’s generative capabilities.

5.4 Ablation Studies

To evaluate the effectiveness of different components in our
proposed ExpertDiff method, we conducted a series of abla-
tion studies. These experiments focus on three key aspects:
the impact of prompt design, the effect of timestep selection,
and the influence of the number of noise samples used during
inference.

Prompt Design

We first examined the impact of different prompt designs on
classification accuracy across four datasets. Table 3 presents
the results comparing additive prompts, suffix prompts, a
combination of both, and a linear projection layer (i.e.,
prompt embedding is fixed for this case). The results demon-
strate that combining both additive and suffix prompts con-
sistently outperforms using either type alone across most
datasets. Interestingly, for the Breast dataset, the linear classi-
fier baseline slightly outperforms our prompt-based methods,
suggesting that simpler models may sometimes be sufficient
for certain tasks.

Timestep Selection
We next investigated the impact of timestep selection on clas-
sification accuracy. Figure 5 shows the classification accuracy
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507 5= . \\
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< : .
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Figure 5: Classification accurary with regards to single timepoint.
Model is trained using all timepoints (i.e., Eq. 9), but used only a
single timepoint during inference (i.e., Eq. 12).

for different single timepoints across three datasets (Came-
lyon, Chest, and Breast). The results reveal that the opti-
mal timepoint varies across datasets, with Camelyon show-
ing peak performance around timepoint 200, while Chest and
Breast datasets exhibit more complex patterns. This variabil-
ity underscores the importance of careful timepoint selection
for each specific task or dataset. Notably, the performance
tends to degrade at very early and very late timepoints, sug-
gesting that intermediate timepoints often provide the most
discriminative features for classification.

Number of Noise Samples

Lastly, we examined how the number of noise samples used
during inference affects classification accuracy. Interestingly,
Figure 4 and Table 3 reveals that linear projection methods
may indeed perform better in some cases, particularly when
a large number of inference noise samples are used. How-
ever, their performance degrades significantly as the number
of noise samples decreases, especially in the range of 0-100
samples. This observation highlights a key advantage of our
ExpertDiff method: it maintains more robust performance
across a wider range of noise sample counts, making it po-
tentially more versatile and reliable in scenarios where com-
putational resources may be limited or variable.

6 Conclusion

In conclusion, we presented ExpertDiff, a head-less model re-
programming technique that effectively adapts diffusion clas-
sifiers to out-of-distribution domains requiring expert knowl-
edge. Our method demonstrates superior performance across
zero-shot, few-shot, and fully supervised learning scenar-
ios, while also preserving the model’s generative capabilities.
This work paves the way for efficiently repurposing powerful
foundation diffusion models for novel OOD applications in
domains like medical imaging. One limitation and future
research direction of our proposed ExpertDiff is counter-
factual image editing. As the goal of the ExpertDiff’s loss
function (i.e., Eq 9) is to minimize the error for positive sam-
ples and maximize it for negative samples, conditional im-
age generation with incorrect prompt results in samples filled
with artifacts. Although this property is desirable for down-
stream discriminative tasks, it limits the applications in up-
stream generative tasks. We hope this work brings new in-
sights into foundation model adaptation and efficient cross-
domain transfer learning.
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