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Abstract

In-context learning (ICL), a paradigm derived
from large language models (LLMs), holds sig-
nificant promise but is notably sensitive to the
choice of input demonstrations. While numer-
ous methodologies have been developed to select
the optimal demonstrations from existing datasets,
our work alternatively proposes to generate rep-
resentative demonstrations through a Distillation-
based Demonstration Generation (DDG) frame-
work. Specifically, our approach aims to gener-
ate demonstrations that encapsulate the essential at-
tributes of the target dataset. Rather than optimiz-
ing these demonstrations directly, we design a gen-
erative model and try to refine it by minimizing
the discrepancies between the calculative models
trained on generated demonstrations and the origi-
nal datasets respectively. Additionally, we leverage
a teacher-student framework to stabilize the train-
ing process and improve the quality of the synthe-
sized samples. Extensive experiments conducted
across ten prevalent text datasets demonstrate that
our DDG method substantially outperforms exist-
ing state-of-the-art methodologies. Our code will
be available at https://github.com/wwyql/DDG.

1 Introduction

In-Context Learning (ICL) has risen as an influential ap-
proach for applying large language models (LLMs) to ad-
dress new tasks during inference [Dong er al., 2024]. ICL
enables a model to adjust to various tasks without the need
for further training, depending solely on the given prompt,
unlike traditional methods that necessitate task-specific fine-
tuning. This adaptability not only diminishes the costs asso-
ciated with adapting to new tasks but also provides a clear
and adaptable method for steering the model’s actions [S. et
al., 2024]. Utilizing the demonstrations in the prompt, ICL
enhances generalization over a broad spectrum of tasks and
improves the reasoning ability of LLMs [Dong et al., 2024].

Nevertheless, the effectiveness of ICL heavily relies on
the demonstrations contained in the prompt, where minor
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Figure 1: Comparison of the principles between demonstrations se-
lection approach and demonstrations generation approach

changes in these demonstrations can drastically affect the
model’s performance [Dong et al., 2024]. To address this
limitation, many different approaches have been proposed
for demonstrations selection, e.g., selecting demonstrations
which are similar to the query sample in the embedding
space [Liu et al., 2022; Wu et al., 2023], learning a deep
learning-based demonstrations retriever [Luo et al., 2024;
Li and Qiu, 2023], selecting demonstrations based on LLM
feedback [Wang er al, 2023; Chen er al., 2023; Liu et
al., 2024a] or influence analysis [Nguyen and Wong, 2023;
S. et al., 2024]. However, those selection-based methods
always discard a large fraction of unselected samples, dis-
missing their contribution to ICL and often resulting in sub-
optimal performance. Moreover, many of these methodolo-
gies are tailored for specific LLMs. And the selected demon-
strations cannot generalize well to other LLMs.

To address the challenges outlined above, we propose a
novel method for generating more representative demonstra-
tions that encapsulate the essential information of the entire
training dataset. Specifically, we introduce a Distillation-
based Demonstrations Generation (DDG) framework, con-
sisting of two key components: the generative model and the
calculative models. The generative model is responsible for
generating demonstrations, while the calculative models are
tasked with ensuring that these generated demonstrations are
as representative as possible of the original dataset. Inspired
by existing data distillation techniques, we frame our objec-
tive as a minimization problem. Specifically, we aim to mini-
mize the discrepancy between the gradients of the calculative
models’ parameters during the gradient-descent-based opti-
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mization process, computed over two distinct sets: one set de-
rived from the original training dataset and the other from the
generated demonstrations. However, most prior data distilla-
tion methodologies are designed for continuous image data,
which is not directly applicable to text with discrete represen-
tations. To overcome this, we integrate the generative model
with the calculative models and alternately optimize the pa-
rameters of both components, ensuring the generative model
learns to generate highly representative demonstrations. Fur-
thermore, to enhance the learning stability and improve the
performance of the calculative models, we adopt a teacher-
student framework. Through this combined approach, we aim
to improve the efficiency and quality of the generated demon-
strations, ultimately enabling more effective ICL.

We assess the efficacy of DDG on ten widely utilized
text classification datasets, including eight short-text datasets:
SST-2, SST-5, MNLI, QQP, CoLA, AGNews, QNLI, and
CR; in addition to two complex long-text multi-tag datasets:
BANKING77 and GoEmotions. Utilizing the optimally syn-
thesized samples, we conduct experiments in conjunction
with four prominent LLMs (LLaMA-2, LongLLaMA, Qwen,
and Mistral) to evaluate the performance of ICL. Relative to
the baseline methodologies, under the same conditions, the
classification accuracies of DDG will generally increase by
7% on average for short-text datasets, and 5% on average for
long-text multi-tag datasets.

To sum up, our contributions are as follows:

e Rather than selecting representative demonstrations
from existing datasets, we propose a pioneering ap-
proach using a distillation-based demonstrations genera-
tion framework to synthesize more informative samples,
which is among the earliest attempts to employ data dis-
tillation techniques for the ICL task.

Instead of optimizing synthesized samples directly, we
develop a generative model and incorporate it with the
calculative models to synthesize completely new sam-
ples at each iteration. Moreover, a teacher-student
framework is also employed, which can further improve
the stability of the training process.

Extensive experiments on ten commonly used text
datasets show that our proposed approach can signif-
icantly outperform existing state-of-the-art methodolo-
gies for the ICL task.

2 Related Work

2.1 In-Context Learning

As model and data sizes scale, large language models (LLMs)
exhibit in-context learning (ICL) ability, learning from a few
natural language template-based demonstrations [Dong et al.,
2024]. However, ICL performance is often unstable, and
highly sensitive to prompt configuration, including demon-
strations selection, formatting, and ordering [Lu et al., 2022a;
Rubin et al., 2022]. Consequently, various demonstrations se-
lection methodologies have been explored, including heuris-
tic strategies [Peng et al., 2024; Liu et al., 2024al; retriev-
ers trained using in-batch negative loss [Li et al., 2023] or

reinforcement learning [Scarlatos and Lan, 2024]; and LLM-
feedback based methods that leverage prediction confidence
[Wang et al., 2023; S. et al., 2024; Scarlatos and Lan, 2024],
these latter methods can also be considered influence-based,
analyzing the impact of training samples using LLMs. [Lu et
al., 2022b] suggests that the ordering of demonstrations can
be optimized for performance gain, LLMs have shown a ten-
dency to overly rely on the most frequent labels or labels that
appear at late positions in the prompt [Liu et al., 2024c]. An-
other research trend involves utilizing LLMs to reformat the
representation of existing demonstrations [Yang er al., 2024;
Liu er al., 2024b], thereby enhancing the model’s ability to
follow the demonstrations more effectively.

2.2 Data Distillation

Data distillation aims to create a compact representation of
the original dataset while preserving its core information
[Wang er al., 2018; Yang et al., 2019]. Current researches
on data distillation primarily focus on image datasets due to
their continuous nature, with various high-quality distillation
methodologies proposed: Meta-model matching methodolo-
gies solve the original bi-level optimization formulation such
as DC [Zhao and Bilen, 2021]; DM [Zhao and Bilen, 2023]
seeks to minimize the statistical distance between real and
distilled samples; TESLA [Cui et al., 2023] optimized syn-
thetic samples to approximate trajectories of model param-
eters trained with real data; [Qin et al., 2024] introduced
learnable soft-labels, which are optimized together with input
images to make each synthetic sample more informative. For
textual datasets, the discrete nature of text poses challenges,
yet recent innovations have emerged. For instance, studies
by [Maekawa et al., 2023; Li et al., 2024] map discrete text
samples into continuous word embedding vectors. However,
these synthetic datasets are incompatible with models using
different embedding weights, [Maekawa et al., 2024] intro-
duced a approach that synthesizes datasets unsteadily by op-
timizing the continuous parameters of a generator model.

3 Proposed Method

Current large language models (LLMs), including GPT-3
and LLaMA-2, have demonstrated excellent in-context learn-
ing (ICL) capabilities. Given an original dataset D,., =
{1,...,zy} with N training samples, ICL is designed to
enable LLMs to learn from the prompt containing task in-
struction, demonstrations, query directly, without additional
training of model parameters as opposed to prompt learning,
few-shot learning and so on [Dong et al., 2024]. Therefore,
the performance of ICL will mainly depend on the demonstra-
tions inputted to LLMs. Howeyver, although existing method-
ologies of demonstrations selection already have excellent
ability to optimize the prompt, they always ignore the valu-
able information contained in the unselected samples.

Inspired by [Zhao and Bilen, 2021] and [Maekawa
et al., 2024], we propose a novel approach DDG to
generate more represesntative demonstrations Dy, =
{Z1,...,Zm}(M < N) relative to the original dataset
through training the generative model with data distillation
techniques, meanwhile, we adopt a teacher-student frame-
work to stabilize and improve the training process.
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Figure 2: This is the flow of our method DDG. Initially, the losses of the original dataset and the generated demonstrations are calculated based
on the calculative models respectively, and then, the generative model G4 is optimized iteratively by the gradient matching loss based on the
calculative model Uy, and the improver model Vp, combined with teacher-student framework to generate more representative demonstrations

for the performance enhancement of ICL.

3.1 Distillation-based Demonstration Generation

We define the calculative models that could correctly pre-
dict the label of previously unseen text, setting the calcula-
tive models with two different variants: one Uy, trained on
the original dataset with parameter 61, and the Uy, trained on
the generated demonstrations with parameter 65. In words,
we wish to optimize the generative model G4 with parameter
¢ to synthesize distilled samples such that Uy, achieves not
only comparable generalization performance to Uy, but also
converges to a similar solution in the same parameter space:

mmD (01,02) s (1)

where the D function is a cosine similarity-based distance
function, which is expressed as:
a-f
D(o,f)=1- - @
’ [etiiive

Following [Zhao and Bilen, 2021], we introduce the gradient
matching loss L;, which not only ensures that the parame-
ters of both calculative model variants are optimized to match
as closely as possible in each iteration with similar updating
paths, but is also used to update the parameter ¢ as follows:

E
L1 =Y D (Vo,Log, Vo, Lgyn) . 3)
r=1
where E is the total number of iterations, Loy and Ly, are

the loss based on the original dataset and generated demon-
strations, respectively.

For the original dataset D,,, and the calculative model
Uy, , we design the loss Log:

1 N
Lo = 5 > 1(Us, (1), “)
i=1

where the [ function represents the cross-entropy-based loss.

Meanwhile, for generated demonstrations and the calcula-
tive model Uy, , we design the loss Lgy,. Due to the discrete
nature of textual samples, it is not feasible to directly ap-
ply the back-propagation process based on gradient-descent.
When computing the loss, instead of simply averaging the
losses for all synthesized samples, inspired by the [Maekawa
et al., 2024], we draw on the work of [Hiraoka et al., 2020]
to design back-propagation process. Therefore, Lgy, can be
back-propagated to Gy through the differentiable pass via
weights y; and generation probabilities P(Gy(z;) = Z,):

M
Loyn = Z 1 L(Uo, (25)), 4)
j=1

where
__ P(Gy(xi) = 7))
= —; —.

2q=1 P(Gy(2i) = T)
Teacher-Student Framework
To optimize the training process of Uy, based on gener-

ated demonstrations, we utilize the teacher-student frame-
work [Abbasi et al., 2020], designating the calculative model

(6)

Hj
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Figure 3: Standard deviation of model’s gradient values during the
training process with or without teacher-student framework on dif-
ferent datasets.

Uy, as the teacher model and the improver model Vj, as
the student model. As illustrated in Figure 2, we anticipate
that the student model Vjp, can quickly learn from the teacher
model Uy, , thereby achieving relatively superior performance
while minimizing training costs.

Therefore, we utilize the exponential moving average
(EMA) fitting under the teacher-student framework. In DDG,
the student model Vj, based on the teacher model Uy, can be
defined using the A parameter (0 < A < 1) as follows:

93:)\*93+<1—)\)*92, @)

A = 0.99 was selected empirically for this paper. During
subsequent training, we replace #> with #3 in equation (3),
Uy, with Vp, in equation (5).

In addition, the cross-entropy loss function [ is enhanced
through the EMA fitting. It is well established that in the
cross-entropy loss function, the shift_logit parameter typ-
ically represents the probability distribution of the relevant
parameters [Mao e al., 20231, so we combined it with the A
parameter to define the new core factor A_logit:

Allogits = A Alogits + (1 — \) * shift_logit. (8)

Furthermore, to rigorously evaluate the validity of the
teacher-student framework, we independently calculated the
standard deviation of gradient values in the final layer for
models trained on generated demonstrations under two con-
ditions: with and without the framework during training.
As illustrated in Figure 3, the integration of the teacher-
student framework results in a substantial reduction in the
standard deviation of gradient values. This attenuation di-
rectly correlates with diminished parameter update fluctua-
tions during model training, attributable to EMA-based pa-
rameter smoothing. Consequently, these empirical obser-
vations demonstrate that the teacher-student framework sig-
nificantly enhances the stability of the student model Vj,
throughout the training process, and facilitates more efficient
convergence of the generative model G’s iteration by stabi-
lizing parameter optimization trajectories.

3.2 Algorithm for Gradient Matching

We apply the pre-trained LLM G, combined with the lan-
guage modelling loss as the basis for the generative model

Algorithm 1 The training process of DDG

1: Relevant parameters: ¢: generative model parameter;
01, 05: calculative models parameter; f3: improver model
parameter; C': the number of data classes; Gy: genera-
tive model; O L: the number of outer-loop steps; I L: the
number of inner-loop steps; €: the number of steps for
updating ¢; 7: the number of steps for updating 6; :
learning rate of ¢; w: learning rate of 0; A\: EMA fitting
parameter.

2: forol=1,...,0Ldo

3:  \\ Outer-loop

4:  Initialize parameter 6y and ¢g according to the pre-

trained modals

5 foril=1,...,1L do

6: \\ Inner-loop

7: forc=1,...,Cdo

8: \\Calculated for each class of the original dataset

9: Lgrg = NLF Z'f\icl l91 (xl)c

10: jj(j:1M5)<:G¢({El)(Z:1NC)

11: L§, = Eéw;l i log (T5)¢

12: LS« D (Vgngrg, Vo, Lfyn)

13: end for

14: optimization of ¢ based on ¢y and & > g,
combined with the AdamW optimizer, parameters
pande.

15: update of 05 based on 6, and Zil Lg,, combined
with the AdamW optimizer, parameters w and 7.

16: 93:)\*93+(1—>\)*92, (OS)\S].)

17: \\ update of 03 based on teacher-student framework
combined with EMA fitting

18:  end for

19: end for

G 4. Therefore, we design a gradient-descent-based match-
ing algorithm for fine-tuning of the generative model’s con-
tinuous parameter ¢. As demonstrated in Algorithm 1, we
have devised a nested loop algorithm for gradient matching
to iteratively optimize the model parameters. This algorithm
comprises an outer-loop dedicated to the initialization of the
parameter 6 to enhance the adaptation of DDG to previously
unseen models, and an inner-loop tasked with computing the
gradient matching loss L; for each class. Furthermore, in
nested inner-loop, We also designed three parameter update
processes: (1) the steps to optimize the parameter ¢ of the
generative model G based on the AdamW optimizer, (2) the
steps for the calculative model Uy, to optimize the parameter
0> with the AdamW optimizer, and (3) the steps for updat-
ing the parameter 03 of the improver model Vj,, under the
teacher-student framework combined with EMA fitting.

3.3 Synthesized samples generation

During the whole generation process, the LLMs are typically
employed to revisit the entire sequence of tokens to forecast
the next token [Dhamala er al., 2023]. Therefore, we adopt
an innovative approach that combines top-k sampling with
top-p sampling, along with the temperature parameter, which
aims to generate demonstrations with higher informativeness.
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Figure 4: Illustration of textual token generation.

As illustrated in Figure 4, we first employ the top-
k method to select the k tokens wi,...,w; in descend-
ing order based on the generation probability distribution
P1%, P,%, ..., P,% of the candidate tokens. Next, we ap-
ply a dynamic token candidate list sizing strategy known as
top-p approach to accumulate the generation probabilities and
select the tokens whose cumulative sum exceeds p%:

Pi%+ P% -+ P.% > p%. 9)

Again, we introduce the temperature parameter 7' to smooth
the candidate tokens’ generation probabilities distribution:

exp(wy/T)
Soreq exp(w,/T)

Therefore, we obtain Pr from the Softmax output as
Pr, %, Pr,%, ..., Pr.%, which facilitates balancing accu-
racy and diversity across the whole generation process, and:

PT1%+PT2%"'+PTC%:100%~ (11)

Pr(w) = (10)

Finally, we also use the repetition_penalty parameter spe-
cific to LLMs, which aims to reduce text repetition by reduc-
ing the generation probabilities of already synthesized tokens.
In summary, we innovatively combine three textual
token generation approaches and one parameter of the
LLMs [Keskar et al., 2019], which in turn overcome the prob-
lems of monotonous textual tokens generation, object dupli-
cation, and unstable text quality in previous studies [Nguyen
et al., 2025; Dhamala et al., 2023; Basu et al., 2021] while
balancing the trade-off between quality and diversity.

4 Experiment
4.1 Datasets

We utilized eight commonly used short-text datasets, includ-
ing four distinct categories: Semantic Analysis (SST2, SSTS,
CR, COLA), Natural Language Reasoning (MNLI, QNLI),
Text Summarisation (AGNews), and Paragraph Detection
(QQP), and also two long-text multi-tag datasets: intent clas-
sification (BANKING?77) and fine-grained sentiment classifi-
cation (GoEmotions).

4.2 Baselines

For short-text datasets, we compared DDG with prior com-
petitive ICL methodologies using LLaMA-series as inference
LLM, including: random, BM25 [Robertson and Zaragoza,

2009], RICES [Yang et al., 2022], TopK [Liu er al., 2022],
TopK + MDL [Wu et al., 20231, GC [Jiang et al., 2023],
InfICL [S. er al., 2024], TopK + ConE [Peng et al., 2024],
DILM [Maekawa et al., 2024]. For long-text multi-tag
datasets, We compared DDG with baseline methodology
LongICLBench [Li et al., 2025].

4.3 Implementation Detaills

In-Context Learning (ICL)

In this paper, we employed LLMs for classification tasks
to evaluate the performance of ICL based on the generated
demonstrations by DDG, and utilized the classification ac-
curacies as evaluation metric. Initially, we employed the
LLaMA-2-7B model aligned with the experimental settings
of prior similar works uniformly for ICL, ensuring compara-
bility and continuity with existing researches. Subsequently,
we configured the demonstrations within the prompt to a 5-
shot format across short-text datasets through the sampling
process, where each shot corresponds to the random selec-
tion of one synthesized sample from each class. To evaluate
the classification accuracies of ICL, we extracted 50 samples
from the test set as quary, ensuring a balanced distribution
of label types. Following experiments before, we also exam-
ined the efficacy of DDG in processing long-text multi-tag
datasets. In ICL, we analyzed classification accuracies re-
garding the baseline methodology across various token length
constraint. The demonstrations in the prompt were varied
from 1 round (1R) to 10 rounds (10R), with each round (R)
representing the random selection of one synthesized sample
from each class. For testing purposes, we extracted 500 sam-
ples from the test set as quary, also ensuring a balanced dis-
tribution of label types. The rest of the experimental setup re-
mained consistent with the aforementioned procedures. Ad-
ditionally, four LLMs were selected for ICL tasks: LLaMA-
2-7B, Qwen-1.5-7B, Mistral-7B, and Long-LLaMA.

The Training Process of DDG

In this paper, the GPT-3 model is selected as the basis of
the generative model G, while the RoOBERTa-large model
is chosen as the pre-trained model for the calculative models.
We set the parameters of the nested loop algorithm for train-
ing the optimal generative model as follows: the total num-
ber of training sessions for the initial training with language
modeling loss functions [Kaplan et al., 2020] is 50,000, and
the total number of training sessions for fine-tuning the pa-
rameters of the generative model G is 10,000. The number
of inner-loop steps is set to /L = 50, and the number of
outer-loop steps is calculated as O L = total number of train-
ing sessions / number of inner-loop steps. The learning rate is
established at 1.0 x 10~%, and the number of updating steps
¢ is set to 100. The mini-batch sizes for original and synthe-
sized samples are set to N = 200 and M = 50. The warmup
ratio for the entire process is set to 0.05, weight decay is set
to 0.01, gradient clipping is set to 1.0, and the dropout ratio is
set to 0.1. Finally, the generative model G, was set to synthe-
size five samples simultaneously for each iteration, and each
sample was generated with strict reference to the trainers’ set-
ting. Moreover, we trained the calculative model parameters
0, and 65 separately on the original datasets and generated
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Methods ‘ SST2 MNLI COLA AGNews QNLI CR SST5 QQP
random 94.4 51.0 - 83.5 56.2 92.3 50.4 -
BM25 [Robertson and Zaragoza, 2009] 94.5 57.0 - 92.5 59.0 92.8 52.6 -
RICES [Yang et al., 2022] 93.9 - 73.7 - - - - -
TopK [Liu et al., 2022] 95.2 57.8 - 92.4 61.3 92.8 526 -
TopK+MDL [Wu et al., 2023] 95.1 57.9 - 92.3 64.5 934 527 -
GC [Jiang et al., 2023] 95.7 - - 87.8 - 92.3 474 65.1
InfICL [S. et al., 2024] 95.2 - 74.8 - - - - -
TopK + ConE [Peng er al., 2024] 95.4 59.5 - 92.8 66.4 93.1 525 -
DILM [Maekawa et al., 2024] 95.1 - - - - - - -
DDG (ours) 97.3 64.0 82.0 93.3 83.3 94.7 54.7 76.7

Table 1: Classification accuracies (%) of ICL for eight commonly used short-text datasets. DDG results are the average of the best three

experiments.
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Figure 5: Average classification accuracies (%) based on different
LLM:s of ICL for DDG and LongICLBench under the same round
(R) settings for BANKING77 and GoEmotions datasets, DDG re-
sults are the average of the best three experiments.

demonstrations five times in a loop with the learning rate of
1.0 x 1073, the number of updating steps 7 is set to 10. Si-
multaneously, the A parameter of 0.99 was chosen to update
the improver model Vp, under the teacher-student framework.
For short-text datasets such as SST2, we empirically set k=5-
8, p=0.97, temperature to 0.7, repetition_penalty parameter
value to 1.2; for long-text multi-tag datasets such as BANK-
ING77, it is more appropriate to set k=10-12, p=0.95, tem-
perature to 0.9, repetition_penalty parameter value to 1.35.

4.4 Main Results

Table 1 shows the classification accuracies achieved by DDG
in comparison to baseline methodologies across eight com-
monly used short-text datasets frequently employed in the
domain of NLP. The classification accuracies of DDG ex-
hibit varying levels of enhancement relative to the base-
line methodologies in the majority of instances. Particu-

larly, datasets such as QQP, MNLI, and QNLI demonstrate a
marked performance improvement attributable to the height-
ened efficiency of DDG in generating more informative tex-
tual tokens for simpler text classification datasets character-
ized by longer textual content. It is important to note that all
baseline methodologies are directly derived from the results
reported in their respective scholarly publications.

Table 2 presents the classification accuracies compari-
son between DDG and baseline methodology on two long-
text multi-tag datasets, with particular attention to the token
length constraint in multi-round ICL settings. Experimental
results demonstrate that synthesized samples under equiva-
lent token length limitation consistently outperform baseline
methodology across various LLMs, as evidenced by compar-
ative analysis of average accuracy from IR to 10R shown in
Figure 5. Notably, the BANKING77 dataset exhibits textual
token lengths ranging 2K-14K (1R-5R) while GoEmotions
spans 0.8K-4K for equivalent rounds, with generated demon-
strations achieving effective text compression to approxi-
mately 70%-75% of original dataset lengths. This compres-
sion maintains comparable token lengths between extended
round configurations (9R-10R for BANKING77 and 6R-7R
for GoEmotions) and the standard SR benchmark setting.
Crucially, our analysis reveals an intrinsic limitation of LLMs
in processing redundant inputs: when token lengths exceed
a critical threshold, model performance manifests an initial
rapid improvement followed by gradual degradation due to
parameter overwriting effect. This observation substantiates
the methodological necessity of DDG for generating maxi-
mally representative demonstrations that balance information
density with token efficiency, effectively addressing the for-
getting phenomenon while maintaining ICL performance sta-
bility across extended round configurations, which is advanta-
geous for LLMs to acquire relevant knowledge from the orig-
inal dataset for the ICL tasks.

4.5 Ablation Study

Furthermore, we conducted ablation experiments to assess
the efficacy of three specific modules within DDG: the imple-
mentation of the teacher-student framework (T-S), the utiliza-
tion of top-k, top-p, and temperature (k/p/T) for the synthesis
of samples, and the execution of gradient-descent-based fine-
tuning for ¢ parameter (fine-tune). In these ablation experi-
ments, we evaluated each module independently to ascertain
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BANKING77 token length GoEmotions token length

LLM 2k 4k 7k 9k 14k LLM 08K 1.6K 24K 32K 4K
LLaMA-2-7B(DDG) 363 724 776 81.6 864 LLaMA-2-7B(DDG) 0 0.2 0.4 0.2 0.6
LLaMA-2-7B(LongICLBench) 30.2 704 72.0 756 77.2 LLaMA-2-7B(LongICLBench) 0 0 0 0.2 0.2
Qwen-1.5-7B(DDG) 328 52,6 762 684 68.0 Qwen-1.5-7B(DDG) 154 184 192 196 15.6
Qwen-1.5-7B(LongICLBench)  21.6 52.8 614 660 67.8 Qwen-1.5-7B(LongICLBench) 148 182 186 19.0 142
Mistral-7B(DDG) 378 668 705 71.6 74.0 Mistral-7B(DDG) 3.6 144 236 270 268
Mistral-7B(LongICLBench) 298 436 664 678 640 Mistral-7B(LongICLBench) 2.6 11.4 7.4 11.6 124
Long-LLaMA(DDG) 45 248 384 424 368 Long-LLaMA(DDG) 0 0.4 1.2 1.6 24
Long-LLaMA(LongICLBench) 3.0 194 28.0 31.6 32.6 Long-LLaMA(LongICLBench) 0 0 0 0.2 04

Table 2: Classification accuracies (%) of ICL for DDG and baseline methodology LongICLBench under the same textual token length
constraint for BANKING77 and GoEmotions datasets, DDG results are the average of the best three experiments.

T-S k/p/T  fine-tune performance of ICL(SST2)

X v v 94.0

v o/ X 53.3

v X v 92.7

v oo/ v 97.3

T-S k/p/T  fine-tune | performance of ICL(BANKING77)
X v v 85.6

a4 X 427

v X v 82.0

v o/ v 87.2

Table 3: Classification accuracies (%) of ICL under the ablation ex-
periments setting based on different modules within DDG for SST2
and BANKING?77 datasets

the improver model ~ A_logits performance of ICL(SST2)
X X 94.0
v X 953
X v 94.7
v v 97.3
the improver model ~ A_logits | performance of ICL(BANKING77)
X X 82.0
v X 86.4
X v 83.6
v v 87.2

Table 4: Classification accuracies (%) of ICL under the ablation ex-
periments setting with different EMA fitting modules for SST2 and
BANKING77 datasets

its contribution to the performance enhancement of DDG. We
employed the SST2 and BANKING?77 datasets, utilizing the
LLaMA-2 model under a 5-shot setting for ICL, with classifi-
cation accuracies serving as the evaluation metric. The results
are presented in Table 3.

Based on the statistics from the ablation experiments pre-
sented in Table 3, we summarize the following findings: First,
the teacher-student framework (T-S) module significantly im-
proves the quality of the synthesized samples by enhanc-
ing the stability of the improver model Vp, trained on these
samples. This enhancement facilitates better iterative opti-
mization of the generative model G4 as well. Second, the
k/p/T module increases the diversity of synthesized samples
while ensuring that these samples contain more valuable in-

formation, which is advantageous for optimizing demonstra-
tions contained in the prompt. Lastly, the fine-tune module
emerges as the most impactful, as it ensures the grammatical
and lexical accuracy of the generated demonstrations, a criti-
cal factor for LLMs to effectively acquire relevant knowledge
from the input prompt.

We also performed ablation experiments on the Exponen-
tial Moving Average (EMA) fitting, which included the im-
prover model Vp, and the A_logits parameter. The experi-
ments were conducted using the SST2 dataset in conjunction
with the LLaMA-2 model, with the demonstrations config-
ured in a 5-shot format. Table 4 illustrates the performance
of ICL based on the two EMA modules individually. The
results clearly indicate that the incorporation of both the im-
prover model Vj, and the A_logits parameter contributed to
varying degrees of improvement in the classification accura-
cies of ICL.

In summary, all modules proposed above are contributive
to the performance improvement of ICL.

5 Conclusion

This paper proposes a novel Distillation-based Demon-
stration Generation (DDG) framework, combining with
the teacher-student framework, top-k+top-p+temperature ap-
proach, which aims to train the generative model to gener-
ate distilled synthesized samples that are more representative,
and then optimize the prompt and ultimately enhance the per-
formance of ICL. Moreover, the ability to generalize across
various LLMs makes DDG valuable for applications on Al
research like transfer learning and few-shot learning. Even-
tually, we designed well-established experiments to validate
the superior performance of DDG relative to the state-of-the-
art methodologies. The tasks combined in the experiments
represent a range of real-world challenges, highlighting the
versatility of our approach.
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