Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

SEP: A General Lossless Compression Framework with Semantics Enhancement
and Multi-Stream Pipelines

Meng Wan'?' | Ronggiang Cao'>", Yanghao Li'*', Jue Wang'**, Zijian Wang', Qi Su*, Lei Qiu®,
Peng Shi%, Yangang Wang', Chong Li'?
!Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
ZUniversity of Science and Technology Beijing, Beijing, China
3University of Chinese Academy of Sciences, Beijing, China
4Peking University, Beijing, China
5Zhejiang Normal University, Jinhua, China

{wanmengdamon,yhli,wangzj,lichong} @cnic.cn, {caorq,wangjue,wangyg } @sccas.cn,
qiisuu@stu.pku.edu.cn, userqiul @ gmail.com, pshi@ustb.edu.cn

Abstract

Deep-learning-based lossless compression is of im-
mense importance in real-world applications, such
as cold data persistence, sensor data collection, and
astronomical data transmission. However, existing
compressors typically model data using single-byte
symbols as tokens, which makes it hard to capture
the inherent correlations and cannot effectively uti-
lize the parallel capabilities of GPUs and multi-core
CPUs. This paper proposes SEP, a novel lossless
compression framework for most time-series back-
bone neural networks. We first introduce a seman-
tic enhancement module to capture the complex
intra-patch relationships of binary byte streams. To
improve the compression speed, we design multi-
stream pipelines that dynamically assign parallel
tasks to GPU streams and multi-cores. We fur-
ther propose a novel GPU memory optimization
strategy, which reuses GPU memory by a shared
pool across streams. We conduct experiments on
seven real-world datasets and the results demon-
strate that our SEP framework outperforms state-
of-the-art compressors with an average speed im-
provement of 30.0% and an average compression
ratio gain of 5.1%, which is further elevated to
7.6% with the use of pre-training models. The GPU
memory footprint is reduced by as high as 63.1%
and by an average of 36.2%. The source code is
available at: https://github.com/damonwan1/SEP.

1 Introduction

Lossless data compression reduces data size while preserv-
ing all the original information, which has been widely used
in various fields, including data storage [Lagar-Cavilla et
al., 2019], data transmission [Yang er al., 2023], to name
a few. The performance of lossless compression method

*Corresponding author

is mainly examined using compression ratio and compres-
sion speed [Schiopu and Munteanu, 2020; Chandra and Hsu,
2014]. To improve both factors, we construct a general loss-
less compression framework with semantics enhancement
and multi-stream pipelines.

The fundamental technique of lossless compression is en-
tropy coding, which includes methods such as Huffman cod-
ing [Knuth, 1985; Moffat, 2019] and arithmetic coding [Ris-
sanen and Langdon, 1979]. Given a system that generates
symbols with certain probability distributions, according to
Shannon’s source coding theorem [Affeldt et al., 2014], the
ideal code length I(z) of the next symbol x is expressed as
follows:

I(z) = ~logs (p (x)) (1)
where p(x) is the probability of the symbol to be encoded.
Entropy coder requires the statistical model to predict the
statistics of the system [Zhang et al., 2021]. Based on Equa-
tion 1, the entropy coder uses shorter code for more pre-
dictable symbols, which results in a higher compression ra-
tio [Sullivan et al., 2012]. On top of the entropy coder,
the deep-learning-based lossless compressors use neural net-
works to predict the statistical characteristics of the sys-
tem [Mao et al., 2022b], which potentially gives higher p(z)
and therefore higher compression ratio [Wu et al., 2016]. An
inaccurate prediction of the statistical characteristics can re-
sult in an extremely small p(x), such that the symbol = can
still be losslessly compressed but with a very low compres-
sion ratio.

To improve both compression ratio and compression speed
of deep-learning-based lossless compressors, the existing re-
search focus on different networks. The recent deep-learning-
based lossless compressors are mainly built based on Py-
Torch [Mentzer et al., 2019]. In Table 1, we present the var-
ious characteristics of several deep-learning-based compres-
sors. Compressors like tensorflow-compress [Knoll, 2016;
Contoli and Lattanzi, 2023] and DecMac [Liu et al., 2019]
use long-short-term memory (LSTM) to capture long-term
dependencies within the input data stream. The latest re-
search demonstrates that the mechanisms of transformer and
multi-layer perception (MLP) can achieve even more accu-

https://github.com/damonwan1/SEP

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Name Network GPU Semantic = Framework Year Compression Speed
Opt. Enhance- Ratio (KB/min)
ment
LSTM-compress [Knoll, 2016] LSTM X X Tensorflow 2016 432 243
DecMac [Liu et al., 2019] LSTM X X Tensorflow 2019 5.80 =
NNCP [Bellard, 2019] Transformer X X Tensorflow 2020 5.85 183
Dzip [Goyal et al., 2021] RNN X X PyTorch/Tensorflow 2021 435 429
OREO [Mao et al., 2022a] MLP X X PyTorch 2022 5.61 1810
TRACE [Mao et al., 2022b] Transformer X X PyTorch/Tensorflow 2022 5.20 1656
PAC(SOTA) [Mao et al., 2023] MLP Cache X PyTorch/LibTorch 2023 5.82 1570
SEP+PatchTST (ours) Transformer Pipelines v PyTorch 2023 5.34 2070
SEP+TRACE (ours) Transformer Pipelines v PyTorch 2023 5.52 2130
SEP+PAC (ours) MLP Pipelines v PyTorch 2023 6.13 2100
Pre-training (ours) MLP Pipelines v/ PyTorch 2023 6.57 2068

Table 1: Summary of deep-learning-based lossless data compression, where the best results are in bold, the second best results are underlined.
The *GPU Opt.” refers to GPU optimization technique (All results are conducted under the same NVIDIA A800 conditions).

rate estimation and also higher compression speed compared
to other deep-learning-based lossless compressors [Mao et
al., 2022b]. NNCP [Bellard, 2019], TRACE [Mao et al.,
2022b], OREO [Mao et al., 2022a] and PAC [Mao et al.,
2023] are the typical compressors that use the transformer
or MLP. Most deep-learning-based lossless compressors train
their networks with a GPU to speed up the compression pro-
cess [Kang et al., 2022; Ko et al., 2021]. PAC reduces the
traffic of CPU-GPU data transfer using software cache in
GPU memory [Mao er al., 2023], which helps PAC com-
press faster. To further improve both compression ratio
and compression speed, the main challenges faced by cur-
rent deep-learning-based lossless compressors are summa-
rized into three aspects: 1) Data feature extraction is diffi-
cult for byte streams. The lossless compression requires the
compressor to convert several types of input (such as image,
text, and sound, etc) into byte streams [Yamagiwa, 2022].
The semantics of such byte streams are highly sparse and var-
ied, which makes it difficult to predict and gain a high com-
pression ratio. 2) Disk I/O, CPU-GPU data transfer and
arithmetic coding are time-consuming, which is taken up to
one third of the total [Choukse et al., 2020]. Although exist-
ing methods use a cache mechanism to decrease the traffic of
data transfer, these approaches only partially reduce the trans-
fer overhead and do not fully utilize the parallel capabilities
of multi-core CPUs and GPUs [Cloud et al., 2011]. 3) The
compression of large-scale files results in high GPU mem-
ory footprint demand. PyTorch’s GPU memory for multiple
streams is isolated and cannot be reused, resulting in a huge
waste of memory.

To overcome these challenges, we propose a lossless com-
pression framework based on Semantics Enhancement and
multi-stream Pipelines (SEP). The contributions are summa-
rized as follows:

* Semantics enhancement module: We propose a series
of novel approaches to capture complex semantic infor-
mation of adjacent byte sequences, which achieve higher
compression ratios across diverse data types.

e Multi-stream pipelines: We propose a multi-stream
pipeline mechanism for parallel compression. By hid-
ing disk I/O and CPU-GPU data transfer, such as Host

to Device (H2D) and Device to Host (D2H), our objec-
tive is to fully use the hardware for compression speed.

* GPU Memory Optimization: We propose a method to
enable GPU memory reuse across streams by breaking
PyTorch’s default stream-level memory isolation.

 State-of-the-art (SOTA) compression performance:
Our experiments demonstrate that the SEP framework
enhances the backbone neural networks’ compression
ratio by 5.1% on average, reduces compression time by
30.0%, and cuts GPU memory usage by 36.2%.

2 Related Work

[Deep-Learning Data Compression Methods] Recently,
several deep-learning-based compressors have been proposed
to improve compression ratios of heterogeneous files, e.g.,
video, image, etc. These approaches view the compression
task as a sequential modeling problem, where the historical
symbols are used as input to estimate the probability of the
incoming symbol. NNCP [Bellard, 2019] and TRACE [Mao
et al., 2022b] utilize transformers to achieve probability es-
timation. However, the semantic density of byte streams is
very sparse, and existing models cannot extract enough in-
formation from byte streams, resulting in low compression
rates. Furthermore, the compression speed of these compres-
sors is impractical for real-world applications. For example,
NNCP’s dictionary size of 16,384 and its 55 MB transformer
model lead to a compression speed of only 2.0 KB/s. TRACE
achieves a compression speed of 15.9 KB/s, while PAC offers
an even higher compression speed of 31.1 KB/s. Therefore,
methods that improve both the compression ratio and speed
are needed for deep-learning compressors.

[GPU Memory Optmization] The work on GPU memory
optimization is mainly focused on offloading [Lin et al.,
2023], recomputation [Peng et al., 2020] and defragmenta-
tion [Fang et al., 2022; Ren et al., 2021]. Offloading tech-
niques like VDNN [Rhu e? al., 2016] reduce memory usage on
the GPU side but increase the communication between host
and device, leading to higher host memory requirements. The
recomputation technique like checkpoint [Chen et al., 2016]
leads to irregular allocation requests, resulting in higher frag-
mentation. Defragmentation like Glake [Guo ef al., 2024] is

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

currently limited to only single-stream scenarios. Our work
is the first to delve into GPU memory reuse in PyTorch’s
multi-stream environment, offering potential benefits for
models and applications built with PyTorch.

3 Byte-Stream Data Compression

Any data can be represented as a binary data stream. In byte-
stream data compression, each set of 8 bits is considered as
a byte to be compressed [Mao er al., 2022b]. In this paper,
we divide the byte stream into many sequences with length
L € NT, serving as input tokens for the model. Each se-
quence is denoted as X € RL>1. Our objective is to forecast
the probability distribution for the next byte, which contains
the probabilities for 256 possible byte values. The proba-
bility distribution computation is formalized as a Predictor
function by Equation 2.

K = {p1,p2,...,p2s6} = Predictor(X))

where Zfi? p; = 1 and p; denotes the probability of the :-th
possible byte value. Once the probability distribution is pre-
dicted, we compress the input sequence with an arithmetic en-
coder. The ArithmeticEncoder function can be represented
by Equation 3:

X compressed = ArithmeticEncoder(K) (3)

where X compressed denotes the compressed result and is writ-
ten to disk. Multiple rounds of the above process constitute
a complete data compression. For decompression, due to the
model parameters being fixed, executing the training process
again can produce the same probability distribution. The de-
compression results can be obtained through the arithmetic
encoder [Howard and Vitter, 1992; Howard and Vitter, 2008].

4 The SEP Framework

4.1 Overview of SEP Architecture

The SEP framework divides the compression system into
multiple components. Figure 1 shows the overview archi-
tecture of the SEP framework. All types of binary files are
first converted to byte streams. These streams are divided and
initialized to different task queues, with a random probability
distribution. Then, the Semantics Enhancement (SE) Mod-
ule extracts the features of the byte stream and turns them
into the fusion patches with adaptive stride. By feeding the
enhanced data into compressor backbones such as TRACE,
PAC and others, the probability distribution of the next byte
is predicted. Finally, the byte stream with a probability dis-
tribution is compressed by the arithmetic coder. Notably, our
computation and GPU optimization modules can simultane-
ously reduce memory consumption and expedite the entire
compression process above, which includes Direct Memory
Access (DMA) and I/0 hiding to enhance the GPU and CPU
throughput. In the following subsections, we will detail the
design and techniques implemented for each key component
of our SEP framework. During decompression, the same
model parameters are applied to reproduce the training pro-
cess, ensuring the regeneration of the consistent probability
distribution. This approach allows the decompression pro-
cess to accurately restore the original data, achieving lossless

Compressed File
‘ Arithmetic Coder J \
*

K € R1x256 ‘ Probabilities
: GPU Memory
A* o Optimization |
Classification 1 (Memory Reuse) !
L) L~ T /
Backbone Network T
: (Alternative) | ,7TTTTToTToooo
NXF - L) Multi-Stream
2 ERTT 0 Adaptive Stride || Pipelines
Xs € l}:RN xF i Dimension Fusion \ { (DMA Hiding)

Normalization+Patching
7 T Embeddiné
‘\/\'\. |

1
II Uncompressed File

Figure 1: The overview of SEP.

Xs € RVXDXP
Xe €]IERIXLXD
X € RIxE

compression. Most importantly, our SEP framework can also
be fully used in the decompression process, leading to an im-
provement in decompression speed.

4.2 Semantics Enhancement Module

Semantic-Patch Expansion

Byte stream data is characterized by low semantic density
and uneven distribution [Coull and Gardner, 2019]. Exist-
ing methods use single-byte symbols as tokens for attention
computation [Mao et al., 2023; Mao et al., 2022b]. However,
the limited receptive field makes it difficult to learn seman-
tic information. In the Semantic-Patch Expansion module,
we transform single-byte symbols into sub-sequence level
patches as tokens. This enables the network to better under-
stand latent cross-patch semantic correlations and to achieve
a high compression speed with fewer tokens.

As shown in Figure 2 (a), a single byte matrix X with the
length of L is embedded with a matrix E € R%56%XD where D
represents the dimension of the embedded vector. In Equation
4, X, € REXP is the embedded form of X.

X, =E[X] @)

Then, a patching function PATCH segments X, into patches.
Specifically, assuming the length of the patch is P and the
length of the stride is .S, each patch is tokenized stride by
stride. The length of the overlap between two adjacent
patches is P — S. Therefore, N patches can be segmented
from X, where N = % + 1. The process is depicted by
Equation 5.

Xs = PATCH(X,, S5) (5)
where X € RVXPXP g the reshaped form of N patches,
and each patch is a D x P matrix.

Dimension Fusion
Once the data has been divided into patches, the informa-
tion of multiple bytes in a patch is critical for attention mod-
ule. We design a high-level Dimension Fusion (DF) module,
which captures complex intra-patch relationships.

As shown in Figure 2 (b), we do a permutation operation to
reorganize the patches in X4 and make a position alignment

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

- (a) Semantic-Patch Expansion

H L
: Embedded _
E Byte Stream [—] Xe

V' Divide into Patches

EDIMIIIII||||||||II'"IIII|
2

: | PATCH(X,, stride = 1) /i
P[0 000 OO0 % Xa HHAH >

N=(L-P)/S+1

g I N I |

High Weight
LowWeight

Figure 2: The detailed workflow of the Semantics Enhancement
Module. (a) We set the length of patch P to 4, stride S to 1 and
X, € RY>EXDP (b) Feeding X, into Dimension Fusion to obtain
X, with overlap of dimensions. (c) The input for the adaptive stride
is defined as H € RP*N*¥ which comprises B instances of Xg,
where B is the batch size. Then the mask matrix IM learns from the
network and masks out patches with low semantic density in H to
achieve dynamic stride changes.

which can maintain the consistency of the channel space. The
DF can be modeled as:

X4 = DF(X,) ©)

where Xy is the output of Semantic-Patch Expansion, X4 €
RNXF and F is the fused as D x P.

Adaptive Stride

For convenience, it is a common practice to partition data
into patches using a fixed stride (e.g., 4 or 8) [Zhang and
Yan, 2022; Nie et al., 2022]. However, the manual setting of
hyper-parameters requires careful fine-tuning. Given that the
semantic density of byte stream varies, we propose an adap-
tive stride method. Specifically, we employ a mask matrix to
”simulate” changes in stride. If one patch is masked (value
being 0), it indicates low semantic density, and the sliding
window takes an extra step forward. The design has two ad-
vantages: 1) Semantic density distribution is adjusted to be
more uniform. 2) Sparse matrix multiplication speeds up the
compression process.

Figure 2 (c) shows the operation in detail. The input for the
adaptive stride module is defined as H € REXN>XF which
comprises B instances of X4, where B is the batch size.
Then, we design a mask tensor M € RE*NXF_ The M’s
dimensions correspond to the H, since we need to use M
to selectively mask patch in different batches. In the initial
stage, all elements in M are set to 1, which means that every
patch is retained. The initialization process can be expressed
as Equation 7:

M e RPXNXF i M 5 = 1 (7

Dense Fixed Stride
111111 111111 1
LNONONONONCN LNONONONONON
N — = T
1 3 2 1 4 1 1
Sparse Adaptive Stride

Figure 3: The comparison of adaptive stride and fixed stride.

Through the learning, the elements in M can be continuously
adjusted. Once the element is lower than a threshold, the ele-
ment will be set to 0. The process is shown in Equation 8:

Z=HoM ®)

where Z € RBXN*F ig the masked result. Figure 3 shows
an example of masked results, the white block represents the
masked patch. Compared with the current method where the
stride is fixed at 1, our adaptive stride produces a sparser ma-
trix. Furthermore, according to the semantic density distri-
bution of the byte stream, the adaptive stride can guide the
backbone network to swiftly focus on important information.

4.3 Multi-Stream Pipelines

The Multi-Stream Pipelines method is designed to hide CPU-
GPU data transfer, arithmetic encoder and disk I/0. A com-
parison between the PAC pipeline [Mao et al., 2023] and our
pipelines is given in Figure 4.

[PAC Pipeline] In the top part of Figure 4, the compression
process is shown to be sequential, with inefficient use of GPU
and CPU cores. The CPU dispatches tasks to the GPU, but
remains blocked waiting for GPU operations to finish. Once
the GPU completes tasks like backpropagation, the CPU re-
sumes its work, including arithmetic encoding (AC) and I/O
operations, while the GPU waits for the next CPU command.
[SEP-based Multi-stream Pipelines] Evident parallelism
and time savings are shown in the bottom part of Figure 4.
Nowadays, most GPUs are equipped with dual copy engines
and a kernel computation engine, such as NVIDIA RTX 4090
or AMD MI250. We design the multi-stream pipelines to

CPU PAC Pipeline
mn

Single GPU Stream : '
|HZD’ Training |DzH| ‘HZD| Training |DZH

. Time Gap] . Time Gap |
ﬂ:PU Queue Multi-Stream Pipelines
|ac[wo| [acluo| [ac[wo] [ac]uo] -
Multiple GPU Stream 1 . ' '
1 " 1
S1[H2D | Training |D2H | : ‘ !
1
s2 |H2D Training | D2H | ' -
| 1 Loop
S3 [H2D Training | D2H ‘ :

S4 H2D| Training ‘DZH |

. /

Figure 4: The time gap between PAC pipeline and SEP pipeline.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Algorithm 1 Multi-Stream Pipelines

1: // Producer
2: for task in the T do

3: fori=0 to pool.size do
4: stream = pool[i];
5: if torch.cuda.stream(stream) == TRUE then
6: task_gpu=task.to(’gpu’, non_blocking=True);
7: prob = backbone(train_gpu);
8: probability=prob.to(’cpu’, non_blocking=True);
9: queue.put(probability);
10: end if
11: end for
12: end for

13: // Consumer

14: while queue is not empty do

15: probability = queue.pop();

16: compressed = Arithmetic_encoder(probability);
17: compressed.write();

18: end while

hide H2D and D2H data transfers by a non-blocking strat-
egy. For tasks such as arithmetic encoding and I/O, we build
task queues with a producer-consumer model. One CPU core
focuses solely on scheduling, the other cores handle com-
putations, which eliminates the idle time for the GPU and
CPU. The pseudocode is shown in Algorithm 1. We initialize
the stream set as pool, the task set as T, and the producer-
consumer queue as queue. The algorithm divides the execu-
tion process into producer (Line 2-12) and consumer (Line
14-18). During producer process, the training task is across
the different streams in pool (Line 3). DMA operations such
as non-blocking H2D and D2H are set for overlapping (Lines
6 and 8). When probability distribution computations are fin-
ished, the Arithmetic Encoder and I/O tasks are put in the
queue (Line 9). At the same time, the consumer loops to
find the tasks in the queue (Line 14). Then the consumer se-
quentially retrieves tasks from the queue (pop) and performs
calculations (Line 15-17).

4.4 GPU Memory Sharing Strategy

To increase GPU memory utilization during multi-stream
training, enabling support for larger models and parameters,
we design an inter-stream memory sharing strategy on Py-
Torch 2.0’s memory allocator.

As shown in Figure 5, we first use a profiler to analyze the
sequence of memory allocation and release to identify mem-
ory blocks that can be shared. We focus on memory blocks
that are few but occupy a large portion of memory for max-
imizing memory reuse. Notably, our method preserves the
original timing of allocation and deallocation. Next, we set up
a shared pool to manage the shared memory blocks between
streams. Our method does not alter the allocation and deal-
location timing of memory blocks during the training pro-
cess. For example, when Stream 1 (S1) completes its train-
ing, the large continuous memory blocks it used are released
back into the shared pool and labeled as reserved blocks. The
next blocking Stream 2 (S2) can access these reserved blocks
by adjusting its pointer to the address of these blocks. When

s1 Stream 1 (S1) Memory [| active [_| reserved
'Tn;inin [TIT T _IT] Stream 2 (S2) Memory [| active [| reserved
= $2 g Stream 3 (S3) Memory active | | reserved
Lo
£ 2 || training T IIITTILT))
2 = |ioop ime|
= S3
£ | rratming L I T T T
§1 o TTmmmmeeees S O Memory waste
L SR 1 1 I | N N N
raining
—>Memory saved«—:
S1 T changé pointer '

D P S e

a raining : | !

? S2 ! f“:'“ (malloc’change pointer %
;; Training””” [T TTTTE ngl [' = ime
< Eleor 3 ! : E change pointer ' :

S| g AT T — i

7 | Training -t =

= S1 T change pointer !

L trainingt L L TLITTIT—>L LT _TF—=—{ [T T[1
raining LT -—------—-o--_-

Figure 5: Multi-stream GPU memory optimization.

S2 requests new memory space, it searches the shared pool
for available reserved blocks. If suitable blocks are found,
malloc reuses them for the next stream, significantly saving
memory. Furthermore, the entire training process involves a
loop-intensive data flow, where the size of the memory blocks
involved in computations is the same. This allows for a match
with the memory blocks shared from previous training pro-
cesses, further reducing memory fragmentation.

S Experiments

All experiments are performed on a server powered by Intel
5218 CPUs (16 cores) and eight NVIDIA A800 GPUs (80GB
memory), using a PCle Gen 4.0 interface. The storage in-
cludes a SAMSUNG SSD PM893 with 1.92 TB capacity via
SATA connection. The operation system is Ubuntu 20.04.
The software environment is based on PyTorch version 2.0.1
and NVIDIA’s CUDA version 12.1 for GPU acceleration.

5.1 Experimental Settings

Datasets. We evaluate the SEP framework on seven
real-world datasets, including: Book [Zhu et al., 2015],
Enwik9 [Mahoney, 2011], Float [Burtscher and Ratana-
worabhan, 2008], Sound, Image [Deng et al, 2009],
Backup(heterogeneous) [Mao et al., 2023] and Silesia [De-
orowicz, 2007; Piczak, 2015].

Baselines. We select two SOTA compressors for compari-
son, including TRACE [Mao et al., 2022b], PAC [Mao et al.,
2023]. To better illustrate the generalization of SEP, we select
time-series forecasting model PatchTST [Nie et al., 2022] as
one of the backbone and directly integrate it into SEP.
Parameter Details. To ensure the fairness of the experiment,
all model parameters are set to the same. We set history se-
quence length to 64, the patch length to 4, and the correspond-
ing feature dimension to 64. In all backbones, Adam is ap-
plied with a learning rate of 0.001, the threshold is set to 0.5,
and the stride is set to 1.

5.2 Main Experiments

Table 2 presents the compression ratios and speeds of SOTA
compressors, as well as those of the compressors when in-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Methods || Pre-training | SEP+PAC | PAC || SEP+TRACE | TRACE || SEP+PatchTST | PatchTST
Target || Ratio Speed | Ratio Speed | Ratio Speed || Ratio Speed | Ratio Speed || Ratio Speed | Ratio Speed
Enwik9 | 1000MB 6.57 32.3 6.13 32.4 5.82 26.1 5.52 34.1 5.20 26.1 534 346 | 5.03 26.1
Improvement Ratio:12.8% Ratio:5.3%,Speed:24.1% Ratio:6.2%,Speed:30.7% Ratio:6.1%,Speed:32.5%
Book | 1000MB 5.56 32.8 5.16 32.8 5.05 25.5 4.75 34.0 4.51 26.2 4.55 33.5 4.36 259
Improvement Ratio:10.0% Ratio:2.2%,Speed:28.6% Ratio:5.3%,Speed:29.8% Ratio:4.3%,Speed:29.3%
Sound | 842MB 2.36 33.3 2.26 334 | 2.26 25.7 2.23 33.9 2.13 27.3 2.20 32.8 2.09 27.1
Improvement Ratio:4.4% Ratio:0%,Speed:30.0% Ratio:4.7%,Speed:24.2% Ratio:5.6%,Speed:21.1%
Image | 1200MB 2.14 34.7 2.03 348 | 2.01 260 1.95 35.5 ; 1.87 27.6 1.92 34.1 1.84 26.4
Improvement Ratio:6.4% Ratio:1%,Speed:33.9% Ratio:4.3%,Speed:28.6% Ratio:4.4%,Speed:29.2%
Float | 189MB 3.87 31.5 3.68 31.7 | 3,53 252 3.49 33.3 3.21 25.6 343 32.0 323 254
Improvement Ratio:9.6% Ratio:4.3%,Speed:25.8% Ratio:8.8%,Speed:30.1% Ratio:6.1%,Speed:26.0%
Silesia | 206MB 5.25 33.6 5.16 33.8 5.0 26.0 4.78 34.1 4.61 26.0 4.81 33.5 4.57 26.3
Improvement Ratio:5.0% Ratio:3.2%,Speed:30.0% Ratio:3.6%,Speed:31.2% Ratio:5.3%,Speed:27.4%
Backup | 1000MB 2.00 32.0 1.95 320 | 191 243 1.84 332 | 1.76 26.5 1.81 326 | 1.72 254
Improvement Ratio:4.7% Rati0:2.6%,Speed:31.7% Ratio:4.5%,Speed:25.3% Ratio:5.1%,Speed:28.3%
Count I 14 | 0 | 0 14 | 0 I 14 | 0

Table 2: Comparison of SEP combined with three existing models against their original models, where the best results are in bold, the second
best results are underlined. In the 'Improvement’ row, 'Ratio’ denotes the improvement of the compression ratios, and ’Speed’ indicates
the improvement of the compression speeds (KB/s), as compared to non-SEP models, respectively. The *Count’ indicates the best counter
between origin model and SEP-based model. Pre-training refers to models trained on SEP+PAC, as compared to PAC.

tegrated with the SEP framework, across various datasets.
Overall, our solution achieves an average improvement of
5.1% in compression ratios and an average improvement of
30.2% in compression speed.

[Compression Ratio Comparison] In Table 2, PatchTST
naturally has lower compression than TRACE since it is not
created to focus on the compression task. However, after
combining it with our framework, the compression ratio eas-
ily surpasses TRACE. For the SEP+PAC, we observe an im-
provement in compression ratio, although it is less signif-
icant compared to SEP+TRACE and SEP+PatchTST. This
difference is largely attributed to the MLP model design of
PAC. The results of combining SEP with other backbones
prove that the SEP framework can be flexibly integrated with
other backbones and exhibit excellent compression perfor-
mance. We find that models without pre-training show poor
performance in the early compression stages (20,000 rounds).
By developing specialized pre-training models for each data
type, we further improve compression performance signifi-
cantly, achieving a 12.8% improvement on Enwik9.
[Compression Speed Comparison] In Table 2, once a back-
bone model is combined with the SEP framework, the com-
pression speed can directly exceed the original model by a
wide margin. The utilization of both CPU and GPU to con-
struct pipelines makes the process universally applicable to
nearly all deep-learning models. Consequently, SEP consis-
tently performs across various models and datasets, achieving
an average speed improvement of 30.0%. This enhancement
is vital for compression tasks.

[GPU Memory Optimization] We conduct a comparative
analysis of GPU memory footprint between the SEP and the
native PyTorch on different batch sizes. Figure 6 illustrates
that our memory optimization strategy achieves an average
reduction of 21.7% on SEP+PAC, 61.7% on SEP+PatchTST,

and 26.3% on SEP+TRACE. Overall, our SEP reduces mem-
ory usage by approximately 36.2% compared to the PyTorch
framework. Due to the fact that PAC consists of multiple
linear layers with small matrices, and PatchTST comprises
large patch blocks with large matrices, the optimization of
PatchTST shows better results with higher intermediate vari-
ables. These results show SEP as an effective solution for
GPU memory constraints, with potential for future multi-
stream deep learning applications.

[Adaptive Stride] We use the SEP+TRACE as the baseline
and all parameters are consistent with the main experiment.
We select the fixed stride value from [1, 2, 3, 4] and compare
it with our adaptive stride method. Figure 7 presents the com-
parison between the adaptive stride and other fixed strides in
compression ratio. This result proves that the design of adap-
tive stride improves the compression ratio due to the dynamic
adjustment ability of semantic density. Notably, there is a
4.1% improvement in compression speed due to the sparse
matrix. Adaptive stride addresses the issue of excessive re-
dundant information following patching in existing models
and offers a novel approach for time series research.

SEP+PAC

mm PyTorch
SEP

SEP+PatchTST SEP+TRACE

w

20

N

10

-

Memory Usage (GiB)

0
512 1024 2048
Batch Size

0
512 1024 2048
Batch Size

0
512 1024 2048
Batch Size

Figure 6: GPU memory footprint between SEP and PyTorch.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Backup ™8 [mage ™ Sound M Float Book MM Silesia WMEnwik

I

Comparision Ratio
w

[N]
T

Stride =2 Stride = 3 Stride =4 Adaptive Stride

Stride = 1

Figure 7: Comparison of fixed stride and adaptive stride.

5.3 Ablation Study

[Module Ablation on SEP] We evaluate the impact of dif-
ferent SEP modules on compression ratio and speed (KB/s).
The multi-stream pipeline (PIPE) module achieves the high-
est acceleration in compression speed, while the SE module
slightly improves both the compression ratio and speed. The
memory sharing (MS) module does not directly accelerate the
process but allows for handling larger datasets, enabling SEP
to compress more data without exceeding memory limits.

PAC PAC+SEP W/O-SE W/O-PIPE W/O-MS

Ratio 5.8 6.1 5.8 6.1 6.1
Speed 26.1 324 314 27.1 32.6
TRACE TRACE+SEP W/O-SE W/O-PIPE W/O-MS
Ratio 5.2 5.5 5.2 5.5 5.5
Speed 26.1 34.1 32.9 27.3 34.2

Table 3: Module Ablation Results on Enwik9.

[Ablation on Sparse Matrix and Size Reduction (SE)] In
SE module, the speedup is primarily attributed to two fac-
tors: matrix size reduction and sparse matrix computation.
To measure the impact of each part, we conduct aan blation
study in Table 4 on PAC+SEP. The results indicate that the
main speedup comes from matrix size reduction when spar-
sity is low (30-50%). However, the Image dataset sparsity can
reach 78% in certain iterations (not every iteration). When
sparsity exceeds 70%, the use of sparse matrix operations
(‘sparse.mm*) further accelerates computation.

Dataset Sparsity Speedup By Speedup By Speedup By

Range Matrix Size Sparse Matrix SE (Total)
Enwik9 30-42% 3.9% 0% 3.9%
Book 30-45% 2.9% 0% 2.9%
Image 30-80% 2.5% 4.1% 6.6%

Table 4: Effect of Sparse Matrix and Matrix Size Reduction on SE.

[Evaluation of SEP Multi-Stream Pipeline] To evaluate
the performance of SEP’s multi-stream pipeline over CUDA
stream pipeline, we conduct an ablation study that excludes
the SE module. The results in Table 5 show that SEP outper-
forms CUDA in both image and text datasets, demonstrating
the efficiency of SEP pipeline in multi-GPU settings.

Dataset Model CUDA Pipeline SEP Pipeline SEP

Speedup Speedup Speedup
. PAC 3.3 % 20.1 % 24.1 %
Enwik9
TRACE 4.3 % 26.2 % 30.7 %
PAC 4.2 % 272 % 33.9 %
Image
TRACE 3.6 % 24.7 % 28.6 %

Table 5: Comparison of CUDA and SEP Multi-Stream Speedups.

5.4 Scalability and Hardware Compatibility

[Scalability] We adopt multiprocessing and data parallelism
to minimize communication overhead as much as possible.
To evaluate the scalability of the SEP-based model in a multi-
GPU environment, we conduct experiments under two, four
and eight NVIDIA Tesla A800 GPUs, which demonstrate the
SEP’s scalability and efficiency for data compression. As
shown in Figure 8, under data such as Image and Enwik9,
a near-linear acceleration ratio can be achieved, and still ex-
hibits good scalability.

== Enwik9 Silesia =X»=- Book =X= Image =»= Sound

9
o
ch— c
© 0.975 @
< S
2 0.950 %
3 —
9 0.925 2
=3 o
0 0.900 @

GPU Count

Figure 8: Scalability of SEP on multiple GPUs.

[Hardware Compatibility] To demonstrate the compatibility
of SEP, we conduct experiments on low-end devices, includ-
ing NVIDIA GTX 1060 (6GB), RTX 2080 (8GB) and RTX
3080 (10GB). As shown in Table 6, SEP consistently outper-
forms baseline models (PAC, TRACE, PatchTST) across all
hardware configurations, still achieving up to 30% speedup
on low-end GPUs. Notably, the GTX 1060 achieves an 82%
speedup on PatchTST, likely due to SEP’s memory optimiza-
tion reducing frequent memory paging caused by PatchTST’s
high memory usage on devices with limited memory.

GPU PAC PAC TRACE TRACE PatTST PatTST
(+SEP) (+SEP) (+SEP)
GTX1060 315 39325%1) 309 38926%1) 204 372(82%71)
RTX2080 866 1082 (25%1) 858 1055 (23%1) 810 1004 (24%7)
RTX3080 1376 1816 (32%1) 1384 1813 (31%1) 1310 1689 (29%1)

Table 6: Compression Speed (KB/min) on Various GPU Devices.

6 Conclusion

The SEP is a plug-in framework that easily integrates with
various deep learning models and compression algorithms.
Meanwhile, SEP supports flexible hardware configurations
and offers out-of-the-box functionality for compressing and
decompressing data.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgements

This work is supported by the National Key Research and De-
velopment Program of China (2022ZD0115305). We thank
VenusAlI Platform (http://data.aicnic.cn) for kindly providing
the GPU clusters for training the models.

Contribution Statement

T These authors have equal contribution.

References

[Affeldt e al., 2014] Reynald Affeldt, Manabu Hagiwara,
and Jonas Sénizergues. Formalization of shannon’s theo-
rems. Journal of Automated Reasoning, 53:63—-103, 2014.

[Bellard, 2019] Fabrice Bellard. Lossless data compression
with neural networks. 2019.

[Burtscher and Ratanaworabhan, 2008] Martin ~ Burtscher
and Paruj Ratanaworabhan. Fpc: A high-speed com-
pressor for double-precision floating-point data. IEEE
transactions on computers, 58(1):18-31, 2008.

[Chandra and Hsu, 2014] Surendar Chandra and Windsor W.
Hsu. Lossless medical image compression in a block-
based storage system. In 2014 Data Compression Con-
ference, pages 400-400, 2014.

[Chen et al., 2016] Tiangi Chen, Bing Xu, Chiyuan Zhang,
and Carlos Guestrin. Training deep nets with sub-
linear memory cost. (arXiv:1604.06174), April 2016.
arXiv:1604.06174 [cs].

[Choukse et al., 2020] Esha Choukse, Michael B Sullivan,
Mike O’Connor, Mattan Erez, Jeff Pool, David Nellans,
and Stephen W Keckler. Buddy compression: Enabling
larger memory for deep learning and hpc workloads on
gpus. In 2020 ACM/IEEE 47th Annual International Sym-
posium on Computer Architecture (ISCA), pages 926-939.
IEEE, 2020.

[Cloud er al., 2011] Robert Louis Cloud, Matthew L. Curry,
H. Lee Ward, Anthony Skjellum, and Purushotham V.
Bangalore. Accelerating lossless data compression with
gpus. CoRR, abs/1107.1525, 2011.

[Contoli and Lattanzi, 2023] Chiara Contoli and Emanuele
Lattanzi. A study on the application of tensorflow com-

pression techniques to human activity recognition. /EEE
Access, 11:48046—48058, 2023.

[Coull and Gardner, 2019] Scott E Coull and Christopher
Gardner. Activation analysis of a byte-based deep neural
network for malware classification. In 2019 IEEE Security
and Privacy Workshops (SPW), pages 21-27. IEEE, 2019.

[Deng er al., 2009] Jia Deng, Wei Dong, Richard Socher, Li-
Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on

computer vision and pattern recognition, pages 248-255.
Teee, 2009.

[Deorowicz, 2007] Sebastian Deorowicz. Silesia compres-
sion corpus, 2007.

[Fang et al., 2022] Jiarui Fang, Zilin Zhu, Shenggui Li, Hui
Su, Yang Yu, Jie Zhou, and Yang You. Parallel training
of pre-trained models via chunk-based dynamic memory
management. [EEE Transactions on Parallel and Dis-
tributed Systems, 34(1):304-315, 2022.

[Goyal er al., 2021] Mohit Goyal, Kedar Tatwawadi, Shub-
ham Chandak, and Idoia Ochoa. Dzip: Improved general-
purpose loss less compression based on novel neural net-

work modeling. In 2021 Data Compression Conference
(DCC), pages 153-162. IEEE, 2021.

[Guo et al., 2024] Cong Guo, Rui Zhang, Jiale Xu, Jing-
wen Leng, Zihan Liu, Ziyu Huang, Minyi Guo, Hao Wu,
Shouren Zhao, Junping Zhao, and Ke Zhang. Gmlake: Ef-
ficient and transparent gpu memory defragmentation for
large-scale dnn training with virtual memory stitching. In
ASPLOS. arXiv, January 2024. arXiv:2401.08156 null.

[Howard and Vitter, 1992] Paul G Howard and Jeffrey Scott
Vitter. Analysis of arithmetic coding for data compres-
sion. Information processing & management, 28(6):749—
763, 1992.

[Howard and Vitter, 2008] Paul G. Howard and Jeffrey Scott
Vitter. Arithmetic Coding for Data Compression, pages
65-68. Springer US, Boston, MA, 2008.

[Kang ef al., 2022] Ning Kang, Shanzhao Qiu, Shifeng
Zhang, Zhenguo Li, and Shutao Xia. Pilc: Practical im-
age lossless compression with an end-to-end gpu oriented
neural framework, 2022.

[Knoll, 2016] B Knoll. Tensorflow-compress, 2016.

[Knuth, 1985] Donald E Knuth. Dynamic huffman coding.
Journal of algorithms, 6(2):163-180, 1985.

[Koetal,2021] Y Ko, A Chadwick, D Bates, and
R Mullins. Lane compression: A lightweight lossless com-
pression method for machine learning on embedded sys-
tems. 2021.

[Lagar-Cavilla et al., 2019] Andres Lagar-Cavilla, Junwhan
Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw Burny,
Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan
Deng, Junaid Shahid, et al. Software-defined far mem-
ory in warehouse-scale computers. In Proceedings of the
Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, pages 317-330, 2019.

[Lin et al., 2023] Shao-Fu Lin, Yi-Jung Chen, Hsiang-Yun
Cheng, and Chia-Lin Yang. Tensor movement orchestra-
tion in multi-gpu training systems. In 2023 IEEE Interna-
tional Symposium on High-Performance Computer Archi-
tecture (HPCA), pages 1140-1152. IEEE, 2023.

[Liu ef al., 2019] Qian Liu, Yiling Xu, and Zhu Li. Decmac:
A deep context model for high efficiency arithmetic cod-
ing. In 2019 International Conference on Artificial Intelli-
gence in Information and Communication (ICAIIC), pages
438-443. IEEE, 2019.

[Mahoney, 2011] Matt Mahoney. Large text compression
benchmark, 2011.

http://data.aicnic.cn

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Mao et al., 2022a] Yu Mao, Yufei Cui, Tei-Wei Kuo, and
Chun Jason Xue. Accelerating general-purpose lossless
compression via simple and scalable parameterization. In
Proceedings of the 30th ACM International Conference on
Multimedia, pages 3205-3213, 2022.

[Mao et al., 2022b] Yu Mao, Yufei Cui, Tei-Wei Kuo, and
Chun Jason Xue. Trace: A fast transformer-based general-
purpose lossless compressor. In Proceedings of the ACM
Web Conference 2022, pages 1829—-1838, 2022.

[Mao et al., 2023] Yu Mao, Jingzong Li, Yufei Cui, and
Chun Xue. Faster and stronger lossless compression with
optimized autoregressive framework. In 60th Design Au-
tomation Conference (DAC 2023): From Chips to Systems-
Learn Today, Create Tomorrow, 2023.

[Mentzer ef al., 2019] Fabian Mentzer, Eirikur Agustsson,
Michael Tschannen, Radu Timofte, and Luc Van Gool.
Practical full resolution learned lossless image compres-
sion. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10621-10630,
2019.

[Moffat, 2019] Alistair Moffat. Huffman coding. ACM Com-
puting Surveys (CSUR), 52(4):1-35, 2019.

[Nie et al., 2022] Yuqi Nie, Nam H Nguyen, Phanwadee
Sinthong, and Jayant Kalagnanam. A time series is worth

64 words: Long-term forecasting with transformers. arXiv
preprint arXiv:2211.14730, 2022.

[Peng ef al., 2020] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai
Jin, Weiliang Ma, Qian Xiong, Fan Yang, and Xuehai
Qian. Capuchin: Tensor-based gpu memory management
for deep learning. In Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 891—
905, 2020.

[Piczak, 2015] Karol J Piczak. Esc: Dataset for envi-
ronmental sound classification. In Proceedings of the
23rd ACM international conference on Multimedia, pages
1015-1018, 2015.

[Ren eral., 2021] Jie Ren, Jiaolin Luo, Kai Wu, Minjia
Zhang, Hyeran Jeon, and Dong Li. Sentinel: Efficient
tensor migration and allocation on heterogeneous mem-
ory systems for deep learning. In 2021 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), pages 598-611. IEEE, 2021.

[Rhu et al., 2016] Minsoo Rhu, Natalia Gimelshein, Jason
Clemons, Arslan Zulfiqar, and Stephen W. Keckler. vdnn:
Virtualized deep neural networks for scalable, memory-
efficient neural network design. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), page 1-13, October 2016.

[Rissanen and Langdon, 1979] Jorma Rissanen and Glen G
Langdon. Arithmetic coding. IBM Journal of research
and development, 23(2):149-162, 1979.

[Schiopu and Munteanu, 2020] Tonut Schiopu and Adrian
Munteanu. Deep-learning-based lossless image coding.
IEEE Transactions on Circuits and Systems for Video
Technology, 30(7):1829-1842, 2020.

[Sullivan et al., 2012] Gary J. Sullivan, Jens-Rainer Ohm,
Woo-Jin Han, and Thomas Wiegand. Overview of the
high efficiency video coding (hevc) standard. /EEE Trans-
actions on Circuits and Systems for Video Technology,
22(12):1649-1668, 2012.

[Wu et al., 2016] Hao Wu, Xiaoyan Sun, Jingyu Yang, Wen-
jun Zeng, and Feng Wu. Lossless compression of jpeg
coded photo collections. IEEE Transactions on Image Pro-
cessing, 25(6):2684-2696, 2016.

[Yamagiwa, 2022] Shinichi Yamagiwa. Stream-Based Loss-
less Data Compression, pages 391-410. Springer Singa-
pore, Singapore, 2022.

[Yang er al., 2023] Runzhao Yang, Tingxiong Xiao, Yuxiao
Cheng, Qianni Cao, Jinyuan Qu, Jinli Suo, and Qionghai
Dai. Sci: A spectrum concentrated implicit neural com-
pression for biomedical data. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages
47744782, 2023.

[Zhang and Yan, 2022] Yunhao Zhang and Junchi Yan.
Crossformer: Transformer utilizing cross-dimension de-
pendency for multivariate time series forecasting. In The
Eleventh International Conference on Learning Represen-

tations, 2022.

[Zhang et al., 2021] Honglei Zhang, Francesco Cricri,
Hamed R. Tavakoli, Nannan Zou, Emre Aksu, and
Miska M. Hannuksela. Lossless image compression using
a multi-scale progressive statistical model, 2021.

[Zhu et al., 2015] Yukun Zhu, Ryan Kiros, Rich Zemel, Rus-
lan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-
like visual explanations by watching movies and reading
books. In Proceedings of the IEEE international confer-
ence on computer vision, pages 19-27, 2015.

