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Abstract

Reinforcement learning (RL) has demonstrated re-
markable success in solving complex decision-
making problems, yet its adoption in critical do-
mains is hindered by the lack of interpretability
in its decision-making processes. Existing ex-
plainable AI (xAl) approaches often fail to pro-
vide meaningful explanations for RL agents, partic-
ularly because they overlook the contrastive nature
of human reasoning—answering “why this action
instead of that one?” To address this gap, we pro-
pose a novel framework of contrastive learning to
explain RL selected actions, named VisionMask.
VisionMask is trained to generate explanations by
explicitly contrasting the agent’s chosen action
with alternative actions in a given state using a self-
supervised manner. We demonstrate the efficacy of
our method through experiments across diverse RL
environments, evaluating it in terms of faithfulness,
robustness and complexity. Our results show that
VisionMask significantly improves human under-
standing of agent behavior while maintaining ac-
curacy and fidelity. Furthermore, we present exam-
ples illustrating how VisionMask can be used for
counterfactual analysis. This work bridges the gap
between RL and xAl, paving the way for safer and
more interpretable RL systems.

1 Introduction

Deep Reinforcement Learning (DRL) is a powerful tech-
nology in machine intelligence, widely used for many ap-
plications [Sutton et al., 1999]. However, understanding a
DRL agent’s decision-making process is challenging, due to
the inherent lack of explainability in the high-dimensional,
non-linear structure of its underlying Deep Neural Network
(DNN) [Heuillet et al., 2021; Hickling er al., 2023]. The lack
of transparency undermines users’ trust, driving the develop-
ment of Explainable AI (xAl).

Various methods in computer vision have been proposed to
enhance the transparency of Al systems [Ribeiro et al., 2016;
Selvaraju et al., 2017; Bach et al., 2015; Shrikumar et al.,
2017; Lundberg and Lee, 2017]. At the core, they share a
common foundation: attributing the classifier’s outputs to

more interpretable features and using a saliency map to vi-
sualize these attributions. Their only differences are how
these attributions are calculated. A high-quality attribution-
based explanation should meet several key criteria. First, it
should demonstrate faithfulness, meaning that including fea-
tures with high attribution should lead the model to the tar-
get output, and excluding them should prevent it. Second, it
should exhibit specificity, ensuring that only critical features
receive high attribution. Sometime this is also referred to as
sparseness. Finally, it should be robust, meaning the expla-
nation should remain consistent and not change significantly
with minor variations in the input.

Attribution-based explanation has been studied for DRL
models. [Greydanus ef al., 2018] and [Puri et al., 2020]
utilized policy distributional shifts as the basis for attribu-
tion in RL. Specifically, they calculate attribution of a fea-
ture as the difference in Q/V values or action distributions
between the original and perturbed states. For example, given
agent policy m, the attribution of a feature is proportional to
Ey (|m(s) — m(s")|2) where s stands for the original state and
s’ represents perturbed states generated for this feature. By
calculating the attributions for all features, a saliency map m
can be created. However, the perturbation-based explanations
lack faithfulness. Since each perturbation focuses only on lo-
cal features while ignoring the joint impact of feature combi-
nations, overlaying the saliency map with the original state,
(m ©® s), does not result in a feature combination that leads
the agent to the target action distribution 7(s).

A better approach to enhance faithfulness is to learn a
model to predict the saliency map m that minimizes the dif-
ference between m(m®s) and 7 (s). Explainer [Stalder et al.,
2022] leveraged this idea by training an explanation model
for an image classifier. However, Explainer categorizes class
labels into target and non-target for each training sample and
focus on learning saliency map (or mask) only for the tar-
get label while treat all non-target labels as a single group.
Unlike a (well trained) image classifier, where predictions
for non-target labels are typically close to 0, DRL agent in
many scenarios, does not exhibit a clear preference for the
actions. Non-target actions may sometimes have probabili-
ties only slightly lower than those of target actions. Analyz-
ing how masking the feature may affect the non-target action
probability provides additional information that can be used
to train the explanation model more effectively.
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The above analysis motivates us to design a trainable
saliency map generator for attribution-based explanations and
train it using two channels of contrastive information:(i)
Action-wise contrast: We believe that environment states
contain features that motivate the DRL agent to select both
target action and non-target actions. However, the target ac-
tion is ultimately chosen because it corresponds to higher re-
ward or has a stronger presence. For each action, a saliency
map can be generated as an explanation. Choosing features
according to the saliency map for a non-target action should
push the agent away from the target action, and vice versa.
This inspired us to treat the saliency map of the non-target
action m, and the target action m,, as a negative pair, which
can be leveraged for contrastive learning [Chopra et al., 2005;
Schroff et al., 2015; Gutmann and Hyvérinen, 2010]. (ii)
Feature-wise contrast: To exclude irrelevant features (e.g.
background) from the saliency map, explanations also need
to be discriminative in filtering out such information. When
only irrelevant features are accessible to the agent, the re-
sulting action distribution should be as uniform as possible.
Therefore, the target action’s saliency map (m) and its in-
verted counterpart ("n = 1 — m) form another negative pair
for contrastive learning.

In this work, we present VisionMask as an RL explainer
that is contrastively trained to generate saliency maps to ex-
plain agent’s actions. We specifically focus on agents that
maps images to actions and consider each pixel value as the
interpretable input feature, although the similar technique
could be extended to other type of features. We carefully
design the objective function to enable self-supervised con-
trastive learning of explanations from both action-wise and
feature-wise perspectives, fostering the generation of more
faithful explanations. We conduct evaluation on six RL envi-
ronments with five baselines based on faithfulness, robust-
ness, and sparseness. Quantitatively, VisionMask outper-
forms the baselines in terms of faithfulness, while exhibit-
ing strong robustness and high sparseness. Qualitatively, we
compared VisionMask with the baselines in two settings: vi-
sual comparison and human studies. In the visual compar-
ison, VisionMask provides sharper explanations that align
more closely with human interpretations, as demonstrated by
counterfactual examples. In the human studies, VisionMask’s
explanations help users better understand the agent’s deci-
sions and calibrate appropriate trust.

The contribution of our work can be summarized as the
following:

* We present VisionMask, a novel attribution method for
explainable visual reinforcement learning that generates
action-specific saliency maps. To the best of our knowl-
edge, this is the first work that learns saliency map in
a self-supervised contrastive learning manner, yielding
highly faithful explanations across various RL environ-
ments.

* VisionMask is model-agnostic in that it works with any
vision-based DRL agent and requires only the agent’s
input state and output action during inference time. Vi-
sionMask does not make any modification on the agent,
however, each VisionMask model is trained specifically

for a given agent by including the fixed agent in the
back-propagation path for gradient descent.

* We conducted extensive experiments, both qualitatively
and quantitatively, to demonstrate the improvements of
the saliency map in terms of faithfulness, robustness, and
sparseness, as well as a comprehensive ablation study
for each component.

2 Background and Related Work

The nested structure and non-linear operation of DNN make
it challenging for humans to understand how the outputs are
derived from inputs. Some existing works address this chal-
lenge by explaining model outputs through input attributions
[Petsiuk et al., 2018; Ribeiro et al., 2016; Fong and Vedaldi,
2017]. For example, Randomized Input Sampling for Ex-
planation of Black-box Models (RISE) [Petsiuk et al., 2018]
is a perturbation-based approach that explains neural image
classifiers by applying randomly generated masks to the in-
put image and assessing their impact. Local Interpretable
Model-agnostic Explanations (LIME)[Ribeiro et al., 2016]
tries to explain local instances by approximating them within
a nearby vicinity using a linear decision model, where the ex-
plainable elements are superpixels (i.e., small image regions
of similar pixels).

Built on top of the DNNS, the lack of transparency of the
DRL agents undermines humans trust and hinders their adop-
tion. Several studies have addressed this challenging prob-
lems. According to [Qing et al., 2022], existing efforts can
be categorized into four main approaches: model explaining,
reward explaining, task explaining, and state explaining.

Model explaining relies on inherently interpretable model
architectures or auxiliary reasoning mechanisms to gener-
ate explanations [Topin et al., 2021]. However, these self-
explanatory or symbolic models often suffer from decreased
performance compared to state-of-the-art neural network
based RL policies and may lack the representational power
needed to learn more complex policies. Reward explana-
tion typically involves using explicitly designed explainable
reward functions to generate explanations [Ashwood et al.,
2022]. Task explanation considers a policy as a composi-
tion of sub-task and action sequences, explaining the behavior
in terms of relationships among sub-tasks [Shu er al., 2017].
These approaches often assume the existence of a reward de-
composition scheme or a predefined sub-task partition mech-
anism, which may not hold true in all RL environments.

State explanations are based on agent observations from
the environment. This approach determines the significance
of explainable elements within a state observation in relation
to action selection or reward determination. An explainable
element in the state could be a small region in the visual input
or semantic features in the environment state. The proposed
VisionMask falls into this category.

State explaining methods can further be divided into
three categories: attention-based, Shapley value-based and
perturbation-based mechanisms, which are detailed below.
Attention is a common approach used for explainable RL in
several existing works [Annasamy and Sycara, 2019]. How-
ever, similar to i-DQN [Annasamy and Sycara, 20191, these
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methods cannot explain a given DRL model because their
attention model must be trained alongside the agent model.
Shapley value [Shapley and others, 1953], a concept from
game theory, has also been introduced into XRL. SVERL
[Beechey er al., 2023] provides a theoretical analysis on how
Shapley values can be applied to explain value and policy
network in DRL. However, this approach is still in its early
stages and assumes prior knowledge of the transition model
of the environment, which is not realistic for realistic appli-
cations.

Perturbation-based methods [Greydanus et al., 2018; Iyer
et al., 2018; Puri et al., 2020] compute saliency maps of the
input features by comparing the action probability or value
function before and after perturbation. [Greydanus er al.,
2018] perturbed the state with Gaussian blur at fixed inter-
vals, while [Iyer ef al., 2018] identified objects and perturbed
them with a constant gray value. [Puri et al., 2020] improved
on [Greydanus et al., 2018] by removing the effect of pertur-
bations from other irrelevant actions. As discussed in section
1, the performance of these techniques is constrained by pre-
defined perturbation rules and the lack of knowledge accumu-
lation. Furthermore, there is no guarantee that the perturbed
input remains physically meaningful.

3 VisionMask

In this section, we present our VisionMask architecture. The
primary goal is to generate action-wise saliency maps that
attribute the most relevant features in the state to each action.
For agents that map images to actions, the features and states
correspond to pixels and images.

3.1 Problem Formulation

Formally, we define the environment as a Markov Decision
Process (MDP) {S, A, P, R,~}, where S represents the state
space; A denotes the action space with | A| = K; the state
transition function P : § x A — A(S) depicts the tran-
sition between states based on actions, where A(S) repre-
sents the set of probability distributions over states; the re-
ward function R : S x A — R provides the immediate re-
ward for state-action pairs; v € [0, 1] is discount factor and
7 : S — A(A) represent policy. Return G is defined as
G = Y 3o V*Ri+1, and the expected cumulative reward of
a policy 7 is Ex[G] = E[Y>32,v*Rk+1], where the ex-
pectation is taken with respect to the initial state distribution,
transition probabilities, and action probabilities determined
by 7. VisionMask operates on a given trained expert policy
g such that 7 &~ ©* = arg max, E,[G], where 7* is the
optimal policy. We can obtain a dataset of expert demonstra-
tions Dg = {(s;,a; ~ mp(s;))}, consisting of N state-
action pairs, from trajectories sampled while executing 7g
in the environment. Our goal is to learn an explainer fy«
that minimizes the loss 6" = argming ), ,\ep, £(a,s,0)
where L is the training loss function to be discussed in section
3.3. The explainer function fy : S — [0,1]%*4s where d
represents the feature size of the state s € S and K denotes
the number of candidate actions, predicts the attributions of
each action to each feature in the state s. The value of the

output is bounded within the range [0, 1], with the (¢, j)th el-
ement indicating the jth feature’s attribution to the sth action.

In the case of visual DRL, s is the visual input of the agent
and d is the number of pixels in s, i.e., ds = W x H, with
W and H representing the width and height of the visual in-
put. The output of the explainer can be viewed as K saliency
maps, M = {mg,mq,....,mg_1}, each corresponds to an
action. A saliency value m;[z,y] near 1 indicates that the
pixel (z, y) has significant contributions to action ¢, whereas a
value near 0 denotes irrelevance. Overlaying the ith saliency
map with the state s will highlight the input features that lead
the agent to the ith action.

3.2 Architecture

As shown in Figure 1, we first collect the expert dataset Dg
using the expert policy 7g. From this dataset D, state-action
pairs (s;, a;) are sampled and fed to VisionMas fj to generate
the set of saliency maps M.

Generating the saliency map from given visual input is
a dense prediction task that shares similarities with image
segmentation, where each pixel is assigned a value to indi-
cate whether it belongs to an object or background. Hence,
we structure the explainer fy akin to the widely used image
segmentation model, DeepLabv3 [Chen et al., 2017], how-
ever, retrain it using self-supervised contrastive learning. To
make sure that the output saliency value are bounded to the
range [0,1], a sigmoid function is applied at the output of
fo. For each m; € M, we also calculate a complement map
m; = 1 —m,; highlighting the irrelevant regions for the action
. Then the masks m,; and m; are overlaid onto the original
state s to generate two masked states s; and s; using the fol-
lowing overlay function:

si=sOm;+re(m;),5 =s0m;+re(m;) (1)

where ©® is Hadamard Product and r is a reference value.
Numerous options exist for the reference value, such as set-
ting the pixel to zero, assigning a constant value, blurring the
pixel, or cropping it. Empirical study shows that setting the
reference to the background gives the best results. More de-
tails can be found in the ablation study 4.4. See Appendix F
for the background values for different environments.

To generate self-supervised contrastive loss to train the
model, we query the agent to obtain the corresponding log-
its z; = 2(s;) and Z; = 2(5;), where z;,%; € RE | and
the action probability distributions p; = softmax(z;) and
p; = softmax(Z;), where p,p; € [0,1]%,0 < i < K. By
concatenating each p; and p;, we have the the action proba-
bility distributions of each mask p, p € RE* X,

]T +4 ]T

P =[p1,p2,--, Dk P=[P1,D2,--- Dk

3.3 Training Loss

To enable the agent contrastively learn the saliency map m,,
we carefully designed the training loss function £ as follows:

E(Sa a, 9) = ‘Ca (57 a) + )\ne['ne (S) + Aareaﬁarea (57 a)

where L,(s,a) is action-wise contrastive action loss,
Le(s,a) is feature-wise 1oss, Larcq(S, a,n) is the area size
loss and A, Agreq are regularization hyper-parameters.
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Figure 1: Architecture of VisionMask. State-action pairs (s, a) are sampled from Dg.

Action-wise contrastive loss £,. Let a denote the target
action chosen by the agent. Our primary goal is to learn ex-
planations faithful to the a, making (a,p,) the only positive
pair. Furthermore, the explanation must be discriminative,
meaning it should clearly distinguish the target action a from
all other possible actions. As a result, every other pair of
(@, pi+q) is treated as a negative pair. Then, we compute the
cross-entropy loss between these pairs,

(Zaa)

Lpos( —— ) [k = a]log( xp 2)
7 Z Z —1 €xp(2ai)
Loeg(s,a) = —— Z[[k _ a]log(—XP(Faa) )

Z =1 exp(Zia)

where z;; is the logit for action j when querying the policy
with the masked state s;. The contrastive action loss £, =
Lpos + Lneq. Here [k = a] denotes the indicator function
which returns 1 if k is the same as label a, and 0 otherwise.
Note that we do not compute the loss with py ;4. as ensuring
the faithfulness of the target action a is our primary objective
here.

Feature-wise loss L,,.. To ensure that the visual input re-
gions selected by m; is necessary for the agent to make deci-
sions, we also need to make sure that the unselected region,
i.e., Sy, does not provide useful information for action selec-
tion, hence the action distribution p should follow a uniform
distribution. Motivated by this rationale, we define negative
entropy loss regarding m as the following:

1 o M.
= 3 > Pijlogbyj. @)

j

Le(8)

Area size loss L;,.,. A low effort way to minimize £,
and L, is to include all pixels in the mask, m;, and no pixel
in the complement mask, m,;, which obviously is not a valid
solution. We need to ensure that each importance mask only
consists a small number of crucial pixels. Thus, we define
L 4req using L1 norm as follows:
=% Z \* Z myli, j]

— Omax |) (5)

area S

where Z it the number of pixels in state.

4 Experiments

In this section, we begin by outlining the experimental setup.
We then present quantitative and qualitative analyses to eval-
uate our approach. Additionally, we provide counterfactual
explanations to demo VisionMask’s faithfulness and sensitiv-
ity. Finally, we perform an ablation study to assess the con-
tribution of each component.

4.1 Experimental Setup

Environment Selection. We conduct experiments across
three types of environments: Super Mario Bros (SMB)
[Kauten, 20181, Enduro, Seaquest and MsPacman [Bellemare
et al., 2013; Machado et al., 2018] for 2D game, Highway-
env [Leurent, 2018] for autonomous driving simulation and
VizDoom [Wydmuch et al., 2018] for 3D game.

Baseline Selection. We mainly compare our model with
perturbation-based baselines for black-box RL such as Grey-
danus [Greydanus et al., 2018] and SARFA [Puri et al.,
2020]. In addition, we also compared with three techniques
originally designed to explain image classifiers, including a
learning-based method, Explainer [Stalder et al., 2022], and
two perturbation-based methods, LIME [Ribeiro et al., 2016]
and RISE [Petsiuk ef al., 2018]. Although these methods fo-
cus on image classification, their main concept is similar to
ours: to attribute a given label (action) to a subset of visual
features. We use the public implementation from torchray
[Fong et al., 2019] for RISE and the original published im-
plementations for other baselines. Among all the baselines,
the Explainer is the most similar to VisionMask, as both are
learning-based approaches. However, VisionMask employs
action-contrastive learning and is trained using different reg-
ularization. In the experimental results, we demonstrate that
these differences significantly enhances VisionMask’s perfor-
mance.

Expert Policy. We use the open-source pre-trained PPO
[Schulman et al., 2017] agents from [Nguyen, 2020] for SMB
environment and from stable-baselines3 [Raffin et al., 2021]
for Enduro, Seaquest and MsPacman environments. We train
the DQN [Mnih er al., 2013] agents from scratch for the Viz-
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SMB Enduro Seaquest

Method Acc. Del. | Ins.? LLE] Sp.7T|Acc. Del.| Ins.t LLEJ] Sp.7T|Acc. Del.]| Ins.t LLE| Sp.7T
LIME 78.7 270 302 694 983 [88.1 363 380 479 90.2 |90.1 143 214 173 977
RISE 80.5 189 380 1.9 2.0 90.3 376 391 0.01 05 92.0 8.1 29.0 0.02 1.4
Greydanus | 169 564 202 208 633 |274 346 333 025 829 |446 144 788 0.12 751
SARFA 169 556 214 687 655 |279 333 334 026 770 |448 7.6 8.7 0.13 752
Explainer 922 236 49.0 38.1 81.2 1902 342 331 022 812 [953 134 300 09 97.5
VisionMask | 95.9 204 67.6 380 823 |98.7 329 412 05 80.0 |99.6 64 343 09 97.6

MsPacman VizDoom Highway
Method Acc. Del. | Ins.t LLE] Sp.1|Acc. Del.| Ins.t LLEJ] Sp.?7T|Acc. Del.| Ins.t LLE| Sp.7T
LIME 84.5 327 377 9.1 96.6 | 72.1 35.1 112 221 964 | 77.8 20.0 23.64 52.7 80.5
RISE 926 262 457 0.01 059 [838 146 145 0.02 05 82.5 200 221 0.05 0.6
Greydanus | 46.1 39.1 142 0.17 574 |752 20.7 172 0.12  62.1 |92.7 209 247 093 83.8
SARFA 424 188 156 0.13 66.5 | 76.1 16.7 174 0.55 66.6 | 97.6 204 256 043 83.0
Explainer |97.6 196 592 022 812 (842 144 176 02 65.5 [ 950 2037 244 15 83.9
VisionMask | 98.7 17.0 628 0.2 89.5 |87.8 142 181 389 478 |[981 198 258 1.14 84.8

Table 1: Quantitative results on SMB, Enduro, Seaquest, MsPacman, VizDoom and Highway of VisionMask against 5 baselines. Five metrics
are compared. The faithfulness is measured by Accuracy(Acc.), Deletion(Del.) and Insertion(Ins.) metrics(%); Robustness is measured by
Local Lipschitz Estimate (LLE)(%); And Complexity is measured by Sparseness(Sp.)(%). Blue represents second best results.

Doom and Highway-env environments. See Appendix A for
agents details.

Dataset. We collect state-action pairs for each environ-
ment and split the data into 80% for training, 10% for val-
idation, and 10% for testing. All results in this section are
reported using the test split. We make this dataset publicly
available; see Appendix B for details.

4.2 Quantitative Analysis

Metrics. Since there is no ground truth explanations [Ade-
bayo et al., 20201, it is crucial to select appropriate metrics to
evaluate the trustworthiness of explanations. Designing ro-
bust and consistent metrics for XAl remains an unresolved
challenge [Hedstrom er al., 2023]. To alleviate the inconsis-
tency between metrics and avoid selection bias, we closely
follow the LATEC [Klein et al., 2024] benchmark to evaluate
performance across three dimensions: Faithfulness, Robust-
ness, and Complexity.

Faithfulness measures the correlation between the agent’s
action and the masked visual input. In this context, we con-
sider three metrics: Accuracy, Deletion and Insertion perfor-
mance [Petsiuk ef al., 2018]. The accuracy gives the percent-
age of time that masked input and the original input lead to
the same action according to the expert agent. It is defined as

Dios
= o S e (si) = 7)),

where s, = s; © m; + r ® m;, and [-] again denotes the
indicator function.

Insertion and deletion measure the impact on the target ac-
tion probability by progressively adding or removing pixels
from the original input based on the descending order of their
attribution scores, with the most important pixels being in-
serted/deleted first. The inserted/deleted input image will be
processed by the expert agent again to obtain the probabil-
ity of the target action. By plotting the probability against
the number of pixels added or removed, we obtain an inser-
tion and a deletion curve. The insertion/deletion performance
is measured by the area under the curve (AUC) of the inser-
tion/deletion curves. A larger (smaller) AUC for the insertion

the following: Accuracy

(deletion) curve means that including (removing) the impor-
tant pixels identified by the explainer can effectively increase
(reduce) the probability of the target action. Hence a larger
(smaller) AUC of insertion (deletion) curve indicates more
accurate attribution prediction. The pseudo-code of the de-
tailed information of deletion and insertion could be found in
Appedix E.

For robustness, we report the Local Lipschitz Estimate
(LLE) scores [Alvarez Melis and Jaakkola, 2018], which
quantify the local smoothness of explanations by estimating
the Lipschitz constant within a specific neighborhood. The
Lipschitz constant measures the maximum rate of change of
the function, ensuring explanation does not vary too rapidly
within the state’s neighborhood. Given state s; and neighbor-
hood size ¢, LLE defined as

B — argmax Moo = Jots)l
seN.(s)  lIsi —s5ll2
where N (s) = {s' € X | ||s — §'|| < €}.

We evaluate complexity with Sparseness [Chalasani et al.,
2020], which uses the Gini index on the vector of absolute
attribution values sorted in non-descending order. Sparse-
ness ensures that features genuinely influencing the output
have substantial contributions, while insignificant or only
slightly relevant features should have minimal contributions.
A higher Sparseness indicates more contrastive attribution
values and hence more understandable explanations [Cha-
lasani et al., 2020].

Results. In Table 1, our VisionMask achieves the best
performance in terms of faithfulness (i.e., Acc, Del, Ins)
in all testing environment except SMB, where its deletion
score is slightly lower than RISE. However, RISE has sig-
nificantly lower insertion score and accuracy in this environ-
ment. Hence, our explanations are more aligned with the
agent’s decision-making process. Moreover, compared to,
Explainer [Stalder et al., 2022], VisionMask exhibits much
higher faithfulness, which suggests the effectiveness of action
contrastive learning. Overall, learning-based model performs




Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Explainer

Greydanus et al. VisionMask Counterfact

SARFA et al

Jump right

)
3
i
K
[}
o
5]
<

Figure 2: Qualitative examples of VisionMask and five baselines across three environments. (a)—(c) show the saliency map overlaid on
the input image and counterfactuals where regions are removed based on VisionMask’s map. (a) Human: “Mario moves left to avoid the

Piranha Plant.” VisionMask correctly highlights the Plant; removing it changes the action from ’Left’ to *Jump right’.

(b) Human: “The

agent moves left at constant speed due to the front car.” VisionMask identifies both; removing the car allows acceleration instead of ’Right +

accelerate’.
firing. Additional examples in Appendix H.

better compared to perturbation based approach.

In terms of robustness, RISE achieves the best performance
in terms of LLE score across all settings. This is because,
as a perturbation-based method, RISE uses the same type of
perturbation that we used to generate the neighbor image for
LLE score calculation. Hence the perturbation almost has
no impact to it. On the other hand, RISE has the lowest
sparsity, which means the attribution predicted by RISE are
evenly distributed and contains little information. For Com-
plexity, benefiting from the binary mask of LIME which is
much more sparse compared to other baselines, LIME has the
highest sparseness score. However, it has the worst perfor-
mance in terms of LLE score. Overall, VisionMask achieves
the best balance between the robustness and sparseness. See
Appendix for the Radar map.

4.3 Qualitative Analysis

In this section, we conduct two qualitative analyses across
two settings, visual comparision and human studies.

Visual Comparision. We present example explanations
from three environments, SMB, Enduro, and Seaquest, in
Figure 2, along with some counterfactual analysis generated
from the explanations provided by VisionMask. The exam-
ples show that both LIME and RISE fail to generate inter-
pretable explanations. LIME’s superpixels are too large to
capture the specific regions, while RISE’s explanations in-
clude almost all pixels. Explainer generates more accurate
and interpretable explanations compared to LIME and RISE.
This suggests that purely perturbation-based approaches may
fail in RL due to the high dynamics of environments and
the lack of learning ability. [Greydanus et al., 2018] and
SARFA generate better explanations than LIME and RISE

(c) Human: “The agent fires because a shark follows.” VisionMask detects the shark and oxygen bar; removing the shark stops

but often focus on irrelavent objects or background. In con-
trast, VisionMask accurately highlights the relevant regions,
providing sharp explanations that are both accurate and inter-
pretable. By removing some of the regions highlighted by the
VisionMask, counterfactual analysis could be performed to
answer questions like: ”"Why this action instead of that one?”

Total Responses and Positive Responses for Each Question
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Figure 3: Human studies. Comparison of total responses and posi-
tive responses across questions.

Human Studies. To assess whether the saliency maps im-
prove humans’ understanding of the agent’s decisions, we
conduct human studies for SMB, Enduro and Seaquest. We
present 63 participants with 9 state-action pairs accompanied
by the saliency maps generated by VisionMask. Participants
are then asked whether the saliency maps help them better un-
derstand the decision-making process of the RL agents. We
record the total number of responses as well as the number
of positive responses, as shown in Figure 3. Over 89% of
participants find the saliency maps generated by VisionMask
helpful in understanding the agents’ decisions. Details about
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UNet DeepLabv3

94.7
56.8
19.7
86.3
19.8
0.23

96.0
67.5
20.4
62.6
62.3
0.99

Metrics 0.1 0.2 0.4
Acc. 95.9 945 958
Ins. 1 57.0 569 57.0
Del. | 19.5 19.5 19.5
LLE | 96.0 93.8 99.5
Sp. 1 79.0 58.6 48.1
Sp/LLE 0.82 0.62 0.48

Metrics  Stalder L1 Metrics FCN
Acc. 95.6 95.9 Acc. 94.2
Ins. T 643  67.6 Ins. T 56.5
Del. | 21.1 20.4 Del. | 19.6
LLE | 56.6 62.6 LLE | 100.0
Sp. 1 73.8 623 Sp. 1 58.0
Hours 0.72  0.68 Sp./LLE 0.58
Speedup - 1.1x

Sp/LLE 1.3 1.0

(a) Area size regularization. L1 is better

for faithfulness and faster. Time is esti- results.

mated by training 10 epochs.
Metrics  background black mean blur
Acc. 97.8 959 976 944
Ins. 1 67.5 51.7 545 569
Del. | 204 16.8 182 25.0
LLE | 62.6 544 92.6 99.6
Sp. 1 62.3 28.5 455 56.6
Sp./LLE 1.0 0.52 049 0.57

(d) Reference value. Using background produce better
faithfulness values.

(b) fo model. DeepLabv3 achieves better

(c) Max area size amax. Maximum area
size of 0.1 produces favorable results.

Comp. C. +NE +NE+L1 +NE+L1+TV
Acc. 96.7 96.5 95.9 95.6
Ins. 1 56.7 56.5 67.6 64.6
Del. |  23.7 238 204 20.7
LLE|l 993 96.0 62.6 68.8
Sp. T 240 23.8 62.3 60.5
Sp/LLE 0.24 0.25 0.99 0.88

(e) Component. Negative Entropy (NE) with L1 area regulariza-
tion performs better in terms of faithufulness. Contrastive-only
(C.), Stalder Area Loss (S.), and Total Variation (TV.)

Table 2: VisionMask ablation experiments on SMB. Default settings are marked in gray .

this study can be found in the Appendix D.

4.4 Ablation Studies

Table 2 shows the results for ablation studies. In all tables,
the column marked in gray represents the default setting of

VisionMask used to generate results in previous sections.

Area size regularization. In this experiment, we replace
the default L1 area regularization with the Min-Max Area
Loss from Explainer [Stalder et al., 2022]. Without this con-
straint, Explainer tends to produce masks where all values
are one in order to achieve the best performance. Explainer
first vectorizes and sorts the mask elements, and then applies
penalties to pixels falling outside the range [a, b], where the
hyperparameters a and b specify the minimum and maximum
allowable area sizes. Instead, VisionMask uses L1 area reg-
ularization to constrain the maximal area, as we do not wish
to impose constraints on the minimum area size. To imple-
ment action contrastive learning, we need to generate masks
for actions that are not selected, and these masks should be
allowed to be all zeros if necessary. As shown in Table 2a,
using L1 area regularization improves the faithfulness of the
explanation and increases training speed.

Max area size. We further vary the maximum permitted
area size ap,x to evaluate its impact. As shown in Table 2c,
reducing amax significantly increases the sparseness as it con-
strains the model to focus on the most discriminative regions
without compromising other performance metrics. The 0.1
setting achieves the best results, as expected.

fy model. In Table 2b, we compare the performance
of three different versions of VisionMask with three differ-
ent segmentation models: our default DeepLabv3 [Chen et
al., 2017], Fully Convolutional Network (FCN)[Long et al.,

2015], and UNet[Ronneberger et al., 2015]. The results show
that DeepLabv3 achieves a better performance.

Reference Value. We evaluate the impact of hyperparam-
eter r in Equation 1 by setting the reference value to back-
ground, black, mean, and blur. The "black” reference sets r to
0, the ”mean” reference sets r to the RGB mean value of the
entire dataset, and the “’blur” reference applies Gaussian blur
(kernel is 39, o = 15) to the image and use the blurred pixel
value as r. Table 2d compares the performance of Vision-
Mask with these four different reference values. We choose
the background as reference value as it provides a more bal-
anced performance across all metrics. Details about the back-
ground reference value are provided in Appendix F.

Loss Function Components. In Table 2e, we evaluate
the impact of different components in the loss function on
the performance of VisionMask. The results show that, al-
though adding negative entropy and L1 area regularization
slightly reduces accuracy, it improves the insertion and dele-
tion scores and significantly boosts the Sp./LLE ratio. In con-
trast, adding total variation to produce smoother masks has
minimal impact on overall performance.

5 Conclusion

We presented VisionMask, an agent-agnostic DRL explana-
tion model trained in self-supervised contrastive learning. Vi-
sionMask generates explanations with higher fidelity and bet-
ter effectiveness compared to existing attribute-based meth-
ods. It is our future plan to extend this approach to multi-
modality input and couple the visual explanation generated by
the VisionMask with other information such as agent’s long-
term goals and future rewards.
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