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Abstract
Incomplete multi-view clustering (IMVC) extracts
consistent and complementary information from
multi-view data with missing views, aiming to par-
tition the data into different clusters. It can effec-
tively address the problem of unsupervised multi-
view data analysis in complex environments and
has gained considerable attention. However, the
fairness of IMVC remains underexplored, partic-
ularly when data contains sensitive features (e.g.,
gender, marital status, and age). To tackle the prob-
lem, this work presents a novel Fair Incomplete
Multi-View Clustering via Distribution Alignment
(FIMVC-DA) method. The proposed FIMVC-DA
introduces fairness constraints to ensure cluster-
ing results are independent of sensitive features.
Additionally, it learns consensus representations
to enhance clustering performance by maximizing
mutual information and aligning the distributions
of different views. Experimental results on three
datasets containing sensitive features demonstrate
that our method improves the fairness of clustering
results while outperforming state-of-the-art IMVC
methods in clustering performance.

1 Introduction
Multi-view data has become increasingly prevalent, which in-
corporates multiple perspectives or viewpoints on a partic-
ular object [Xu et al., 2013]. Compared with single-view
data, multi-view data provides more details that help en-
hance the effectiveness of clustering tasks [Tao et al., 2019;
Ding and Fu, 2018]. Extensive research has been con-
ducted on multi-view clustering (MVC) [Zhan et al., 2019;
Chao et al., 2021; Tao et al., 2020], which has been proven
as an effective tool for analyzing unlabeled data [Chen et
al., 2022]. However, the effectiveness of existing MVC ap-
proaches relies on the completeness of the data. In the pres-
ence of missing multi-view data, the performance of most
MVC methods decreases drastically with an increasing miss-
ing rate [Wen et al., 2023]. Consequently, it motivates the in-
vestigation of the incomplete multi-view clustering (IMVC)

∗correspinding autor

Sensitive feature : color Missing Data

Original Distribution Fair ClusteringUnfair Clustering

Cluster1 Cluster2

Cluster1 Cluster2 Cluster1 Cluster2

Samples that have been incorrectly clustered 

Figure 1: This figure depicts the paper’s motivation. Triangles and
circles represent data categories, while blue and green indicate sen-
sitive features like gender. Unfair clustering, as seen in Cluster 1,
arises when missing data (e.g., females) leads to overrepresentation
of other groups (e.g., males). In Cluster 2, sensitive features them-
selves may contribute to bias. This paper aims to ensure fair cluster-
ing by regulating sensitive feature distribution.

problem[Li et al., 2023].
Incomplete multi-view data [Li et al., 2014a] is ubiquitous

due to environmental noise, sensor failure, transmission in-
terference, etc. The simplest IMVC technique involves ex-
cluding samples with missing views or imputing the missing
view with zeros or the mean, followed by applying an MVC
method [Li et al., 2023]. However, the exclusion of samples
can lead to the loss of important information [Zhang et al.,
2023], and imputing missing values with zeros or means may
result in poor clustering results due to the deviation from gen-
uine samples [Xia et al., 2022]. To overcome the difficulty,
researchers have extensively investigated the IMVC problem,
yielding three main types of IMVC methods: 1) Non-negative
matrix factorization (NMF) based methods [Li et al., 2014a]:
These methods decompose the data matrix to learn a comple-
ment low-dimensional representation. However, their appli-
cation is limited to non-negative matrices [Li et al., 2022].
2) Subspace learning based methods [Yin et al., 2015]: They
solve the IMVC problem by learning the completed subspace
for clustering; 3) Generation-based methods. Wang et al.
[2018] utilized the powerful generative capabilities of gen-
erative adversarial networks (GANs) to impute missing data,
thereby ensuring that the imputed data are closer to the distri-
bution of the original data.

Although the aforementioned methods improve IMVC per-
formance, they treat sensitive features as sample differences,
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resulting in unfair clustering results [Kenfack et al., 2023].
That is, samples with sensitive features from the same class
are always divided into different clusters, as shown in Figure
1. For example, when clustering results are used for targeted
advertising or job recommendations, discriminated groups
may not receive equal opportunities compared to other groups
if the clustering results are not fair. To tackle this problem,
several fair MVC have been proposed [Hardt et al., 2016;
Lee et al., 2021]. Chierichetti et al. [2018] computed the
clusters with a fair distribution of sensitive features first and
also established evaluation metrics of fairness. The method
proposed by Kleindessner et al. [2019a] forces groups of
different sensitive attributes to have similar similarity distri-
butions in feature space by modifying the spectral clustering
objective function, which centers on incorporating fairness
constraints into the Laplace matrix construction process, but
faces the problem of computational complexity growing with
the square of the number of views. The deep fair clustering
algorithm proposed by Li et al.[2020a] uses a combination of
deep representation learning and adversarial training to gen-
erate sensitive attribute-independent embeddings via a view-
sharing encoder, but the adversarial training model may lead
to clustering center drift.

Despite the growing attention towards fairness in MVC,
few works consider fairness in IMVC tasks. Nevertheless,
the unfairness problem becomes more serious when encoun-
tering IMVC problem because IMVC may lose crucial dis-
criminative features, leading to a situation where sensitive
features dominate the clustering process. As illustrated in
Figure 1, the missing data leads to unfair clustering for cluster
1. Moreover, these sensitive features may be misinterpreted
as categorical information, contributing to unfair clustering
outcomes for cluster 2.

To address this issue, this paper proposes a novel fair
IMVC method that takes into account the fairness of IMVC
and reduces the impact of sensitive features on the clustering
results. It first maximizes the mutual information to elimi-
nate redundant information from the complete view and ex-
tract the minimally sufficient common representation. Then,
it aligns the feature distribution between the incomplete view
and the complete view, improving the consistency of the com-
mon representation. Additionally, the model imposes fair-
ness constraints on the soft clustering allocation, ensuring that
the distribution of sensitive features in each cluster closely
matches the true distribution. Specifically, our contribution
can be summarized as follows:

• We develop a novel fair IMVC method that makes clus-
tering results independent of sensitive features, allevi-
ating the unfairness problem in IMVC. The fairness of
clustering is maintained by ensuring that the distribution
of sensitive features within each cluster closely aligns
with the true distribution.

• We maximize mutual information to mine common fea-
tures and align complete and incomplete view data dis-
tributions to learn the optimal clustering structure.

• Extensive experiments on several datasets demonstrate
that the proposed method guarantees the fairness of the

clustering results, and its clustering performance is su-
perior to existing IMVC methods.

2 Related Work
2.1 Incomplete Multi-view Clustering
Incomplete multi-view clustering (IMVC) tackles the chal-
lenge of missing views, which impedes effective extraction
of cross-view information. Existing IMVC strategies fo-
cus on imputing low-dimensional subspace representations
or missing views. For instance, matrix factorization meth-
ods [Li et al., 2014b; Hu and Chen, 2019] recover non-
negative representations from available views, with the work
[Yin and Sun, 2022] preserving manifold structures through
cosine similarity. Kernel-based techniques similarly impute
incomplete matrices using consensus information, including
anchor-based strategies [Guo and Ye, 2019] and multiple ker-
nel fusion approaches [Liu et al., 2020]. Generative ap-
proaches utilize GANs [Wang et al., 2021; Xu et al., 2019]
to synthesize missing views. DIMC-net [Wen et al., 2020]
employs graph-guided imputation, while Completer [Lin et
al., 2021] leverages dual prediction mechanisms for accurate
reconstruction. Despite these advances, two fundamental lim-
itations persist: imputation methods might significantly de-
grade clustering performance at high missing rates, and the
distribution gap between representations of complete and in-
complete data negatively influences the imputation validity.

2.2 Fair Incomplete Multi-view Clustering
The integration of fairness and IMVC is an emerging research
direction that aims to develop algorithms capable of handling
both missing views and clustering bias. Balancing incom-
pleteness and fairness introduces significant technical chal-
lenges. DFMVC [2024] uses contrast constraints to align
sensitive attribute distributions with the target cluster distri-
bution, but it does not handle the missing-view problem. In
contrast, Fair-MVC [2023a] integrates group fairness con-
straints into IMVC, ensuring that protected groups with sen-
sitive attributes are evenly distributed in each cluster. How-
ever, Fair-MVC overlooks the real distribution of sensitive at-
tributes, Besides, a key limitation of both methods is that they
do not well model the interaction between missing patterns
and sensitive attributes, potentially exacerbating bias. To ad-
dress these issues, we propose a novel framework based on
information bottleneck theory and mutual information max-
imization that aligns distributions between complete and in-
complete views while enforcing fairness constraints, enabling
fair clustering on incomplete data without sacrificing cluster-
ing performance.

3 Fair Incomplete Multi-View Clustering via
Distribution Alignment

Problem setting & Notations: Given a multi-view data
matrix X =

{
X1, X2, · · · ,Xv, · · · ,XV

}
, where Xv ∈

RN×dv (v = 1, 2, · · · , V ), V is the number of views, N is
the number of samples, dv is the dimension of Xv . Since
our model is designed for incomplete multi-view clustering,
we divide the data with multiple views X into two parts: 1)
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Notation Description

Xv Input data for the v-th view
X̂v Reconstructed data for the v-th view
Xv

p Paired data for the v-th view
Xv

u Unpaired data for the v-th view
Zv Subspace feature of the filled v-th view
Zv

p Subspace feature of paired data
Zv

u Subspace feature of unpaired data
Zv

p+u Subspace feature of the v-th view
Zp Common feature of paired data
Z Shared representation
dv
j Distance from the cluster center.

sj The sensitive features in the j-th cluster.
α, β, γ Hyperparameters.

Table 1: Descriptions of important notations used in this paper.

paired data of which all the views are complete, denoted as
Xv

p; 2) unpaired data of which some data is missing Xv
u. We

denote X̂v as the reconstructed data of v-th view.
Definition 1. Fair clustering: It is assumed that there are
m cases where the sensitive features R ∈ RN×m take val-
ues, i.e., there are m sensitive groups (based on sensitive
features such as gender, race, etc.), and the data is to be
clustered into k categories. Let Ps denote the proportion
of samples in the entire dataset belonging to sensitive group
s ∈ {1, 2...m}. Let Ps,j denote the proportion of samples in
cluster j ∈ {1, 2...k} that belong to sensitive group s. We de-
fine the fairness ratio P ′

s,j = Ps,j/Ps, which measures how
the representation of sensitive group s in cluster j compares
to its representation in the overall dataset. A clustering re-
sult is considered fair if the proportion of each sensitive group
within each cluster closely matches the proportion of that sen-
sitive group in the entire dataset, which occurs when P ′

s,j ap-
proaches 1 for all clusters and sensitive groups.

min
j∈{1,2...k},s∈{1,2...m}

min{P ′
s,j ,

1

P ′
s,j

} → P ′
s,j = 1 (1)

When P ′
s,j equals 1, it signifies that the proportion of sensi-

tive groups within each cluster matches the proportion of that
sensitive group in the entire dataset, ensuring maximum fair-
ness in clustering. For instance, if the ratio of men to women
in a given category is 1:1, clustering should maintain the same
ratio within that category.

3.1 Network Architecture
Figure 2 illustrates the overall architecture of FIMVC-DA,
which is composed of V encoders/decoders E/D, a common
representation learning module, an unpaired data distribution
alignment module, and a fairness-aware clustering module.
We first send partial multi-view data [Xv

p,X
v
u] to the encoder

corresponding to each view and obtain latent subspace fea-
tures Zv

p+u = [Zv
p,Z

v
u], and the decoders map the latent fea-

tures to reconstructed samples X̂v . Then, the common rep-
resentation learning module removes the redundant informa-
tion in the latent subspace feature Zi

p and retains the con-

sistent latent representation. Subsequently, we use the un-
paired data distribution alignment module to complete the la-
tent representation Z of data with missing views and guar-
antee the consistent distribution of complete view data and
incomplete view data. Finally, the fairness-aware clustering
module achieves the fairness of clustering results.

Encoder/Decoder Module:
The encoder transforms each view’s input data into hid-
den layer features, which are better suitable for clustering.
The subsequent clustering tasks are performed on the feature
Zv

p+u extracted by the encoder. The decoder attempts to re-
construct the original data from the extracted features Zv

p+u,
thereby enforcing the extracted features not to deviate from
the original data. Generally, the function of the encoder/de-
coder module is achieved via a Reconstruction Loss as de-
fined below:

Lrec =
V∑

v=1

∥Xv −Dv(Ev(X
v))∥2F =

V∑
v=1

∥∥∥Xv − X̂v
∥∥∥2
F
,

(2)
where Xv is the v-th view; Ev represents the encoder of the
v-th view; Dv represents the decoder of the v-th view; X̂v

represents the reconstructed data of Xv after undergoing en-
coding and decoding. A proficiently trained encoder/decoder
module should minimize the disparity between Xv and X̂v .

Common Representation Learning Module:
To learn common representations with better clustering struc-
tures, we use common features Zp as anchors, increasing
the common information in paired data from multiple views
while removing redundant information from the original data,
which is implemented by the following loss:

Lcom = −
V∑

v=1

I(Zv
p;Zp) +R(Zv

p,Z
v
p+u) (3)

where I(·; ·) denotes the mutual information between two
random variables, which measures the amount of shared
information. R(·, ·) is a regularization term whose pur-
pose is to prevent the model from reaching a triv-
ial clustering assignment result, which is formulated as

R(Zv
p,Z

v
p+u) =

V∑
v=1

I(Cv
1;C

v
2), where Cv

1 =
√
Zv

p
TZv

p,

Cv
2 =

√
ZvT

p+uZ
v
p+u.

When the features from multiple views are projected into
a shared common feature space, each sample can be repre-
sented by features from any view. Building upon these ob-
servations, we suggest feature weighting to derive common
features for each sample. We denote Zp as the learned com-
mon feature of the paired data, calculated from the weighted
sum of the complete features of all views as

Zp =
V∑

v=1

wvZ
v
p, (4)

where wv is the weight of the v-th view, which is designed to
help Zp have more information about the clustering structure.
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Figure 2: Illustration of the proposed FIMVC-DA model. We maximize I(Zv
p;Zp) to learn common features in complete views and solve

max I(Zv;Zv′
) and max I(Z;Zv) to align the feature distribution between incomplete and complete views. The fair-constrained loss Lfair

is used to encourage the fairness of each cluster, and the reconstruction loss Lrec is leveraged to train encoders to ensure the degree of feature
restoration to the original data.

It is calculated by the following formula:

wv =
σ(Zv

p)
V∑

v=1
σ(Zv

p)
(5)

where σ denotes the variance, which is used to measure the
degree of dispersion of Zv

p. The intuition is that a well-
defined discrete structure is beneficial for clustering. There-
fore, assigning a higher weight to view features with larger
variances ensures a better clustering structure for the learned
common features Zp.

Unpaired Data Distribution Alignment Module:
We aim to learn a comprehensive shared representation from
both unpaired and paired data and eliminate differences in
Zp and Zv

u distributions to promote objective Eq. (8). To
achieve this goal, we first complete the shared latent repre-
sentation Z with unpaired representations provided by other
views. This process is conceptually achieved by concatenat-
ing the representations from all available data (both paired
and unpaired) to form a unified information source. This en-
sures that the final shared representation Z for all samples is
formed by fusing both the paired and unpaired latent features,
i.e., Z = Zp⊕Zv

u(v = 1, ..., V ), where the unpaired features
Zv

u are implicitly completed by aligning their distributions
with the anchor Zp. Then, we align the probability distri-
bution of unpaired data with paired data by maximizing the
mutual information between two representations of incom-
plete view data after filling them with each other [Hjelm et
al., 2019]. The Alignment Loss is as follows:

Lalign = −
V∑

v=1,v ̸=v′

(I(Zv;Zv′
) + I(Z;Zv) +H(Zv)) (6)

where v′ denotes a view different from v and H denotes en-
tropy. The first mutual information term I(Zv;Zv′

) aims to

align the distribution of unpaired data, the latter mutual infor-
mation terms I(Z;Zv) aims to align the distribution between
the shared representation Z (which is informed by all data)
and each individual view’s representation, and the last term
H(Zv) is a regularization term to avoid the objective function
degenerating into a trivial solution that simply aligns samples
into one category, which is calculated as:

H(Zv) = −
∑
i

p(zvi ) log p(z
v
i ) (7)

where p(zvi ) represents the probability distribution of i-th fea-
ture zvi in Zv of view v. The entropy term H(Zv) serves as
a regularization term that maximizes the uncertainty of fea-
ture distribution, encouraging the model to explore more di-
verse feature representations, preventing all samples from be-
ing mapped to the same category, and ensuring the diversity
and effectiveness of clustering results.

By optimizing this objective function, it aligns effectively
unpaired data and avoids trivial solutions. Additionally, it
ensures the consistent distribution of complete view data and
incomplete view data.

Fairness-aware Clustering Module:
A reasonable strategy for fairness is to ensure that the pro-
portion of sensitive features acquired by clustering is con-
sistent with the original data [Kleindessner et al., 2019b;
Cohen et al., 2021]. We first calculate the distance of a sam-
ple from each view to each cluster center as:

dvij =
exp(sim(zvi , cj))∑

j′
exp(sim(zvi , cj′))

(8)

where zvi ∈ Zv denotes the feature vector of the i-th sam-
ple from the v-th view; cj is the center of the j-th cluster;
sim(·, ·) is the similarity function. dvij represents the distance

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 FIMVC-DA

Input: Incomplete multi-view data {Xv}, v ∈ {1, 2...V },
Epoch T
Initialize: Extract initial features for all samples from each
view.
Parameter: Objective function weights α, β, γ
Output: Clustering results on Z

1: while not reach T do
2: For each view v, extract features for paired samples Zv

p
and unpaired samples Zv

u.
3: Calculate the weight of v-th view wv by Eq. (5).
4: Fuse paired features to obtain common representation:

Zp =
∑V

v=1 wvZ
v
p.

5: Concatenate Zp and all Zv
u to form the unified feature

matrix Z.
6: Calculate the distance dvij between each sample and

each cluster center by Eq. (8).
7: Update the distribution of sensitive features sj by Eq.

(9).
8: Adapt the distribution of sensitive features in cluster-

ing results by Eq. (10).
9: Optimize the total loss by Eq. (11).

10: end while
11: Perform k-means clustering on Z.

between the i-th sample from the v-th view and the center of
the j-th cluster. Suppose ri is the sensitive feature of the i-
th sample, we calculate the weighted mean of each sensitive
feature in j-th cluster as:

sj =

N∑
i=1

V∑
v=1

dv
ijri

N∑
i=1

V∑
v=1

dv
ij

, (9)

Finally, the Fairness Constraint Loss can be defined as:

Lfair =
k∑

j=1

∥∥∥∥∥sj − 1

N

N∑
i=1

ri

∥∥∥∥∥
2

2

(10)

where k is the number of clusters; 1
N

N∑
i=1

ri is the average

value of sensitive features in the entire dataset.
Optimizing this loss ensures that the proportion of sensitive

features in each cluster is close to the overall dataset distribu-
tion. Thus, this objective function can fix the model’s bias
problem on sensitive features.

3.2 Objective Function
In summary, the objective loss function of our model is as
follows:

L = Lrec + αLcom + βLalign + γLfair (11)

where Lrec is the reconstruction loss of encoder and decoder.
Lcom is a common representation learning loss used to dis-
cover common representations across views. Lalign is the
alignment loss to align the feature distribution between in-
complete and complete view data, which makes unpaired data

Dataset Number Sensitive feature Cluster

Credit Card 5000 Gender 5
Zafar 10000 Binary value 2
Bank 5000 Marital status 2

Table 2: Information about the datasets

nearer to its cluster in the feature subspace. Lfair is the
fairness-aware clustering loss. α, β, and γ are employed to
control Lcom, Lalign, and Lfair. An excessive β can nega-
tively impact the feature resolution, potentially reducing the
clustering to a single class. Conversely, a small β can cause
incomplete view data to deviate from the cluster it belongs to.
Lfair is the fair constraint loss that ensures that the distribu-
tion of sensitive features in each cluster is close to the genuine
distribution. We summarize the optimization algorithm in Al-
gorithm 1.

4 Experiments
4.1 Experimental Setup
Our experiments were all run on Windows 10 systems with
Python 3.7 and Cuda 11.5. The hidden layer dimension for
all codec-related algorithms is set to 200 and every random
seed has been set to 8. In all experiments, we set the learn-
ing rate to 0.0001. We chose Adam as the underlying op-
timizer. For the Credit Card, and Bank Marketing data set,
we use two non-linear functions[Mcculloch and Pitts, 1943]
(e.g., Sigmoid and Relu) to generate two views.
Datasets We evaluated our model on three fairness
datasets: Credit Card, Zafar, and Bank [Zafar et al., 2017].
The Credit Card dataset contains 30,000 samples with gen-
der as the sensitive attribute; Zafar is a widely used synthetic
dataset with a binary sensitive attribute; and the Bank dataset
includes 40,000 samples with marital status as the sensitive
attribute. All datasets were preprocessed to ensure balanced
class and sensitive attribute distributions. Table 2 summa-
rizes the main characteristics and sensitive attributes of each
dataset.
Comparison Algorithms We compare our method with the
following state-of-the-art approaches: Single-view cluster-
ing: k-means [Macqueen, 1967], DEC [Xie et al., 2016], CC
[Li et al., 2020b], Multi-view clustering: MvDSCN [Wang et
al., 2022], Incomplete multi-view clustering: DCP [Lin et al.,
2023], APADC [Xu et al., 2023], Fair multi-view clustering:
Fair-MVC [Zheng et al., 2023b].
Evaluation Criteria We demonstrated two indicators of
the model in clustering tasks: (1) Normalized Mutual Infor-
mation(NMI); (2) Balance Score ∈ [0, 1] [Chierichetti et al.,
2018]. The tightness of clustering is evaluated using NMI.
The fairness of clustering is assessed by the balance score,
which is defined as follows:

Balance = min
j

min |Cj ∩ sm|
|Cj |

(12)

where Cj ∈ [0, 1] represents the the j-th cluster, sm repre-
sents m-th protected subgroup. The distribution of sensitive
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Datasets Missing Rate 0 0.25 0.5 0.75

Metrics(%) NMI Balance NMI Balance NMI Balance NMI Balance

Credit Card

k-means[Macqueen, 1967] 20.94 ± 1.14 35.53 ± 0.37 15.67 ± 1.48 36.02 ± 0.60 13.56 ± 0.63 36.32 ± 0.38 9.24 ± 0.72 36.54 ± 0.28
DEC[Xie et al., 2016] 21.03 ± 2.09 35.96 ± 0.60 20.05 ± 0.79 36.40 ± 0.78 15.67 ± 1.21 36.26 ± 0.40 10.43 ± 1.53 36.42 ± 0.62
MvDSCN[Wang et al., 2022] 21.92 ± 1.53 35.82 ± 0.41 20.34 ± 1.59 35.94 ± 0.48 16.34 ± 1.83 36.63 ± 0.69 11.56 ± 1.62 36.72 ± 0.70
CC[Li et al., 2020b] 23.87 ± 1.28 35.74 ± 0.47 20.95 ± 0.68 36.16 ± 0.71 17.62 ± 1.01 36.80 ± 0.97 11.74 ± 0.96 37.18 ± 0.76
DCP[Lin et al., 2023] 26.73 ± 0.26 24.19 ± 1.05 23.18 ± 0.34 30.42 ± 2.23 20.04 ± 1.49 34.97 ± 0.47 16.12 ± 1.32 39.18 ± 0.58
APADC[Xu et al., 2023] 23.07 ± 0.45 26.32 ± 0.22 23.15 ± 0.24 32.27 ± 0.72 16.30 ± 1.52 32.27 ± 0.71 11.17 ± 1.62 33.29 ± 0.41
Fair-MVC[Zheng et al., 2023b] 24.95 ± 0.41 41.98 ± 0.32 22.09 ± 0.75 38.20 ± 0.46 18.71 ± 0.79 39.07 ± 0.76 14.28 ± 0.59 39.82 ± 0.92
FIMVC-DA 26.89 ± 0.53 45.23 ± 1.54 23.26 ± 0.62 43.84 ± 1.53 20.36 ± 0.54 42.31 ± 1.56 17.16 ± 0.56 43.62 ± 1.48

Zafar

k-means[Macqueen, 1967] 70.32 ± 0.78 17.06 ± 0.76 64.83 ± 1.21 16.35 ± 0.44 60.24 ± 0.90 16.23 ± 1.11 55.65 ± 1.02 16.32 ± 0.86
DEC[Xie et al., 2016] 72.55 ± 1.92 16.85 ± 0.73 70.89 ± 1.33 17.11 ± 0.84 64.93 ± 1.28 16.96 ± 0.93 58.96 ± 1.16 17.04 ± 0.86
MvDSCN[Wang et al., 2022] 76.91 ± 0.42 17.13 ± 0.65 74.98 ± 1.01 18.32 ± 0.88 69.58 ± 1.66 16.87 ± 0.99 64.26 ± 1.34 17.08 ± 1.17
CC[Li et al., 2020b] 78.95 ± 0.68 17.01 ± 0.71 75.22 ± 0.87 18.41 ± 0.67 72.13 ± 0.74 17.96 ± 0.83 68.05 ± 0.72 17.87 ± 1.06
DCP[Lin et al., 2023] 81.57 ± 1.57 21.65 ± 1.23 73.79 ± 2.44 22.54 ± 1.85 65.54 ± 1.91 19.89 ± 2.45 57.15 ± 2.18 21.27 ± 2.28
APADC[Xu et al., 2023] 72.38 ± 0.80 21.21 ± 0.57 66.37 ± 0.11 21.70 ± 0.31 61.28 ± 0.94 22.02 ± 1.28 55.29 ± 0.82 21.47 ± 0.96
Fair-MVC[Zheng et al., 2023b] 81.61 ± 0.57 28.96 ± 0.59 79.89 ± 0.55 30.64 ± 0.89 76.97 ± 0.79 29.33 ± 0.80 73.16 ± 0.92 29.58 ± 0.86
FIMVC-DA 83.23 ± 0.81 30.32 ± 1.67 80.94 ± 0.66 32.32 ± 0.91 78.22 ± 0.73 30.34 ± 0.85 75.84 ± 0.85 30.28 ± 0.92

Bank

k-means[Macqueen, 1967] 28.67 ± 1.44 37.65 ± 0.66 24.77 ± 1.71 36.66 ± 0.45 21.08 ± 1.17 36.32 ± 0.89 16.83 ± 1.46 36.25 ± 0.92
DEC[Xie et al., 2016] 30.93 ± 1.15 37.60 ± 0.96 28.97 ± 1.80 36.42 ± 0.69 24.37 ± 1.02 37.09 ± 0.78 19.43 ± 1.22 36.68 ± 0.85
MvDSCN[Wang et al., 2022] 36.24 ± 0.55 37.59 ± 0.67 35.02 ± 1.21 36.11 ± 0.57 31.33 ± 1.76 36.96 ± 0.77 27.15 ± 1.54 37.24 ± 0.86
CC[Li et al., 2020b] 36.23 ± 1.01 37.46 ± 0.97 34.88 ± 1.33 37.69 ± 0.95 31.13 ± 1.63 37.80 ± 0.85 27.12 ± 1.54 37.62 ± 0.94
DCP[Lin et al., 2023] 39.93 ± 1.84 26.75 ± 2.06 34.20 ± 2.87 20.49 ± 1.54 28.12 ± 2.31 27.29 ± 1.24 21.54 ± 2.46 26.58 ± 1.36
APADC[Xu et al., 2023] 40.62 ± 0.25 27.79 ± 2.59 32.21 ± 2.79 28.41 ± 2.11 33.14 ± 2.77 27.82 ± 2.28 26.32 ± 2.56 27.92 ± 2.12
Fair-MVC[Zheng et al., 2023b] 38.99 ± 0.91 42.40 ± 0.75 36.66 ± 1.01 41.76 ± 0.83 32.90 ± 1.03 41.61 ± 0.67 28.34 ± 0.98 41.82 ± 0.78
FIMVC-DA 41.12 ± 0.80 44.35 ± 0.67 38.89 ± 1.05 43.30 ± 0.93 34.43 ± 0.91 43.29 ± 0.76 30.25 ± 0.87 43.58 ± 0.89

Table 3: Clustering NMI and balance scores on the three datasets contain sensitive features. The best results are marked in bold. Suboptimal
results are represented in blue.

L1 L2 L3 L4 Credit Card Bank Zafar
NMI Balance NMI Balance NMI Balance

✓ 14.76 14.47 15.53 13.21 22.03 17.71
✓ ✓ 17.31 23.22 20.00 16.52 39.87 17.12
✓ ✓ ✓ 20.12 26.17 32.15 20.32 72.24 21.47
✓ ✓ ✓ ✓ 20.36 42.31 34.43 43.29 78.22 30.34

Table 4: Ablation study results across three datasets. The best and
suboptimal results are marked in bold and blue respectively.

Figure 3: Convergence curves on the three datasets.

traits typically determines the upper limit of balance, and the
higher the balance value, the fairer the outcome.

4.2 Experimental Results
Definition 2 Missing Rate If X comprises N samples
across V views, the total number of samples is N ∗ V . If
some views of certain data are missing, let the total number
of missing samples be Nmiss. The missing rate is then calcu-
lated as Nmiss/(N ∗ V ).
Clustering Results and Balance Scores on Three Datasets
Table 3 shows that our method outperforms existing cluster-
ing methods on the three datasets, including the most recent
clustering algorithm. Despite a certain constraint between the
balance score and clustering accuracy, the results show that
our algorithm achieves higher clustering accuracy. This is

consistent with our alignment loss, which aligns the distribu-
tion of partial and complete view data, allowing the learned
features to be more beneficial for clustering tasks. Our model
exceeds the second-best result in clustering NMI by 2% on
average in the three datasets, and the fairness score of cluster-
ing clusters is 3% higher on average. This result shows that
our model achieves better feature extraction and fusion capa-
bilities, which helps to improve the degree of balance while
maintaining clustering accuracy.

Sensitive Features Visualization Figure 4 presents t-SNE
visualizations of the Credit Card dataset, illustrating the ef-
fect of fairness constraints on clustering results. In the raw
data (a), male (blue) and female (red) samples are evenly
distributed, reflecting the balanced gender ratio in the orig-
inal dataset. Without fairness constraints (b), some clusters
are dominated by a single gender, indicating the presence of
bias in the clustering results. In contrast, with fairness con-
straints applied (c), the gender distribution within each clus-
ter closely matches that of the original data. These results
demonstrate that our method effectively mitigates bias and
achieves fair clustering outcomes that are independent of sen-
sitive attributes.

Ablation Study In this part, we conduct an ablation study
to analyze the influence of the reconstruction loss Lrec (L1),
the common representation learning loss Lcom (L2), the
alignment loss Lalign (L3), and the fairness-aware cluster-
ing loss Lfair (L4). We report experimental results on the
three datasets in Table 4. An obvious finding is that the fair-
ness constraint loss significantly improves the fairness of the
clustering results. The incomplete view alignment scheme
based on information theory effectively improves the cluster-
ing performance. As can be seen from the results in the last
two rows, the fairness constraint also helps to promote cor-
rect clustering to some extent. In summary, the ablation study
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(a) raw data (b) without fair constraints (c) with fair constraints

Figure 4: Visualize sensitive features in Credit Card dataset using t-SNE. Blue represents the male feature, while red represents the female.

Figure 5: NMI and Balance scores with different hyperparameters at a missing rate of 0.5 on the credit card dataset.

demonstrates that each component of the proposed FIMVC-
DA effectively improves clustering performance and fairness.

Convergence Analysis Figure 3 depicts the convergence
curves of the model’s objective functions on three datasets.
We normalize the loss function values of the four parts be-
cause they differ in magnitude. After training 500 batches,
each portion of the loss function on the four data sets is re-
duced to a constant. This suggests that our model exhibits an
elevated level of convergence.

Parametric Analysis From Figure 5, it can be seen that
when fixing α to be 1, the other two hyperparameters do not
have much effect on NMI. However, it is seen that the fairness
score is higher when the hyperparameter γ is larger. When
fixing β to 10, the other two hyperparameters have little ef-
fect on the NMI results as well as on the fairness score. When
fixing γ to 1, the other two parameters controlling the consis-
tency representation of the learning view do not differ much
in the NMI values when taking values between 1 and 10. The
clustering fairness is also the best.

5 Conclusion
This study addresses fair clustering in the context of missing
multi-view data, presenting a novel approach named Fair In-
complete Multi-View Clustering via Distribution Alignment

(FIMVC-DA). Initially, we tackle the challenge of integrat-
ing incomplete view data and refining common features by
maximizing mutual information from complete views. Addi-
tionally, we align the distribution of incomplete views to en-
hance coordination between the data. Fairness constraints are
then employed to ensure proximity between sensitive feature
distributions in clusters and those in real categories, thereby
mitigating model bias risks. Empirical evaluations on three
datasets confirm the superior clustering performance of our
method, with experiments on sensitive feature visualization
highlighting its effectiveness in ensuring clustering fairness.
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