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Abstract
Contrastive multi-view clustering has demonstrated
remarkable potential in complex data analysis,
yet existing approaches face two critical chal-
lenges: difficulty in constructing high-quality pos-
itive and negative pairs and high computational
overhead due to static optimization strategies. To
address these challenges, we propose an innova-
tive Efficient Multi-View Clustering framework
with Reinforcement Contrastive Learning (EMVC-
RCL). Our key innovation is developing a rein-
forcement contrastive learning paradigm for dy-
namic clustering optimization. First, we lever-
age multi-view contrastive learning to obtain la-
tent features, which are then sent to the reinforce-
ment learning module to refine low-quality fea-
tures. Specifically, it selects high-confident fea-
tures to guide the positive/negative pair construc-
tion of contrastive learning. For the low-confident
features, it utilizes the prior balanced distribution
to adjust their assignment. Extensive experimen-
tal results showcase the effectiveness and superior-
ity of our proposed method on multiple benchmark
datasets.

1 Introduction
Multi-view data has become increasingly ubiquitous across
diverse real-world applications [Zhan et al., 2018b; Zhang et
al., 2016], which describes the same object from multiple per-
spectives, such as different sensor types [Wang et al., 2015b]
and various features [Liu, 2021; Cao et al., 2015b]. Multi-
view learning, which can exploit complementary and consis-
tent information across different views, achieves more com-
prehensive insights than single-view approaches [Li et al.,
2019a; Huang et al., 2021; Peng et al., 2022]. As a funda-
mental multi-view learning paradigm, multi-view clustering
(MVC) has emerged as a crucial technique for discovering
intrinsic patterns and structures of multi-view data under un-
supervised settings [Zhang et al., 2017] and hence receives
considerable attention in machine learning and computer vi-
sion [Wen et al., 2020; Wang et al., 2018; Zhan et al., 2018a].

∗Corresponding Author

Traditional MVC methods primarily obtain consistent la-
tent representation from multi-view data for clustering with
linear transformation, which can be roughly categorized into
kernel-based methods, subspace-based methods, and non-
negative matrix factorization (NMF) based methods. For
example, Gönen and Margolin [2014] proposed a localized
data fusion approach for kernel k-means clustering. Liu et
al. [2016] introduced matrix-induced regularization to im-
prove the robustness of multiple kernel k-means. Sub-
sequently, Cao et al. [2015a] developed diversity-induced
multi-view subspace clustering. Luo et al. [2018] proposed
consistent and specific multi-view subspace clustering. How-
ever, these traditional approaches rely heavily on predefined
kernels or hand-crafted features, which often fail to capture
complex semantic relationships and suffer from limited scal-
ability when handling high-dimensional data.

To mitigate these limitations, deep MVC was developed
to exploit complex and nonlinear features embedded within
multi-view data [Sun et al., 2024]. Typical approaches in-
clude autoencoder-based methods, deep CCA, and genera-
tive adversarial networks (GAN) based methods [Dong et
al., 2020; Andrew et al., 2013; Li et al., 2019b]. Com-
pared to traditional methods, these approaches demonstrate
promising clustering performance. However, as unsupervised
learning techniques, they lack label guidance and rely solely
on feature differences for clustering. This limitation hinders
their ability to learn sufficient discriminative information, re-
sulting in suboptimal performance. Some works introduced
contrastive learning to enhance discriminative feature by in-
corporating pseudo labels as guidance [Trosten et al., 2021;
Pan and Kang, 2021]. Nevertheless, contrastive MVC meth-
ods encounter a situation where the representation quality and
clustering accuracy are mutually dependent. Coupled with
static and inflexible optimization strategies, these methods in-
cur extensive computational complexity for convergence and
limited improvement of clustering performance.

To address the aforementioned challenges, we develop a
novel efficient multi-view clustering framework with rein-
forcement contrastive learning. This framework incorpo-
rates a reinforcement learning module to dynamically opti-
mize the clustering process. Specifically, this module select
high-quality features for contrastive learning and adaptively
refine low-quality features. Then, we propose a memory-
enhanced mechanism that leverages historical information,
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which utilizes temporal feature consistency to efficiently re-
fine ambiguous assignments via momentum-based update. To
dynamically optimize the memory-enhanced mechanism, we
formulate the parameter adaptation as a reinforcement learn-
ing problem and solve it with Q-learning. This approach sig-
nificantly enhances clustering performance while maintaining
computational efficiency. Our main contributions are summa-
rized as follows:

• We propose a novel reinforcement contrastive learn-
ing framework for deep MVC, which adaptively selects
high-confident features to enhance the discriminative
feature learned by contrastive learning.

• We design a memory-enhanced mechanism to store
high-quality features and refine low-quality feature via
momentum-based update, thereby stabilizing the clus-
tering and promoting faster convergence.

• We conduct extensive experiments and comparisons,
demonstrating superior clustering performance with
only 30% of the traditional computational cost across
various benchmark datasets.

2 Related Work

2.1 Deep Multi-view Clustering

Multi-view clustering (MVC) leverages the consistency and
complementarity across views, using similarity measures to
partition data into clusters and uncover underlying relation-
ships. Due to the inherent challenges of unsupervised learn-
ing, many MVC methods design pretext tasks to extract
potential low-dimensional features and shared information
across views. For instance, autoencoder-based approaches
[Zhang et al., 2019; Fan et al., 2020] enhance feature re-
liability by enforcing consistency between the original in-
puts and reconstructed outputs. However, such reconstruc-
tion constraints typically capture information within indi-
vidual views, lacking the ability to explore cross-view cor-
relations. To address this, numerous algorithms employ
subspace learning to project multi-view data into a uni-
fied shared subspace, enabling joint representation learning
[Zhang et al., 2018; Wang et al., 2023b; Wang et al., 2023a;
Zhang et al., 2023]. Additionally, some methods integrate
CCA constraints [Wang et al., 2015a; Gao et al., 2020] or
leverage generative adversarial networks [Li et al., 2019b;
Xu et al., 2019] to align feature distributions across differ-
ent views. Recently, the emergence of contrastive learning
has revitalized MVC [Xu et al., 2022; Chen et al., 2023;
Wang et al., 2025]. By pulling together positive samples
and pushing apart negative ones, contrastive objectives im-
plicitly enhance intra-cluster compactness and inter-cluster
separability. For example, Cui et al. [2024] proposed a dual
contrast-driven clustering framework that improves feature
discrimination through contrastive learning. Despite these ad-
vancements, existing methods still face key limitations, such
as static optimization strategies, suboptimal view-weight bal-
ancing, and high computational overhead, all of which hinder
their scalability and practical deployment.

2.2 Reinforcement Learning for Clustering
Recently, an emerging line of work has started to explore the
potential of reinforcement learning (RL) in multi-view clus-
tering (MVC) [Liu et al., 2023]. Dai et al. [2025] pioneered a
graph-based framework that employs reinforcement learning
to infer the number of clusters, using an inter-cluster connec-
tivity reward mechanism to guide the process. Building on
this idea, Gu et al. [2023] introduced MVCIR-net, which in-
tegrates contrastive learning with reinforcement strategies to
enhance the recognition of clustering structures. In a different
direction, Yang et al. [2022] proposed a self-supervised rep-
resentation learning framework tailored for multi-view rein-
forcement learning, aiming to improve sample efficiency and
representation quality. While these approaches demonstrate
the potential of combining RL with MVC, they tend to focus
on isolated objectives—such as cluster number estimation or
representation learning—without offering a unified solution.
Specifically, they fall short in addressing critical challenges
such as class imbalance, adaptive optimization, and compu-
tational efficiency in a holistic manner. This underscores the
need for a more comprehensive framework that can lever-
age reinforcement learning not only for structural inference
or feature learning but also for enhancing the overall robust-
ness and scalability of MVC methods.

3 Methodology
3.1 Notation & Network Architecture
Given a multi-view dataset X = {X(1),X(2), . . . ,X(V )}
with V views and n samples, where X(v) ∈ Rn×dv repre-
sents the feature matrix of view v, our goal is to partition these
samples into K clusters. We denote the latent representations
as Z(v) ∈ Rn×dh , enhanced features as H(v) ∈ Rn×dh , and
clustering probability distributions as P(v) ∈ Rn×K , with its
regularized version as P̂(v).

Our EMVC-RCL framework consists of three key mod-
ules: View-specific Encoder-Decoder Module with encoders
Ev and decoders Dv that preserve view-specific information;
Local-Global Contrastive Module that ensures both sample-
level alignment and cluster-level consistency across views;
and Dynamic Clustering Refinement Module that employs re-
inforcement learning with memory bank M(t,v) ∈ Rn×dh at
time step t to stabilize uncertain assignments. These modules
work together to achieve consistent and balanced clustering
while preserving the unique characteristics of each view.

3.2 View-specific Encoder/Decoder
To learn discriminative representations from multi-view data,
we employ view-specific encoders and decoders. For each
view v, the encoderEv projects the input features into a latent
space:

Z(v) = Ev(X
(v)) ∈ Rn×dh (1)

whereEv is implemented as a Multi-Layer Perception (MLP)
that maps features from dimension dv to dh. Then, we em-
ploy the projected features from other views to refine the v-th
view feature as follows:

H(v) = Z(v) + αt ·
1

V − 1

∑
u ̸=v

Z(u) ∈ Rn×dh (2)
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Figure 1: The architecture of our EMVC-RCL framework. The data flow starts from multi-view inputs, which are processed by view-specific
encoders and decoders to extract latent features and reconstruct each view. These latent features are used to generate clustering probability
distributions, which are further optimized by local contrastive and global consistency objectives. Uncertain assignments are identified and
refined using a memory module that stores historical information. Reinforcement learning (Q-Learning) dynamically adjusts clustering
strategies by evaluating clustering quality and assignment confidence, ultimately producing clustering results.

where αt ∈ [0, 1] controls the intensity of multi-view infor-
mation integration. To preserve essential view information,
we reconstruct the input data through view-specific decoders:

X̂(v) = Dv(H
(v)) ∈ Rn×dv (3)

where Dv is also implemented as an MLP. We employ the
reconstruction loss to guarantee reconstruction quality:

Lrec =
1

V

V∑
v=1

∥X(v) − X̂(v)∥2F (4)

where ∥ · ∥F denotes the Frobenius norm. While this recon-
struction process helps preserve view-specific information, it
primarily focuses on individual view characteristics and may
not fully capture the semantic relationships across views.

3.3 Local-Global Contrastive Module
To learn clustering-friendly representations that capture
cross-view semantic relationships, we propose a local-global
contrastive learning strategy that operates on the enhanced
features H(v) at both sample and cluster levels. The learned
features H(v) are first transformed into clustering probability
distributions through a shared network:

P(v) = φ(H(v)) ∈ Rn×K (5)
where φ consists of two fully-connected layers with softmax
activation that map features to probability distributions, and
P(v) represents the probability matrix for view v.

To ensure cross-view consistency at the sample level, we
first design a local contrastive loss that operates on individual
samples:

Llocal =
V∑

v=1

V∑
u=v+1

n∑
i=1

− log
exp(P

(v)
i ·P(u)

i /τ1)∑n
j=1 exp(P

(v)
i ·P(u)

j /τ1)
(6)

where P
(v)
i denotes the i-th row of P(v), representing the

clustering probability distribution of sample i in view v, and
τ1 is a temperature parameter controlling the sharpness of the
similarity distribution. This local loss treats each sample pair
independently, pulling together the same sample’s represen-
tations across different views while pushing apart different
samples.

While the local contrastive loss ensures sample-level align-
ment, it does not consider the overall cluster distribution, po-
tentially leading to assignment error. To obtain the global
cluster distribution structure, we first adjust the cluster distri-
bution to be sharper as follows:

P̂
(v)
ik =

(P
(v)
ik )2/fk∑

k′(P
(v)
ik′ )2/fk′

(7)

where fk =
∑n

i=1 P
(v)
ik represents the size of cluster k, and

P̂(v) is the regularized probability matrix.
Building upon these regularized distributions, we introduce

a global consistency loss that aligns the overall cluster struc-
tures across views:

Lglobal =
∑
u̸=v

KL(P̂(v)∥P̂(u)) (8)

Unlike the local contrastive loss that focuses on individ-
ual samples, the global consistency loss ensures that the en-
tire clustering structure remains consistent across views by
minimizing the KL divergence between view-specific cluster
distributions. Meanwhile, this loss can avoid sorting most
samples assigned into a single cluster. The final local-global
contrastive loss combines both local sample-level alignment
and global cluster-level consistency:

Lcon = Llocal + αcLglobal (9)
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where αc serves as a regularization coefficient controlling the
contribution of global cluster structure consistency.

3.4 Dynamic Clustering Refinement Module
We propose a dynamic clustering refinement module with a
reinforcement learning framework. Our key insight is that
uncertain assignments need special attention and historical
information can help stabilize the uncertain assignments and
further improve the clustering process.

Selection of Samples with Uncertain Assignment
Definition 1 (Samples with Uncertain Assignment): Given a
sample’s cluster probability distribution P̂

(v)
i ∈ RK , we de-

fine the set of uncertain samples as:

U (v) = {i|δe(P̂(v)
i ) > ηe or δc(P̂

(v)
i ) < ηc} (10)

where δe(P̂
(v)
i ) is the entropy of the assignment P̂

(v)
i ;

δc(P̂
(v)
i ) is the confidence score; ηe and ηc are thresholds.

To quantify this uncertainty, we evaluate each sample i in
view v through two complementary metrics: entropy and con-
fidence score. A sample is considered with an uncertain as-
signment if it exhibits either high entropy (dispersed distribu-
tion) or low confidence (unclear boundary). The entropy of
its probability distribution is:

δe(P̂
(v)
i ) = −

K∑
k=1

P̂
(v)
ik log P̂

(v)
ik (11)

where P̂(v)
i ∈ RK denotes the i-th row of P̂(v). Additionally,

we compute a confidence score as follows:

δc(P̂
(v)
i ) =

maxk P̂
(v)
ik

second maxkP̂
(v)
ik

(12)

A sample with uncertain assignment means its cluster as-
signments are less reliable. To enhance its clustering qual-
ity, we propose to leverage historical information through a
memory-based mechanism, as detailed in the next section.

Storage of Historical Information
To stabilize the clustering assignments of samples with un-
certain assignments identified in U (v), we propose a memory-
enhanced mechanism for historical information storage, and
then, we realize temporal consistency in feature space to
refine uncertain assignments through momentum-based up-
dates.

At each time step t, the memory-enhanced mechanism
maintains a memory bank M(t,v) ∈ Rn×dh and updates it
through momentum-based dynamics to ensure stable feature
patterns:

M(t,v) = βM(t−1,v) + (1− β)H(v) (13)
where β ∈ (0, 1) controls the balance between historical
memory and current features.

For uncertain samples in U (v), we establish relationships
S(t,v)
ij between i-th current features H

(v)
i and j-th historical

memory M
(t,v)
j using cosine similarity:

S(t,v)
ij =

H
(v)
i ·M(t,v)

j

∥H(v)
i ∥∥M(t,v)

j ∥
(14)

Then, we compute the contribution weights based on these
similarities:

wij =
exp(S(t,v)

ij /τ)∑n
m=1 exp(S

(t,v)
im /τ)

(15)

where τ is a temperature parameter controlling the sharpness
of the weight distribution. The contribution weight wij quan-
tifies the influence of historical samples on the current sam-
ple’s assignment.

Dynamic Clustering Refinement
Definition 2 (Dynamic Sample Assignment): Given the cur-
rent sample features and historical memory, the adaptive re-
finement strategy for cluster assignments is defined as:

P̃
(t)
i =

{
ϕP̂

(t)
i + (1− ϕ)

∑n
j=1 wijP̂

(t−1)
j , if i ∈ U (v)

P̂
(t)
i , otherwise

(16)
where wij weights the contribution of each memory entry
based on its similarity, allowing samples with uncertain as-
signments to refine their assignments by combining current
predictions with reliable historical patterns.

This adaptive refinement strategy stabilizes uncertain as-
signments but depends on key parameters like τ and β, which
need dynamic adjustment during clustering. Thus, we model
parameter adaptation as a sequential decision-making prob-
lem, explored in the next part.

Parameter Adaptation with Reinforcement Learning
To dynamically update the parameters, we introduce a re-
inforcement learning (RL) strategy, specifically utilizing Q-
learning, which enables an agent to learn optimal decision-
making policies by interacting with an environment, where
the agent observes states, takes actions, and receives re-
wards based on those actions.
Definition 3 (State): The state at each time step t is repre-
sented as a vector of features:

state(t) = [∆
(t)
in ,∆

(t)
out, ρ

(t)
k ] (17)

where 

∆
(t)
in =

1

K

K∑
k=1

∑
i∈Ck

∥H(v)
i − ck∥22,

∆
(t)
out =

1

K(K − 1)

K∑
k=1

∑
l ̸=k

∥ck − cl∥22,

ρ
(t)
k =

Kcur

K
.

Here, ∆
(t)
in measures the compactness of the clusters,

where Ck represents the set of samples in cluster k and ck
is the corresponding centroid. ∆(t)

out quantifies the separation
between clusters, and ρ(t)k = Kcur

K represents the progress of
the clustering process, whereKcur is the number of completed
clusters at time step t, and K is the total number of clusters.
Definition 4 (Action): Based on the observed state, the agent
selects parameters for the memory bank as its action, repre-
sented as:

action(t) = [ψ, ηc, τ ] (18)
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where ψ controls the balance between current and historical
predictions, ηc is the confidence threshold for identifying un-
certain samples, and τ is the temperature parameter control-
ling the sharpness of similarity weights. These parameters
govern the memory-based refinement process and influence
how uncertain samples utilize historical information.
Definition 5 (Reward): The effectiveness of the selected pa-
rameters is evaluated through a reward signal, defined as:

reward(t) = ∆
(t)
out−σ1 ∆

(t)
in +σ2

n∑
i=1

1(δc(P̂
(v)
i ) > ηc) (19)

where σ1 and σ2 are weighting parameters balancing cluster
quality and assignment confidence, and 1(·) is the indicator
function that equals 1 when a sample’s confidence exceeds the
threshold ηc and 0 otherwise, thus counting the total number
of confident samples in the summation.

Following the Q-learning framework, we optimize a Q-
network that predicts the expected cumulative reward for
state-action pairs. Let s, a, and r represent the state, action,
and reward, respectively. The Q-network is trained by mini-
mizing the following loss function:

Lrl = E[(r(t) + γmax
a

Q(s(t+1), a)−Q(s(t), a(t)))2] (20)

where γ is the discount factor. This optimization process en-
ables the agent to learn effective strategies for selecting pa-
rameters that refine uncertain samples based on both current
and historical clustering information.

3.5 Overall Objective
The overall objective integrates reconstruction, contrastive
learning, and reinforcement learning components:

Ltotal = Lrec + αLcon + λLrl (21)
where α and λ are regularization coefficients.

After model convergence, we compute the final cluster-
ing assignment using the refined probability distributions P̃v

from Eq. (16):

yi = argmax
k

(
1

V

V∑
v=1

P̃v
ik

)
(22)

This aggregation leverages complementary information
from all views to determine the most probable cluster for each
sample.

4 Experiment
4.1 Datasets & Metric
We evaluate our method on six real-world multi-view datasets
from previous works [Chen et al., 2023; Xu et al., 2023]:
COIL-20 with 1,440 grayscale images of 20 objects from dif-
ferent angles, RGB-D containing 1,449 samples with RGB
and depth information, BDGP consisting of 2,500 drosophila
embryo images with two visual descriptors, Scene-15 in-
cluding 4,485 scene images with GIST, LBP, and HOG fea-
tures, MNIST-USPS combining handwritten digit samples
from both datasets, and Fashion containing product images
with visual, textual, and categorical features. For evaluation,
we use three standard metrics: Accuracy (ACC), Normalized
Mutual Information (NMI), and Purity (PUR).

4.2 Experiment Setup
To comprehensively evaluate our proposed EMVC-RCL
method, we compare it with several state-of-the-art methods:
K-means [MacQueen and others, 1967], BSVC, SCAgg [Nie
et al., 2014], EE-IMVC [Liu et al., 2020], ASR [Chen et
al., 2022], DSIMVC [Tang and Liu, 2022], DSMVC [Tang
and Liu, 2022], DCP [Lin et al., 2022], MFLVC [Xu et
al., 2022], CVCL [Chen et al., 2023], CMVKL [Wan et al.,
2024],ADMC [Zhao et al., 2024]. All experiments were con-
ducted on an NVIDIA GeForce RTX 4090 GPU with CUDA
12.4, implemented using PyTorch (Python 3.10.13).

4.3 Performance Comparison
As shown in Table 1, our EMVC-RCL demonstrates su-
perior performance across all datasets and metrics. On
BDGP dataset, our approach achieves 99.64% ACC, 98.65%
NMI, and 99.60% PUR, surpassing the second-best method
CVCL (99.20% ACC, 97.29% NMI, 99.20% PUR). The per-
formance advantage is particularly evident on challenging
datasets like Scene-15, where our method achieves 76.80%
ACC, significantly outperforming other competitors. This
substantial improvement can be attributed to our reinforce-
ment contrastive learning framework, which effectively se-
lects high-confident features while refining low-quality ones
through dynamic clustering optimization. Similar patterns
can be observed on MNIST-USPS and Fashion datasets,
where our method consistently achieves the best performance
(99.98% and 99.58% ACC respectively), demonstrating its
robust performance across different data modalities and clus-
ter distributions. These comprehensive results validate the ef-
fectiveness of our proposed EMVC-RCL framework in han-
dling diverse multi-view clustering scenarios while maintain-
ing computational efficiency.

4.4 Hyper-parameter Analysis
As shown in the Fig. 2, when both λ (geometric relationship
consistency) and β (probability distribution consistency) are
within the range of [0.01, 1.0], the model exhibits high sta-
bility across all three metrics (ACC, NMI, and PUR), indi-
cating that minor perturbations in these hyper-parameters do
not significantly affect performance and demonstrating strong
generalization ability. When either parameter takes extreme
values (such as< 0.005 or> 10), a marked decline in perfor-
mance is observed, with cluster separation quality being most
affected. This pattern is consistent across different datasets,
underscoring the critical importance of balancing geometric
structure and probability distribution in multi-view cluster-
ing. Notably, the performance curves change smoothly with
parameter variation, without abrupt fluctuations, further con-
firming the robustness of our method and its flexibility in
practical parameter selection. Moreover, the comparison be-
tween the two datasets reflects the universality of our model
design and the robustness of its performance.

4.5 Ablation Studies
As shown in Table 2, we conduct comprehensive ablation
studies on six benchmark datasets to thoroughly analyze the
contribution of each module to the overall performance. The
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Methods COIL-20 RGB-D BDGP Scene-15 MNIST-USPS Fashion
ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

K-Means 67.20 78.92 69.72 39.96 36.38 54.11 57.72 47.43 57.72 36.10 36.99 39.40 49.66 44.33 51.70 48.79 48.79 53.66
BSVC 80.21 84.75 80.47 45.34 37.49 51.97 58.05 32.42 54.32 38.05 38.85 42.08 67.98 74.43 72.34 60.32 59.01 63.84
SCAgg 73.13 78.46 73.89 44.17 35.10 54.73 38.13 55.71 70.72 39.31 39.31 44.76 89.00 77.12 89.18 98.00 94.80 97.56
EE-IMVC 75.73 83.52 75.76 39.75 27.99 51.62 88.00 71.76 87.76 39.00 33.02 40.27 76.00 68.04 76.48 84.00 79.53 84.45
ASR 80.90 87.60 81.50 23.95 16.94 39.13 97.68 92.63 97.68 42.70 40.17 45.61 97.90 87.72 97.91 96.52 89.94 96.52
CMVKL 32.85 48.00 36.04 21.19 11.20 31.54 77.68 82.99 77.68 31.10 29.31 33.09 50.68 46.04 52.44 57.37 54.50 59.00
DSIMVC 65.55 72.51 66.67 37.13 26.54 40.06 99.04 96.86 99.04 28.27 29.04 29.79 99.34 98.13 99.34 88.21 83.99 88.21
DCP 67.36 78.79 69.86 26.43 22.78 26.43 97.04 92.43 97.04 42.32 40.38 43.85 99.02 97.29 99.02 89.37 88.61 89.37
DSMVC 76.46 84.15 78.19 25.74 14.33 25.17 75.80 61.39 75.80 43.48 41.11 45.92 96.34 94.27 96.34 89.63 86.81 89.63
MFLVC 73.19 81.43 75.07 44.17 25.80 47.55 98.72 96.13 98.72 42.52 40.34 44.53 99.66 99.01 99.66 99.20 98.00 99.20
CVCL 84.65 88.89 85.07 59.52 32.39 48.40 99.20 97.29 99.20 44.59 42.17 47.36 99.70 99.13 99.70 99.31 98.21 99.31
ADMC 77.15 79.43 77.15 75.66 54.27 75.66 96.96 96.12 96.96 43.91 40.57 46.06 91.26 95.50 91.26 89.17 84.92 89.17
Our Method 95.14 98.46 95.14 80.76 71.70 80.76 99.64 98.65 99.60 44.82 47.65 48.83 99.98 99.81 99.98 99.58 96.64 99.58

Table 1: Clustering performance comparison results across all datasets. The optimal result for each metric is presented in boldface, while the
second-best result is denoted with an underline.

(a) ACC (b) NMI (c) PUR (d) ACC (e) NMI (f) PUR

Figure 2: Parameter sensitivity analysis on Scene-15 and MNIST-USPS dataset visualized through 3D bar plots. The plots demonstrate how
different combinations of λ and β affect the clustering performance metrics.

results clearly demonstrate that all three components Lrec,
Lcon, and Lrl are indispensable. With only the reconstruc-
tion loss, the model captures basic feature information but
achieves limited clustering performance. Introducing the con-
trastive loss enables the model to better exploit discrimina-
tive structures across multiple views, resulting in significant
performance gains. Further incorporating the reinforcement
learning module leads to optimal results on all metrics, with
particularly notable improvements on challenging datasets
such as RGB-D and Scene-15. This indicates that the RL
module dynamically adjusts clustering strategies and lever-
ages the memory-enhanced mechanism to effectively miti-
gate the impact of noise and uncertain samples. It is also
noteworthy that the contrastive loss plays a pivotal role; its
removal causes a substantial drop in performance, underscor-
ing the central importance of multi-view contrastive learning
in our framework. Overall, the synergy among these three
components not only boosts clustering accuracy but also en-
hances the model’s generalization and robustness, fully vali-
dating the rationality and effectiveness of our design.

4.6 Visualization Analysis
Fig. 3 illustrates the evolution of feature distributions during
the training process using t-SNE visualization. The initial raw
features exhibit scattered and mixed clusters with significant
overlap. As training progresses, our method gradually refines
the feature space: the first stage shows initial cluster forma-
tion with reduced inter-cluster overlap, the second stage fur-
ther enhances cluster separation, and the final stage demon-

strates well-defined, compact clusters with clear boundaries.
This progressive improvement validates our method’s effec-
tiveness in learning discriminative representations through
the training process.

Fig. 5 presents a comprehensive comparison between our
method and CVCL across six datasets. While maintaining
comparable or superior accuracy (represented by bar charts),
our method consistently requires significantly less computa-
tion time (shown by line plots). For instance, on the MNIST-
USPS dataset, our method achieves higher accuracy while
reducing the execution time. This substantial improvement
in computational efficiency, without compromising cluster-
ing performance, demonstrates the practical advantages of
our approach.

4.7 Convergence Analysis
Fig. 4 illustrates the convergence behavior of our method. As
shown in Fig. 4(a), the training loss exhibits a rapid initial de-
scent and steadily converges after approximately 40 epochs,
while the computation time per epoch remains consistently
low, demonstrating the computational efficiency of our ap-
proach. Notably, the computation time curve shows a slight
downward trend, indicating that as the model learns, the rein-
forcement learning module can more efficiently select sam-
ples, reducing the number of uncertain samples that need
processing. Fig. 4(b) reveals that both feature quality and
class balance metrics improve consistently and stabilize af-
ter 60 epochs, validating the effectiveness of our framework
in maintaining good feature discrimination while preserving
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(a) Raw Features (b) 10 Epoch (c) 50 Epoch (d) 100 Epoch

Figure 3: t-SNE visualization of feature evolution on BDGP dataset, demonstrating how features gradually evolve from initial mixed clusters
to well-separated final representations through our contrastive learning and feature quality assessment mechanism.

Dataset Lrec Lcon Lrl ACC NMI PUR

COIL-20
✓ × × 73.28 85.15 73.28
✓ ✓ × 83.22 88.04 83.22
✓ ✓ ✓ 95.14 98.46 95.14

RGB-D
✓ × × 51.48 23.43 51.48
✓ ✓ × 59.30 32.24 59.30
✓ ✓ ✓ 80.76 71.70 80.76

BDGP
✓ × × 74.44 75.30 78.73
✓ ✓ × 97.31 92.65 97.31
✓ ✓ ✓ 99.64 98.65 99.60

Scene-15
✓ × × 34.49 38.14 34.49
✓ ✓ × 37.22 40.17 36.58
✓ ✓ ✓ 48.82 47.65 48.83

MNIST-USPS
✓ × × 88.01 93.88 88.01
✓ ✓ × 99.12 98.79 99.12
✓ ✓ ✓ 99.98 99.81 99.98

Fashion
✓ × × 87.08 84.60 87.08
✓ ✓ × 97.13 94.31 97.13
✓ ✓ ✓ 99.58 96.64 99.58

Table 2: Ablation study results on six benchmark datasets. The sym-
bols ✓ and × indicate whether each component is enabled: Lrec,
Lcon, and Lrl.

balanced category distribution. Feature quality and class bal-
ance show a slight negative - correlation in fluctuations during
optimization, yet both reach high stable levels, evidencing our
RL strategy’s success in multi - objective optimization.

5 Conclusions
In this paper, we have presented EMVC-RCL, an innova-
tive efficient multi-view clustering framework with reinforce-
ment contrastive learning, which addresses two critical chal-
lenges in contrastive multi-view clustering: the difficulty in
constructing high-quality positive and negative pairs, and the
high computational overhead caused by static optimization
strategies. Our framework introduces a reinforcement con-
trastive learning paradigm for dynamic clustering optimiza-
tion, coupled with a memory-enhanced mechanism for effi-
cient feature refinement. Through extensive experiments on
six benchmark datasets, we have demonstrated that EMVC-
RCL achieves superior clustering performance while requir-
ing only 30% of the traditional training time, validating

(a) Loss&Time (b) Quality&Balance

Figure 4: Performance analysis: (a) Convergence of MSE loss dur-
ing pre-training. (b) Evolution of feature quality and class balance,
showing effective learning and balancing.

Figure 5: Performance and runtime comparison between our method
and the previous best method on each dataset.

the effectiveness and efficiency of our approach in complex
multi-view data analysis.

Acknowledgments
This work is supported by the National Natural Science Foun-
dation of China under Grant 62176203, the Fundamental
Research Funds for the Central Universities (ZYTS25267,
QTZX25004), and the Science and Technology Project of
Xi’an (Grant 2022JH-JSYF-0009), Open Project of Anhui
Provincial Key Laboratory of Multimodal Cognitive Compu-
tation, Anhui University (No. MMC202416), Selected Sup-
port Project for Scientific and Technological Activities of Re-
turned Overseas Chinese Scholars in Shaanxi Province 2023-
02, and the Xidian Innovation Fund (Project NoYJSJ25007).

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Andrew et al., 2013] Galen Andrew, Raman Arora, Jeff

Bilmes, and Karen Livescu. Deep canonical correlation
analysis. In International conference on machine learn-
ing, pages 1247–1255. PMLR, 2013.

[Cao et al., 2015a] Xiaochun Cao, Changqing Zhang,
Huazhu Fu, Si Liu, and Hua Zhang. Diversity-induced
multi-view subspace clustering. In CVPR, pages 586–594,
2015.

[Cao et al., 2015b] Xiaochun Cao, Changqing Zhang,
Chengju Zhou, Huazhu Fu, and Hassan Foroosh. Con-
strained multi-view video face clustering. IEEE TIP,
24(11):4381–4393, 2015.

[Chen et al., 2022] Jie Chen, Shengxiang Yang, Xi Peng,
Dezhong Peng, and Zhu Wang. Augmented sparse rep-
resentation for incomplete multiview clustering. IEEE
TNNLS, 35(3):4058–4071, 2022.

[Chen et al., 2023] Jie Chen, Hua Mao, Wai Lok Woo, and
Xi Peng. Deep multiview clustering by contrasting cluster
assignments. in 2023 ieee. In ICCV, pages 16706–16715,
2023.

[Cui et al., 2024] Jinrong Cui, Yuting Li, Han Huang, and
Jie Wen. Dual contrast-driven deep multi-view clustering.
IEEE TIP, 2024.

[Dai et al., 2025] Hao Dai, Yang Liu, Peng Su, Hecheng Cai,
Shudong Huang, and Jiancheng Lv. Multi-view cluster-
ing by inter-cluster connectivity guided reward. In ICML,
2025.

[Dong et al., 2020] Shihao Dong, Huiying Xu, Xinzhong
Zhu, XiFeng Guo, Xinwang Liu, and Xia Wang. Multi-
view deep clustering based on autoencoder. In JPCS, vol-
ume 1684, page 012059. IOP Publishing, 2020.

[Fan et al., 2020] Shaohua Fan, Xiao Wang, Chuan Shi,
Emiao Lu, Ken Lin, and Bai Wang. One2multi graph au-
toencoder for multi-view graph clustering. In WWW, pages
3070–3076, 2020.

[Gao et al., 2020] Quanxue Gao, Huanhuan Lian, Qianqian
Wang, and Gan Sun. Cross-modal subspace clustering via
deep canonical correlation analysis. In AAAI, volume 34,
pages 3938–3945, 2020.

[Gönen and Margolin, 2014] Mehmet Gönen and Adam A
Margolin. Localized data fusion for kernel k-means clus-
tering with application to cancer biology. Advances in neu-
ral information processing systems, 27, 2014.

[Gu et al., 2023] Shaokui Gu, Xu Yuan, Liang Zhao, Zhen-
jiao Liu, Yan Hu, and Zhikui Chen. Mvcir-net: Multi-
view clustering information reinforcement network. In
Proceedings of the 31st ACM International Conference on
Multimedia, pages 3609–3618, 2023.

[Huang et al., 2021] Shudong Huang, Ivor W Tsang,
Zenglin Xu, and Jiancheng Lv. Measuring diversity
in graph learning: A unified framework for structured
multi-view clustering. IEEE TKDE, 34(12):5869–5883,
2021.

[Li et al., 2019a] Ruihuang Li, Changqing Zhang, Huazhu
Fu, Xi Peng, Tianyi Zhou, and Qinghua Hu. Reciprocal
multi-layer subspace learning for multi-view clustering. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 8172–8180, 2019.

[Li et al., 2019b] Zhaoyang Li, Qianqian Wang, Zhiqiang
Tao, Quanxue Gao, Zhaohua Yang, et al. Deep adversar-
ial multi-view clustering network. In IJCAI, volume 2,
page 4, 2019.

[Lin et al., 2022] Yijie Lin, Yuanbiao Gou, Xiaotian Liu,
Jinfeng Bai, Jiancheng Lv, and Xi Peng. Dual contrastive
prediction for incomplete multi-view representation learn-
ing. IEEE TPAMI, 45(4):4447–4461, 2022.

[Liu et al., 2016] Xinwang Liu, Yong Dou, Jianping Yin, Lei
Wang, and En Zhu. Multiple kernel k-means clustering
with matrix-induced regularization. In AAAI, volume 30,
2016.

[Liu et al., 2020] Xinwang Liu, Miaomiao Li, Chang Tang,
Jingyuan Xia, Jian Xiong, Li Liu, Marius Kloft, and
En Zhu. Efficient and effective regularized incomplete
multi-view clustering. IEEE TPAMI, 43(8):2634–2646,
2020.

[Liu et al., 2023] Yue Liu, Ke Liang, Jun Xia, Xihong Yang,
Sihang Zhou, Meng Liu, Xinwang Liu, and Stan Z Li. Re-
inforcement graph clustering with unknown cluster num-
ber. In Proceedings of the 31st ACM International Confer-
ence on Multimedia, pages 3528–3537, 2023.

[Liu, 2021] Xinwang Liu. Incomplete multiple kernel
alignment maximization for clustering. IEEE TPAMI,
46(3):1412–1424, 2021.

[Luo et al., 2018] Shirui Luo, Changqing Zhang, Wei
Zhang, and Xiaochun Cao. Consistent and specific multi-
view subspace clustering. In AAAI, volume 32, 2018.

[MacQueen and others, 1967] James MacQueen et al. Some
methods for classification and analysis of multivariate ob-
servations. In BSMSP, volume 1, pages 281–297. Oakland,
CA, USA, 1967.

[Nie et al., 2014] Feiping Nie, Xiaoqian Wang, and Heng
Huang. Clustering and projected clustering with adaptive
neighbors. In Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, pages 977–986, 2014.

[Pan and Kang, 2021] Erlin Pan and Zhao Kang. Multi-view
contrastive graph clustering. Advances in neural informa-
tion processing systems, 34:2148–2159, 2021.

[Peng et al., 2022] Liang Peng, Rongyao Hu, Fei Kong,
Jiangzhang Gan, Yujie Mo, Xiaoshuang Shi, and Xiaofeng
Zhu. Reverse graph learning for graph neural network.
IEEE TNNLS, 2022.

[Sun et al., 2024] Yuan Sun, Yang Qin, Yongxiang Li,
Dezhong Peng, Xi Peng, and Peng Hu. Robust multi-view
clustering with noisy correspondence. IEEE Transactions
on Knowledge and Data Engineering, 36(12):9150–9162,
2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Tang and Liu, 2022] Huayi Tang and Yong Liu. Deep safe
incomplete multi-view clustering: Theorem and algo-
rithm. In ICML, pages 21090–21110. PMLR, 2022.

[Trosten et al., 2021] Daniel J Trosten, Sigurd Lokse, Robert
Jenssen, and Michael Kampffmeyer. Reconsidering repre-
sentation alignment for multi-view clustering. In CVPR,
pages 1255–1265, 2021.

[Wan et al., 2024] Xinhang Wan, Bin Xiao, Xinwang Liu,
Jiyuan Liu, Weixuan Liang, and En Zhu. Fast continual
multi-view clustering with incomplete views. IEEE TIP,
33:2995–3008, 2024.

[Wang et al., 2015a] Weiran Wang, Raman Arora, Karen
Livescu, and Jeff Bilmes. On deep multi-view represen-
tation learning. In ICML, pages 1083–1092, 2015.

[Wang et al., 2015b] Yang Wang, Xuemin Lin, Lin Wu,
Wenjie Zhang, Qing Zhang, and Xiaodi Huang. Robust
subspace clustering for multi-view data by exploiting cor-
relation consensus. IEEE TIP, 24(11):3939–3949, 2015.

[Wang et al., 2018] Yang Wang, Lin Wu, Xuemin Lin, and
Junbin Gao. Multiview spectral clustering via struc-
tured low-rank matrix factorization. IEEE TNNLS,
29(10):4833–4843, 2018.

[Wang et al., 2023a] Jing Wang, Songhe Feng, Gengyu Lyu,
and Zhibin Gu. Triple-granularity contrastive learning for
deep multi-view subspace clustering. In ACMMM, pages
2994–3002, 2023.

[Wang et al., 2023b] Shiye Wang, Changsheng Li, Yanming
Li, Ye Yuan, and Guoren Wang. Self-supervised informa-
tion bottleneck for deep multi-view subspace clustering.
IEEE TIP, 32:1555–1567, 2023.

[Wang et al., 2025] Qianqian Wang, Zihao Zhang, Wei
Feng, Zhiqiang Tao, and Quanxue Gao. Contrastive multi-
view subspace clustering via tensor transformers autoen-
coder. In AAAI, volume 39, pages 21207–21215, 2025.

[Wen et al., 2020] Jie Wen, Zheng Zhang, Zhao Zhang,
Lunke Fei, and Meng Wang. Generalized incomplete mul-
tiview clustering with flexible locality structure diffusion.
IEEE TCYB, 51(1):101–114, 2020.

[Xu et al., 2019] Cai Xu, Ziyu Guan, Wei Zhao, Hongchang
Wu, Yunfei Niu, and Beilei Ling. Adversarial incomplete
multi-view clustering. In IJCAI, volume 7, pages 3933–
3939, 2019.

[Xu et al., 2022] Jie Xu, Huayi Tang, Yazhou Ren, Liang
Peng, Xiaofeng Zhu, and Lifang He. Multi-level feature
learning for contrastive multi-view clustering. In CVPR,
pages 16051–16060, 2022.

[Xu et al., 2023] Jie Xu, Chao Li, Liang Peng, Yazhou Ren,
Xiaoshuang Shi, Heng Tao Shen, and Xiaofeng Zhu.
Adaptive feature projection with distribution alignment
for deep incomplete multi-view clustering. IEEE TIP,
32:1354–1366, 2023.

[Yang et al., 2022] Huanhuan Yang, Dianxi Shi, Guojun Xie,
Yingxuan Peng, Yi Zhang, Yantai Yang, and Shaowu

Yang. Self-supervised representations for multi-view re-
inforcement learning. In The 38th Conference on Uncer-
tainty in Artificial Intelligence, 2022.

[Zhan et al., 2018a] Kun Zhan, Feiping Nie, Jing Wang, and
Yi Yang. Multiview consensus graph clustering. IEEE
TIP, 28(3):1261–1270, 2018.

[Zhan et al., 2018b] Kun Zhan, Chaoxi Niu, Changlu Chen,
Feiping Nie, Changqing Zhang, and Yi Yang. Graph
structure fusion for multiview clustering. IEEE TKDE,
31(10):1984–1993, 2018.

[Zhang et al., 2016] Changqing Zhang, Huazhu Fu, Qinghua
Hu, Pengfei Zhu, and Xiaochun Cao. Flexible multi-view
dimensionality co-reduction. IEEE TIP, 26(2):648–659,
2016.

[Zhang et al., 2017] Changqing Zhang, Qinghua Hu,
Huazhu Fu, Pengfei Zhu, and Xiaochun Cao. La-
tent multi-view subspace clustering. In CVPR, pages
4279–4287, 2017.

[Zhang et al., 2018] Changqing Zhang, Huazhu Fu, Qinghua
Hu, Xiaochun Cao, Yuan Xie, Dacheng Tao, and Dong Xu.
Generalized latent multi-view subspace clustering. IEEE
TPAMI, 42(1):86–99, 2018.

[Zhang et al., 2019] Changqing Zhang, Yeqing Liu, and
Huazhu Fu. Ae2-nets: Autoencoder in autoencoder net-
works. In CVPR, pages 2577–2585, 2019.

[Zhang et al., 2023] Zihao Zhang, Qianqian Wang, Zhiqiang
Tao, Quanxue Gao, and Wei Feng. Dropping pathways
towards deep multi-view graph subspace clustering net-
works. In ACMMM, pages 3259–3267, 2023.

[Zhao et al., 2024] Helin Zhao, Wei Chen, and Peng Zhou.
Active deep multi-view clustering. In IJCAI, pages 5554–
5562, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


