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Abstract
Real-world datasets like multi-spectral images and
videos are naturally represented as tensors. How-
ever, limitations in data acquisition often lead to
corrupted or incomplete tensor data, making tensor
recovery a critical challenge. Solving this problem
requires exploiting inherent structural patterns, with
the low-rank property being particularly vital. An
important category of existing low-rank tensor re-
covery methods relies on the tensor nuclear norms.
However, these methods struggle with either compu-
tational inefficiency or weak theoretical guarantees
for large-scale data. To address these issues, we
propose a fast guaranteed tensor recovery frame-
work based on a new tensor nuclear norm. Our
approach adaptively extracts a column-orthogonal
matrix from the data, reducing a large-scale tensor
into a smaller subspace for efficient processing. This
dimensionality reduction enhances speed without
compromising accuracy. The recovery theories of
two typical models are established by introducing an
adjusted incoherence condition. Extensive experi-
ments demonstrate the effectiveness of the proposed
method, showing improved accuracy and speed
over existing approaches. Our code and supple-
mentary material are available at https://github.com/
andrew-pengjj/adaptive_tensor_nuclear_norm.

1 Introduction
Tensors (or multidimensional arrays) naturally represent di-
verse real-world data, such as multi-spectral images [Wang
et al., 2017; Peng et al., 2020], multi-view task[Brbić and
Kopriva, 2018; Xie et al., 2018], and intelligence system
data [Shu et al., 2024; Duan et al., 2016]. Their ability to
preserve multidimensional structure with accuracy has made
tensor analysis a key focus in fields like statistics [McCullagh,
2018], signal processing [Cichocki et al., 2015; Sidiropou-
los et al., 2017], machine learning [Signoretto et al., 2014;
Liu et al., 2021], and computer vision [Bengua et al., 2017;
Zhang et al., 2019; Hu et al., 2016]. However, due to limi-
tations in acquisition equipment and complex environments,

∗Corresponding author

tensor data often contain noise and missing values [Peng et al.,
2024], which compromise the accuracy of subsequent tasks
such as detection and recognition [Shang et al., 2023]. For-
tunately, tensor data inherently contains abundant priors, and
leveraging these can help achieve higher-quality tensor data.

Among the various priors for tensor data, low-rankness is
one of the most crucial[Kolda and Bader, 2009]. This prior
assumes that the tensor resides within a low-dimensional sub-
space, enabling the capture of its global correlations. Numer-
ous studies have demonstrated that most real-world tensors
exhibit low-rank structures, which leads to the following low-
rank tensor recovery model,

min
T

R(T ), s.t.Y = Φ(T ), (1)

where R(·) denotes certain tensor low-rankness regularizer,
Φ(·) models the tensor degradation, e.g., data missing or noise
corruption, corresponding to tensor completion (TC) and ten-
sor robust principal component analysis (TRPCA).

Different from the rank of a matrix, there are various no-
tions of tensor rank with different tensor decompositions.
The classical ones contain CANDECOMP/PARAFAC (CP)
[Faber et al., 2003], Tucker [Wang et al., 2017] and Sum
Nuclear Norm (SNN) [Liu et al., 2012]. In the last few
years, several new low-rank tensor approximation frame-
works have been proposed, such as tensor train [Oseledets,
2011], tensor ring [Zhao et al., 2016], and tensor sin-
gular value decomposition (t-SVD) [Kilmer et al., 2013].
While many tensor decomposition methods exist, most, ex-
cept for the tensor nuclear norm (TNN) [Lu et al., 2019a;
Qin et al., 2022], based on t-SVD, lack a solid tensor recover-
able theory[Zhang and Aeron, 2016]. In addition, since tensor
decomposition involves more complex algebraic operations
than matrices and the large size of tensor data, the efficiency
of tensor decomposition is often relatively low [Kolda and
Bader, 2009].

Since the tensor nuclear norm has good theoretical prop-
erties, its variants have attracted widespread attention. The
tensor nuclear norm focuses on how to characterize the low
rank of data in the transformation domain [Kilmer et al., 2013].
For a third-order tensor T ∈ Rn1×n2×n3 , assuming that its
third mode has a low-rank property, the transformed tensor
T ∈ Rn1×n2×n3 can be obtained as follows:

T = T ×3 L, (2)
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Methods TNN DCTNN UTNN WTNN CTNN FTNN S2NTNN Q-rank ATNN
Transform FFT DCT Unitary Wavelet Couple Framelet DNN Unitary COM
Learnable? % % % % % % " " "

Theory? " " " " % % % " "
Time Complexity O(n2

1n2n3) O(n2
1n2n3) O(n2

1n2n3) O(n2
1n2n3) O(n2

1n2n3) O(n2
1n2n3) O(n2

1n2n3) O(n2
1n2n3) O(n2

1n2r3)

Table 1: The characteristics of different TNN variants and its time complexity analysis on a third-order tensor T ∈ Rn1×n2×n3 .

where ×3 denotes mode-3 tensor product [Kolda and Bader,
2009], and L ∈ Rn3×n3 is the corresponding transformed
matrix. The tensor tubal rank is defined as the summation
of the matrix ranks of all slices of the transformed domain
tensor T . To encode the low-rank property, the tensor nuclear
norm is introduced, which is computed as the summation of
the nuclear norms of each slice of T . Mathematically, it is
expressed as:

∥T ∥⊛ :=

n3∑
i=1

∥T (:, :, i)∥∗. (3)

Initially, the transformed matrix L was fixed as the dis-
crete Fourier matrix (DFT) [Kilmer et al., 2013; Zhang and
Aeron, 2016]. Later, it was found that defining different trans-
formed matrices could enhance the low-rank property in cer-
tain cases within the transform domain [Lu et al., 2019a].
As a result, a series of works have emerged focused on the
choice of transformed matrices, such as TNN based on the
discrete cosine transform (i.e., DCTNN ) [Xu et al., 2019;
Lu et al., 2019b], the wavelet transform (i.e., WTNN) [Ng
et al., 2020], the unitary matrix (i.e., UTNN) [Song et al.,
2020], the Couple transform (i.e., CTNN) [Wang et al., 2021b],
the Framelet transform (i.e., FTNN) [Jiang et al., 2020], the
data-independent transform (i.e., Q-rank) [Kong et al., 2021],
the neural network (i.e., S2NTNN) [Luo et al., 2022] and
many others [Zhou and Cheung, 2019; Lou and Cheung, 2019;
Wang et al., 2021a; Wu et al., 2022]. Although these TNN
variants have achieved promising results in specific cases, they
face several common challenges:

1) Nonlinear transformation-based models lack the theoreti-
cal guarantee of exact recovery inherent to TNN;

2) Most models assume the transformation matrix is full
rank, limiting their ability to significantly enhance the
tensor’s low-rank property in the transformed domain;

3) Full-rank transformation matrices can not reduce the data
size of tensors in the transformed domain, leading to low
computational efficiency.

To address the aforementioned limitations, this paper pro-
poses a new TNN scheme with both computational validity and
theoretical guarantee. Specifically, we propose to adaptively
learn a column-orthogonal transformation matrix (COM) from
the data, and the proposed TNN is then induced under such
COM transform. We refer it as Adaptive Tensor Nuclear Norm
(ATNN). Equipped with the ATNN, we strictly prove the exact
recovery theories for two typical tensor recovery models, TC
and TRPCA. For easy comparison, we summarize the key
characteristics of several existing TNN variants in Table 1,
from which we can find that that only the ATNN model stands
out by effectively balancing data adaptability, theoretical guar-
antees, and computational efficiency, particularly when the

third-mode rank r3 is much smaller than n3 for a third-order
tensor T ∈ Rn1×n2×n3 . In summary, this paper makes four
key contributions:

Data-Adaptive Transformation: The transformation ma-
trix in ATNN is adaptively learned from the data, allowing
it to adapt to different datasets. This adaptability provides a
significant advantage over the existing fixed transformation
matrices.

High Computational Efficiency: The learned column-
orthogonal transformation matrix can reduce the size of the
tensor in the transformed domain, especially for data with
strong low-rank properties in the third mode. This leads to high
computational efficiency. Unlike all existing TNN variants
using full-rank transformation matrices, column-orthogonal
matrices explicitly model the low rank of the tensor’s third
modality, offering superior representation of the tensor’s low-
rank structure.

Exact Recovery Theory: It is proved that when the trans-
formation matrix is not full rank, the ATNN-based TC and
TRPCA problem can still be guaranteed with exact recovery,
provided that the number of columns in the transformation
matrix exceeds the third-mode rank of the tensor.

Superior Balanced Performance: Extensive numerical
and real-world experiments demonstrate that the ATNN frame-
work achieves superior balanced performance between recov-
ery accuracy and time cost across nearly all datasets and tasks
compared with many state-of-the-art methods.

The organization of this paper is as follows: the notation,
definition, and analysis are given in Section 2. The ATNN
definition and its derived models are given in Section 3. The
theoretical results are given in Section 4. The simulated and
real experiments are conducted in Sections 5. The conclusion
is given in Section 6.

2 Notations and Preliminaries
We first introduce the high-order t-SVD framework briefly.
For an order-d tensor T ∈ Rn1×n2×···×nd , T (i1, i2, · · · , id)
denotes its (i1, i2, · · · , id)-th element, T (:, :, i3, · · · , id) de-
notes its (i3, · · · , id)-th frontal slice, and Ti := T (:, · · · , :
, i) denotes its i-th order-(d − 1) component. Slice T (:
, :, i3, · · · , id) is also written as Tj with index j = i3 +
(i4 − 1)n3 + · · · + (id − 1)n3 · · ·nd−1. unfold(T ) :=
[T1, T2, · · · , Tnd

]T ∈ Rn1nd×n2×···×nd−1 is the unfold
operator and fold(·) is its inverse operator satisfying
fold(unfold(T )) = T . bunfold(T ) ∈ Rn1n3···nd×n2 is the
matrix formed by using unfold(·) repeatedly. Denote

circ (T ) :=


T1 Tnd

Tnd−1 . . . T2
T2 T1 Tnd

. . . T3
...

...
...

. . .
...

Tnd
Tnd−1 Tnd−2 . . . T1


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𝓣

×𝟑=

×𝟑=

𝓑 𝐃 𝓑(: , : , 𝟏)

…

…

(a) Low-rank Decomposition among three-mode (b) Low-rank Properties of Each Slice of Transformed Domain 𝓑
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Number

Si
ng

ul
ar

 V
al

ue

Si
ng

ul
ar

 V
al

ue

Number

Number

Si
ng

ul
ar

 V
al

ue

Si
ng

ul
ar

 V
al

ue

Number

Figure 1: Demonstration of the idea of data adaptive transformed matrix construction and low rank property of transformed domain.

as T ’s circulant unfolding sized n1nd×· · ·×nd−2nd×nd−1,
bcirc(T ) as its block circulant matrix at the base level of
circ(T ) sized n1n3 · · ·nd × n2n3 · · ·nd, and block diago-
nal matrix bdiag(T ) = diag(T1,T2, · · · ,TJ), where J =
n3 · · ·nd. bdiag(T ) is also written as T for brevity.

The t-SVD framework [Qin et al., 2022] takes high-order
tensor-tensor product with invertible linear transform as its
cornerstone. For an invertible linear transform L, TL :=
L(T ) = T ×3 Un3

×4 · · · ×d Und
, where ×i denotes mode-i

product and Uni
is transform matrix sized ni × ni, such as

the Discrete Fourier Transform (DFT) and Discrete Cosine
Transform (DCT) matrices. Its inverse L−1(T ) = T ×3

U−1
n3

×4 · · · ×d U−1
nd

and L−1(L(T )) = T . Note {Uni
}di=1

are assumed satisfying (U∗
nd

⊗U∗
nd−1 ⊗ · · · ⊗U∗

n3
) · (Und

⊗
Und−1 ⊗ · · · ⊗ Un3

) = ℓ · In3···nd
, where ⊗ is Kronecker

product and ℓ > 0 is only a transform specific scale constant,
e.g., F∗

nFn = n · In for n × n DFT matrix Fn and C∗
nCn =

1 · In for n× n DCT matrix Cn.

Definition 1 (order-d tensor-tensor product). For order-d ten-
sors A ∈ Rn1×l×···×nd and B ∈ Rl×n2×···×nd , its transform
L based product is defined as

A ∗L B = L−1(L(A)∆L(B)), (4)

where ∆ denotes face-slice-wise product (C = A∆B ⇔ Cj =
Aj · Bj , ∀j = 1, · · · , n3 · · ·nd).

By using the following property that the transform L can
diagonalize the block circulant matrix bcirc(T ) using the
following property (Û ⊗ In1

) · bcirc(T ) · (Û−1 ⊗ In2
) =

bdiag(TL) := TL, where Û := Und
⊗ Und−1 ⊗ · · · ⊗ Un3 ,

Û−1 := U−1
nd

⊗ U−1
nd−1 ⊗ · · · ⊗ U−1

n3
. Further, it derives that

C = A ∗L B is equivalent to CL = AL · BL, which leads a
simple implement for (4) via matrix-matrix multiplication.

Definition 2 (transpose tensor). For T ∈ Rn1×n2×···×nd ,
its transpose T T ∈ Rn2×n1×···×nd satisfies that T T

L (:, :
, i3, · · · , id) = TL(:, :, i3, · · · , id)T for all ij = 1, · · · , nj .

Definition 3 (identity tensor). An order-d tensor I ∈
Rn×n×···×nd is called identity tensor if it satisfies that IL(:, :
, i3, · · · , id) = In for all ij = 1, · · · , nj .

Definition 4 (orthogonal tensor). An order-d tensor U ∈
Rn×n×···×nd is called orthogonal tensor if it satisfies that
UT ∗L U = U ∗L UT = In.
Definition 5 (f-diagonal tensor). An order-d tensor T ∈
Rn×n×···×nd is called f-diagonal tensor if it satisfies that
T (:, :, i3, · · · , id) is diagonal for all ij = 1, · · · , nj .
Theorem 1 (order-d t-SVD). For any order-d tensor T ∈
Rn1×n2×···×nd , it can be decomposed as

T = U ∗L S ∗L VT, (5)

where U ∈ Rn1×n1×···×nd and V ∈ Rn2×n2×···×nd are or-
thogonal, and S ∈ Rn1×n2×···×nd is an f-diagonal tensor.

Same as the normal t-SVD with DFT transform [Kilmer
et al., 2013], the above arbitrary invertible linear trans-
forms induced t-SVD can be realized by performing SVD
on each slice of TL in transformed domain and then in-
verting the corresponding components back to original
domain. Moreover, the following relationship has been
verified by using inverse transform, S(i, i, 1, · · · , 1) =
1
ℓ

∑n3

i3=1 · · ·
∑nd

id=1 SL(i, i, i3, · · · , id), which leads the non-
increasing property of S(i, i, 1, · · · , 1). Thus it is often called
tensor singular values. Similarly, the t-SVD has a skinny form
[Qin et al., 2022] with the following t-SVD rank, and further
some concepts can be established.
Definition 6 (order-d t-SVD rank & TNN). For order-d tensor
T ∈ Rn1×n2×···×nd with t-SVD T = U ∗L S ∗L VT, its t-SVD
rank is defined as

rankt-SVD(T ) := ♯{i : S(i, i, 1, · · · , 1) ̸= 0}, (6)

where ♯ denotes the cardinality of a set. Its tensor nuclear
norm (TNN) is defined as

∥T ∥⊛,L :=
∑
i

S(i, i, 1, · · · , 1). (7)

3 Tensor Recovery via Adaptive Tensor
Nuclear Norm Minimization

Next, we explain the reasons for constructing the Adaptive Ten-
sor Nuclear Norm (ATNN) and how to construct the ATNN.
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3.1 Modeling Motivation
Considering that many tensor data types (such as hyperspec-
tral data and video data shown in Figure 1 inherently exhibit
low-rank properties across third-mode, performing a low-
rank tensor decomposition can transform a large-scale tensor
T ∈ Rn1×n2×n3 into the product of a smaller-scale tensor
B ∈ Rn1×n2×r3 , (r3 ≤ n3) and a matrix D ∈ Rn3×r3 . It is
widely recognized that defining regularization on this smaller-
scale tensor can lead to efficient solution models [Peng et al.,
2022a]. As shown in Figure 1, each slice of B has a low-rank
property. Characterizing the low-rank properties of slices of
transform domain data is exactly the original intention of the
tensor nuclear norm.

Therefore, combining the findings in Figure 1 and the origi-
nal intention of the tensor nuclear norm, we thought of defining
the nuclear norm on the smaller-scale tensor B. Under this
definition, D obtained by low-rank decomposition from each
data acts as a transformed matrix and this transformed matrix
is data adaptive.

3.2 Data Adaptive Transformation
Next, we define data-adaptive transformation. For a third-
order tensor T ∈ Rn1×n2×n3 , assuming that its third mode
has low-rank property with rank r3, it can be factorized as

T = B ×3 D, (8)

where ×3 denotes mode-3 tensor product, B ∈ Rn1×n2×r3 ,
D ∈ Rn3×r3 satisfying DTD = I and r3 = Rank(T(3)).
According to low-rank tensor decomposition (8), we have

B = T ×3 D
T ⇐⇒ B(3) = B(3)D

TD = B(3)D. (9)

Therefore, if we regard B as a transformed tensor TL =
L(T ) = T = T ×3D

T in Eq. (2), the column-orthogonal ma-
trix (COM) DT can be regarded as the transform matrix, and
D is the inverse transform of DT . Theorem 2 demonstrates
that the matrix D, which validates the equation T = B ×3 D,
is appropriately suited to act as a transformed matrix.

Theorem 2. For a three-order tensor T = B ×3 D ∈
Rn1×n2×n3 composed of B ∈ Rn1×n2×r3 and D ∈ Rn3×r3 ,
if the transformation matrix is chosen as DT , the information
of the data before and after the transformation will not be lost.

3.3 Adaptive Tensor Nuclear Norm
After defining the data-adaptive transformation, the ATNN of
T can be reformulated as:

∥T ∥⊛,A :=

r3∑
k=1

∥B(:, :, k)∥∗ = ∥B∥∗,

s.t. B = T ×3 D
T ,DTD = I.

(10)

Eq. (10) limits the column orthogonality of the transformation
for two purposes. One is the need to keep the information in
the transformed domain from being lost in Theorem 2, and the
other is that as Theorem 3 below shows, the column orthogonal
transformation can effectively reduce the objective value of
the ATNN model (10).

Theorem 3. For the ATNN model (10), we have the following
two assertions:

a) The upper bound objective of the ∥T ∥⊛,A is ∥T(3)D∥2,1.
b) If the transformed matrix is set as the component matrix

of tensor T , then the upper bound objective can obtain the
smallest value.

3.4 Tensor Recovery Models Based on ATNN
Next, we consider two common types of recovery tasks, ten-
sor robust principal component analysis (TRPCA) and tensor
completion (TC) tasks.

The observed tensor and the tensor needed to be recovered
are denoted as Y and T0, respectively. For TC tasks, the
observation Y has the support set Ω ∼ Ber(ρ), i.e., PΩ(Y) =
PΩ(T0). For TRPCA tasks, the observation Y is corrupted
with a sparse component E0 (which may represent foreground
or sparse noise), denoted as Y = T0 + E0. Combining ATNN
with TC and TRPCA tasks, we can obtain the following ATNN-
TC model (11) and ATNN-RPCA model (12).

min
T =B×3D

∥B∥∗, s.t.,PΩ(Y) = PΩ(T ), (11)

and

min
T =B×3D,E

∥B∥∗ + λ∥E∥1, s.t.,Y = T + E . (12)

3.5 Optimization
This part derives efficient algorithms for solving the ATNN-
RPCA (12) and ATNN-TC (11) using the ADMM framework
[Boyd et al., 2011]. We first write the augmented Lagrangian
function of the ATNN-TC program as

min
B,D,E,Λ,PΩ(E)=0

∥B∥∗+
µ

2
∥Y −B×3D−E+Λ/µ∥2F , (13)

and that of the ATNN-RPCA program as:

min
B,D,E,Λ

∥B∥∗+λ∥E∥1+
µ

2
∥Y−B×3D−E+Λ/µ∥2F , (14)

where µ is the penalty parameter and Λ is the lagrange mul-
tiplier. The idea of the ADMM algorithm is to alternately
update each variable. For Eq. (13), we need to solve the
following three subproblems in Eq. (15).

B := min
B

∥B∥∗ +
µ

2
∥Y − B ×3 D− E + Λ/µ∥2F ,

D := min
DTD=I

∥Y − B ×3 D− E + Λ/µ∥2F ,

E := min
PΩ(E)=0

∥Y − B ×3 D− E + Λ/µ∥2F ,

Λ = Λ+ µ(Y − B ×3 D− E).

(15)

The optimization problem (12) also involves solving four
sub-problems. Based on Eq. (15), we only need to replaced
the subproblem about E with E := minE λ∥E∥1+ µ

2 ∥Y−B×3

D− E + Λ/µ∥2F to complete the entire optimization process
for Eq. (12). Due to page limitations, the update procedures,
detailed optimization steps and convergence guarantees are
provided in the supplementary material.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

3.6 Efficiency Analysis of ATNN
Although the previous section did not detail the algorithms
for ATNN, we can still compare the time complexity of TNN-
based TRPCA and TC models, as their update steps follow
the same procedure as Eq. (15). Among the four subprob-
lems, updating the transformed variable B is the most time-
consuming. For a tensor T ∈ Rn1×n2×n3 , if the transform
matrix D ∈ Rn3×n3 is full-rank, the soft-thresholding step
has complexity O(n2

1n2n3). In contrast, with a compact or-
thogonal matrix D ∈ Rn3×r3 under our ATNN framework,
the transformed data size becomes n1 × n2 × r3, reducing
the complexity to O(n2

1n2r3). When r3 ≪ n3, this leads to a
significant efficiency gain, as confirmed in our experiments.

4 Theoretical Guarantees
With ATNN defined above, we now consider the exact recovery
guarantee of ATNN-RPCA in (12) and ATNN-TC in (11).
The problem of TRPCA is to recover a low tubal rank tensor
T0 from highly corrupted measurements Y = T0 + E . The
problem of TC is to recover a low tubal rank tensor T0 from the
partly observed measurements Y = PΩ(T0). In this section,
we show that under certain assumptions, the low tubal rank
tensor T0 can be exactly recovered by solving program (11),
and the low tubal rank tensor T0 and sparse part E0 can be
exactly recovered by solving program (12).

4.1 Tensor Incoherence Condition
Among all the assumptions, the incoherence condition [Candès
et al., 2011; Lu et al., 2019a; Wang et al., 2023] is the most
important one, which stipulates that the element distribution
of the orthogonal left and right singular value tensors obtained
under t-SVD decomposition is as dispersed as possible. Next,
we define the incoherence condition based on the COM D
extracted from the data when used as the transformed operator.
Similar to the tensor incoherence conditions defined in [Lu
et al., 2019a], the tensor incoherence conditions based on the
COM D are defined as follows:
Definition 7 (Tensor Incoherence Conditions). For T0 ∈
Rn1×n2×n3 with t-SVD rank R, it has the skinny t-SVD
T0 = U ∗D S ∗D VT . Then T0 is said to satisfy the tensor
incoherence conditions with parameter µ if

max
i∈[1,n1]

∥UT ∗D e̊i∥F ≤
√

µR

n1
,

max
j∈[1,n2]

∥VT ∗D e̊j∥F ≤
√

µR

n2
,

∥U ∗D VT ∥F ≤
√

µR

n1n2
,

(16)

where e̊i, e̊j are the tensor column basis defined in [Lu et al.,
2019a].

It is worth noting that in previous incoherence conditions
[Lu et al., 2019a], the transformations were all full-rank ma-
trices, whereas we are the first to propose a definition based
on non-full-rank matrices. In addition, since the upper limit
of ∥UT ∗D e̊i∥F is R, it can be deduced that the upper limit of
µ is O(n1), which is much smaller than O(n1n3) in previous

works [Lu et al., 2019a; Wang et al., 2023]. From Eqs. (17)
and (18), it can be seen that the sample size is proportional
to µ, while the tensor’s tubal rank is inversely proportional
to µ. Thus, a smaller µ relaxes the theorem’s conditions and
broadens the model’s applicability.

4.2 Main Results
Next, we now demonstrate that both the model (11) and (12)
possess exact recovery capability, and the proof of the follow-
ing two theorems are placed in supplemental materials.
Theorem 4 (TC Theorem). Suppose that T0 ∈ Rn×n×n3

in the ATNN-TC model (11) obeys the tensor incoherence
conditions (16) and the support set Ω ∼ Ber(p). Then, there
exist universal constants c0, c1, c2 > 0 such that T0 is the
unique solution to model (11) with probability at least 1 −
c1(nn3)

−c2 , i.e., T̂ = T0, provided that

p ≥ c0µRn−1 log2(n). (17)

Theorem 5 (TRPCA Theorem). Suppose that T0 ∈ Rn×n×n3

in ATNN-RPCA model (12) obeys the tensor incoherence con-
ditions (16) and E0’s support set, denoted as Ω0, is uniformly
distributed among all sets of cardinality m. Then, there exist
universal constants c1, c2 > 0 such that (T0, E0) is the unique
solution to model (12) when λ = 1/

√
n with probability at

least 1− c1(nn3)
−c2 , i.e., (T̂ , Ê) = (T0, E0), provided that

rankt(T0) ≤ ρrµ
−1n log−2(n) and m ≤ ρsn

2n3, (18)

where ρr, ρs > 0 are some numerical constants.

5 Experiments
Next, we conducted numerical experiments to validate The-
orems 4 and 5. Based on Theorem 5, λ was set to
1/

√
max{n1, n2} for all TRPCA tasks. While this theoret-

ical value serves as a practical guideline, performance can
be further improved by fine-tuning λ. All simulations were
performed on a PC with an Intel Core i5-10600KF 4.10 GHz
CPU, 32 GB RAM, and a GeForce RTX 3080 GPU (10 GB).

5.1 Simulated Experiments
We generate a tensor with tubal rank R as a product T0 =
P ∗L QT , where P and Q are n×R× n tensors with entries
independently sampled from N (0, 1/n) distribution and the
COM L ∈ Rr3×n is generated by orthogonalizing the random
matrix with entries independently sampled from N (0, 1). For
the TRPCA task, the support set Ω (with size m) of E0 with
independent Bernoulli ±1 entries is chosen uniformly at ran-
dom, and the observation tensor is set as: Y = T0 + E0. For
the TC tasks, the observation Y is set as Y = PΩ(T0).

Next, we investigate how the tubal rank of T0 and the
sparsity of E0 (and missing ratio of T0 ) affect the perfor-
mance of model (11) and (12). We consider n = 50 and
two values of r3, i.e., r3 = 5, 20. We vary the sparsity
ρsof E0 as [0.01 : 0.01 : 0.5], the missing ratio ρ of T0 as
[0.01 : 0.02 : 0.99], and tubal rank of T0 as [1 : 1 : 50],
respectively. For each combination of (R, ρs) and (R, ρ), we
perform 10 test instances and declare a trial successful if the
relative recovered error is less than 0.01. The fraction of suc-
cessful recoveries are plotted in Figures 2 and 3. Here, we set
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Figure 2: Phase transition diagram of the ATNN-TC model: the
first and second row show results with learned and fixed transformed
matrices, respectively.
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Figure 3: Phase transition diagram of the ATNN-RPCA model: the
first and second row show results with learned and fixed transformed
matrices, respectively.

up two modes: in the first row of Figures 2 and 3, the trans-
formed matrix is adaptively learned from the data, while in
the second row, the optimal transformed matrix is predefined.
From Figures 2 and 3, we observe that there is a significant
region where the recovery is correct for both models. Fur-
thermore, two notable phenomena can be observed: 1) The
phase transition diagram in the first row of Figures 2 and 3
closely resembles the second row, indicating that even if we
don’t know the correct COM L in the models (11) and (12),

Methods WDC PaviaU Beans Cloth
PSNR Times PSNR Times PSNR Times PSNR Times

LRMC 18.53 24.38 15.17 2.93 15.96 7.61 13.11 10.95
HaLRTC 22.09 54.37 18.87 30.34 20.62 64.48 19.01 92.65
RPCA 32.08 28.99 24.98 6.59 17.88 17.92 18.47 18.28
SNN 26.02 136.2 31.34 121.1 16.14 176.2 16.77 176.7
KBR 22.64 167.2 20.91 58.63 20.26 252.1 20.91 162.9
TNN 19.62 419.2 17.09 120.2 20.39 322.4 15.51 324.8

CTNN 17.21 485.7 15.38 130.7 15.64 363.4 14.55 353.9
CTV 33.85 170.2 31.91 41.85 29.35 103.8 27.33 102.2

TCTV 32.12 815.2 29.62 172.5 32.85 641.3 27.36 627.9
Ours 39.82 21.34 35.31 5.32 29.46 29.22 27.53 19.30

Table 2: Quantitative comparison of all competing methods under
salt-and-pepper noise with the variance of 0.6. The best and second
results are highlighted in bold italics and underlined, respectively.

Methods data Times
airp. shop. lobb. esca. curt. foun. Aver.

RPCA 0.872 0.945 0.913 0.905 0.872 0.942 0.899 2.37
GODEC 0.900 0.919 0.856 0.913 0.913 0.910 0.902 0.64

DECOLOR 0.863 0.946 0.924 0.908 0.886 0.944 0.895 8.29
OMoGMF 0.914 0.948 0.925 0.911 0.905 0.942 0.917 3.92

RegL1 0.898 0.942 0.882 0.416 0.890 0.919 0.850 10.74
PRMF 0.891 0.942 0.882 0.907 0.881 0.917 0.901 13.68
CTV 0.918 0.954 0.934 0.915 0.871 0.938 0.918 10.28
TNN 0.522 0.661 0.631 0.598 0.582 0.578 0.595 16.87

CTNN 0.686 0.684 0.661 0.658 0.699 0.545 0.630 17.39
ATNN 0.919 0.948 0.936 0.916 0.916 0.946 0.923 2.32

Table 3: AUC comparison of all competing methods on all video
sequences in the Li dataset.

Methods WDC PaviaU Beans Cloth
PSNR Times PSNR Times PSNR Times PSNR Times

LRMC 18.53 24.38 15.17 2.93 15.96 7.61 13.11 10.95
HaLRTC 22.09 54.37 18.87 30.34 20.62 64.48 19.01 92.65
KBR 31.42 1589 29.92 725.7 26.06 1253 24.14 1292
TNN 30.01 1019 26.43 207.9 26.10 419.2 23.46 441.2

CTNN 33.36 378.9 31.69 114.4 27.61 129.6 25.71 136.2
UTNN 27.89 487.6 21.80 156.3 17.28 116.6 16.27 117.9
FTNN 34.87 4376 32.56 1263 28.48 1587 25.25 2054
OITNN 32.92 838.2 28.46 292.4 27.28 448.6 24.06 391.8
TCTV 33.33 2116 31.81 861.4 31.77 1570 28.38 1488
S2NTNN 37.36 168.7 35.15 40.78 27.44 104.2 31.28 113.2

Ours 38.06 232.4 33.94 58.34 28.83 156.3 25.81 142.4

Table 4: Quantitative comparison of all competing methods under
missing ratio with 0.95. The best and second results are highlighted
in bold italics and underlined, respectively.

we can also learn the COM L; 2) The phase transition diagram
of r3 = 5 is much better than that of r3 = 20 for both TRPCA
and TC tasks, which shows that it is necessary to consider the
low-rank property of mode 3.

5.2 Real Experiments
To validate the effectiveness of the proposed ATNN models for
tensor recovery, we conducted experiments on various datasets,
including hyperspectral images (HSI), multispectral images
(MSI), color video images, and surveillance videos. Due
to space constraints, detailed results on robustness analysis,
parameter settings, and convergence verification are provided
in the supplementary material.

For a comprehensive comparison, we included additional

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Methods Akiyo Foreman Carphone News
PSNR Times PSNR Times PSNR Times PSNR Times

LRMC 10.81 8.06 8.79 7.21 11.57 6.92 13.27 13.41
HaLRTC 17.66 61.04 15.55 44.87 14.20 42.46 16.43 87.63
KBR 29.76 689.2 23.97 668.2 26.49 798.2 26.42 1043
TNN 31.94 217.5 23.15 181.5 26.27 493.6 28.56 249.6

CTNN 28.63 192.0 22.13 152.7 25.06 196.2 25.59 174.7
UTNN 21.72 172.4 16.51 167.6 20.24 202.7 21.21 162.6
FTNN 30.74 1258 22.97 1123 25.43 1335 28.77 1494
OITNN 32.68 397.5 23.89 296.7 27.14 472.3 29.43 322.3
TCTV 33.41 874.8 26.69 821.4 29.10 1103 30.65 772.2
S2NTNN 33.16 168.7 23.57 83.98 27.33 100.7 29.11 90.61

Ours 33.74 95.89 24.16 78.21 27.44 80.11 29.72 78.94

Table 5: Quantitative comparison of all competing methods on color
video under missing ratio with 0.95. The best and second results are
highlighted in bold italics and underlined, respectively.

state-of-the-art methods not listed in Table 1. These include
CTV [Peng et al., 2022b] and TCTV [Wang et al., 2023] for
the TRPCA task, LRMC [Candès et al., 2011], HaLRTC [Liu
et al., 2012], UTNN [Ng et al., 2020], and OITNN [Wang et
al., 2022] for the TC task, as well as GODEC [Zhou and Tao,
2011], DECOLOR [Zhou et al., 2012], OMoGMF [Yong et
al., 2017], RegL1 [Zheng et al., 2012], and PRMF [Wang et
al., 2012] for background modeling. Prior to the experiments,
the gray values of each band were normalized to the [0, 1]
range using the max-min formula.

Tensor Robust Principal Component Analysis Task
In this part, we conducted experiments using three types of
data across two tasks: HSI, MSI, and video surveillance data.
The HSI tasks include the paviaU and WDC datasets, while
the MSI consists of the Beans and Cloth datasets from the
CAVE collection. The video surveillance data is sourced
from the Li dataset, with detailed information available in the
supplementary material.

The two tasks we focused on were sparse noise denoising
and foreground-background separation. For sparse noise de-
noising, salt-and-pepper noise was added at levels ranging
from 0.1 to 0.6. Table 1 presents the denoising performance
of all methods under a salt-and-pepper noise variance of 0.6,
while Table 2 shows the AUC values for the video surveil-
lance task. As observed in Tables 2 and 3, the proposed ATNN
method outperforms not only other TNN variants but also mod-
els that combine low-rank and local smoothness, achieving
superior performance with lower computational time. Further-
more, in Figure 4, we provide recovery results from various
methods. The figure clearly demonstrates that ATNN restores
better details compared to the other methods. These results val-
idate the effectiveness and robustness of the proposed method
and its underlying theoretical foundation.

Tensor Completion Task
In this part, we conducted tensor completion experiments on
three types of data: HSI data, MSI and color video data. The
newly added color video data includes four datasets: Akiyo,
Foreman, Carphone, and News. Test samples were generated
by introducing random missing values, with the missing rate
ranging from 80% to 99%. Tables 4 and 5 present the experi-
mental results of all the competing methods under a missing
rate higher than 95%. From the tables, it is evident that ATNN

Clean: PSNR/SSIM Noisy: 6.43/0.021 RPCA: 29.64/0.932

TNN: 19.85/0.355 CTV: 33.57/0.943 ATNN: 37.47/0.985

Figure 4: Denoised images of all competing methods with bands
58-27-9 as R-G-B under sparse noise with missing percent is 0.6 on
simulated WDC dataset.

Clean: PSNR/SSIM Observed: 6.24/0.014 TNN: 31.66/0.935

OITNN: 32.60/0.958 S2NTNN: 35.27/0.966 ATNN: 35.52/0.971

Figure 5: Recovered images of all competing methods under sample
ratio of 0.05 on the 10th frame of Akiyo data.

outperforms all TNN variant models and consistently ranks
the top one. Furthermore, the image restoration results are
shown in Figure 5.

6 Conclusion
In this paper, we introduce an efficient and self-adaptive learn-
able transformed tensor nuclear norm framework with prov-
able recovery guarantees. Specifically, our approach leverages
the low-rank property of the third mode of the tensor to rep-
resent the tensor to be repaired as a combination of a small-
sized tensor and a column-orthogonal matrix. The column-
orthogonal matrix serves as an adaptively learned transform
matrix derived from the data. By employing the nuclear norm
on the small-sized tensor, our ATNN model can obtain higher
computational efficiency compared to existing methods. Ad-
ditionally, we established the exact recoverable theorem for
the ATNN model with a column-orthogonal transform matrix.
Extensive experimental results demonstrate the effectiveness
of our approach and the validity of our theoretical findings.
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