
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

LLM4VKG: Leveraging Large Language Models for Virtual Knowledge Graph
Construction

Guohui Xiao1,3,†,∗ , Lin Ren1,3,† , Guilin Qi1,3 , Haohan Xue1,3 ,
Marco Di Panfilo2 and Davide Lanti2

1School of Computer Science and Engineering, Southeast University, Nanjing, China
2Free University of Bozen-Bolzano, Italy

3Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary
Applications (Southeast University), Ministry of Education, China

{guohui.xiao, renlin, gqi, thex1ay}@seu.edu.cn, marco.dipanfilo@student.unibz.it, lanti@inf.unibz.it

Abstract
Virtual Knowledge Graphs (VKGs) provide an ef-
fective solution for data integration but typically
require significant expertise for their construc-
tion. This process, involving ontology develop-
ment, schema analysis, and mapping creation, is of-
ten hindered by naming ambiguities and matching
issues, which traditional rule-based methods strug-
gle to address. Large language models (LLMs),
with their ability to process and generate con-
textually relevant text, offer a potential solution.
In this work, we introduce LLM4VKG, a novel
framework that leverages LLMs to automatize
VKG construction. Experimental evaluation on the
RODI benchmark demonstrates that LLM4VKG
surpasses state-of-the-art methods, achieving an av-
erage F1-score improvement of +17% and a peak
gain of +39%. Moreover, LLM4VKG proves ro-
bust against incomplete ontologies and can handle
complex mappings where current methods fail.

1 Introduction
Data integration and access to legacy data sources using end-
user-oriented languages are increasingly challenging. Among
various integration approaches, Virtual Knowledge Graphs
(VKGs) have gained significant traction, particularly when
integrating data from relational databases (DBs) [Xiao et al.,
2019]. VKGs replace the rigid structure of traditional ta-
bles with a flexible graph model that incorporates domain
knowledge while ensuring real-time access to fresh, accu-
rate information. Accessing the data through a VKG can
significantly improve question answering accuracy on enter-
prise databases [Sequeda et al., 2023]. A VKG specification
comprises three main components [Calvanese et al., 2023]:
(a) data sources, storing the actual data; (b) a domain on-
tology, capturing the relevant concepts, relations, and con-
straints of the domain; (c) a set of mappings, linking the data
sources to the domain ontology.

As a running example (see Figure 1), suppose that we are
working with a database for supply chain management, in-
cluding three interconnected tables, and aim to publish the

Generated Triples

sc:name

User

Software

Generate / Virtualize

sc:Product sc:Vendor
sc:seller

xsd:string

sc:name

xsd:string

sc:name

ID

1

2

3

Tag

fork

bike

tricot

…

…
…
…

Table:Product

ID

1

2

3

Desc

ProBike

Bike24

BParts

Table:Provider
ProviderID

1

2

3

2

9

Table:Provider-Product

ProductID

14

sc:seller
sc:name

data:vendor-{ID}data:vendor-{ID}data:product-{ID}data:product-{ID}

Data Source

Mappings

Ontology

VKG

{Desc}{Tag}

xsd:string

sc:addressCountry

data:

product-1
data:

vendor-2

sc:seller

sc:Vendorsc:Product

rdf:typerdf:type

Bike24

sc:name

fork
sc:name

Data

Consumers

xsd:string

sc:Address

Country

...

...

...

...

Results

Query

Figure 1: An example of VKG construction. “sc:” means the names-
pace “https://schema.org/”.

data as a Knowledge Graph (KG) following the schema.org
ontology. To achieve this, we first analyze whether the ta-
bles and columns in the database schema align with classes
or properties defined in the ontology. The analysis reveals
that tables Provider and Product can be matched to classes
sc:Vendor and sc:Product. The table Provider-Product is
matched to the object property sc:seller, and the columns
Provider.Tag and Product.Desc are matched to the data prop-
erty sc:name. Then, based on these alignments, we construct
a set of mappings that define the transformation rules from the
data source to a KG following the schema.org ontology. The
developed VKG can be queried using the SPARQL language,
and the triples can be materialized for further use.

Manually constructing mappings is a resource-intensive
task that requires considerable human effort, time, domain
expertise, and technical skills. Additionally, in real-world
scenarios of VKG construction, the ontology is often incom-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

plete and must be augmented based on the database schema
and data. Recently, several works have been developed for
automating or semi-automatic VKG mapping bootstrapping,
such as IncMap [Pinkel et al., 2013], BootOX [Jiménez-Ruiz
et al., 2015] and ontop [Calvanese et al., 2017]. To evaluate
the effect of VKG mapping bootstrapping approaches, Pinkel
et al. [2018] introduced a benchmark, RODI, suggesting that
those approaches can cope with relatively simple mapping
challenges but perform poorly on advanced challenges related
to real-world problems.

The emergence of large language models (LLMs) [Ope-
nAI, 2024b; OpenAI, 2024a; Anthropic, 2024; DeepSeek-
AI, 2024] represents a promising avenue for addressing these
challenges [Chen, 2024; Azaria et al., 2024]. LLMs, with
their ability to process and generate contextually relevant text
based on learned patterns in language, can assist in inter-
preting complex relationships between the ontology and the
database schema, potentially improving the process of VKG
construction.

In this paper, we propose LLM4VKG, a framework to
leverage LLMs for VKG construction. The approach lever-
ages LLMs to emulate human decision-making in tasks like
attribute naming and concept matching and is guided by for-
mally grounded mapping patterns [Calvanese et al., 2023]
to build robust, practical ontology structures. These patterns
distill best practices for mapping and ontology design. More-
over, to streamline the evaluation process, we develop a sys-
tem, based on RODI [Pinkel et al., 2018], to create and eval-
uate the quality of the generated ontology and mappings.

Our experimental evaluation shows that LLM4VKG out-
performs BootOX, the current SOTA method, across all sce-
narios with an average improvement of +17% in F1-score.
Notably, in the “Conference - adjusted naming” scenario,
LLM4VKG achieved an absolute improvement of +39%.
Surprisingly, LLM4VKG closely matched the performance
of the SOTA even with 25% of the ontology vocabulary re-
moved, with an average F1-score of 0.46. These findings
highlight the robustness and effectiveness of LLM4VKG in
handling incomplete ontologies and complex mapping tasks.

In summary, (1) we propose LLM4VKG, the first frame-
work for VKG construction leveraging LLMs and mapping
patterns to complete ontologies and bootstrap mappings au-
tomatically; (2) in LLM4VKG, we design an alignment strat-
egy that leverages the capabilities of LLMs for language un-
derstanding and uncertain decision-making to solve problems
- attribute naming and concept matching - that are challeng-
ing for traditional rule-based methods; (3) we implement the
proposed methodology and conduct experiments using varia-
tions of the RODI benchmark to validate the effectiveness of
LLM4VKG. All code and datasets associated with this work
are publicly available.1

2 Related Work
2.1 Mapping Bootstrapping Systems
Over the past two decades, numerous methods have been
developed to create mappings from databases. These meth-
ods vary by purpose (e.g., VKGs, data integration, ontology

1https://github.com/HomuraT/LLM4VKG

learning, DB schema validation via reasoning), the languages
used (e.g., OWL profiles, RDFS, R2RML, or custom map-
ping languages), and the degree of automation [Calvanese et
al., 2023; Mosca et al., 2023; Pinkel et al., 2018; Mogotlane
and Dombeu, 2016; Sequeda and Miranker, 2015]. Here, we
focus on actual implementations, specifically on the most rel-
evant (semi-)automated tools for bootstrapping VKGs start-
ing from a relational database.

Ontop [Calvanese et al., 2017] automates the generation
of R2RML [Das et al., 2012] mappings, ensuring that the
RDF graph largely conforms to the Direct Mapping recom-
mendation (with minor exceptions, e.g., duplicate row han-
dling [Calvanese et al., 2023]). Similarly, D2RQ [Bizer
and Seaborne, 2004] employs reverse engineering to identify
many-to-many relationships, translates foreign keys into ob-
ject properties, and utilizes a custom mapping language.

MIRROR [de Medeiros et al., 2015] detects class hier-
archies and many-to-many relationships, which are not di-
rectly expressible in relational schemas, enriching R2RML
mappings. BootOX [Jiménez-Ruiz et al., 2015] supports
specifying OWL profiles, designing complex R2RML map-
pings with selection and join operators, recognizing class and
property hierarchies, and aligning to target ontologies using
LogMap [Jiménez-Ruiz and Grau, 2011].

COMA++ [Aumueller et al., 2005] matches schemas
in heterogeneous formats by unifying them into a com-
mon model and applying diverse matching techniques. In-
cMap [Pinkel et al., 2013] represents ontologies and schemas
as graphs, computes ranked correspondence using lexical and
structural similarities, and generates semi-automatic map-
pings with user approval. Karma [Gupta et al., 2012], a lead-
ing relational-to-ontology mapping tool, supports data extrac-
tion from various sources, cleaning, normalization, mapping
to a target vocabulary, multi-source integration, and publish-
ing in formats like RDF and CSV.

2.2 LLMs for Ontology Engineering
LLMs are transforming ontology engineering by enabling
semantic-driven alignment and automated learning, signifi-
cantly reducing manual curation while preserving domain fi-
delity across tasks.

Ontology Alignment Recent LLM-driven approaches
demonstrate significant advances in ontology alignment.
OLALA [Hertling and Paulheim, 2023] leverages open-
source LLMs with zero-shot/few-shot prompting to achieve
supervised-level performance on OAEI benchmarks using
minimal training data. LLMs4OM [Giglou et al., 2024b]
employs multi-representation prompting strategies for
cross-domain ontology matching, outperforming traditional
systems through context-aware retrieval modules. While
OWL2Vec4OA [Teymurova et al., 2024] integrates LLM-
augmented embeddings to refine structural alignment, all
methods highlight LLMs’ capability to reduce dependency
on manual annotations and domain-specific constraints.

Ontology Learning LLM-based approaches are advanc-
ing ontology learning through diverse methodologies.
LLMs4OL [Giglou et al., 2024a] demonstrates LLMs’ partial
efficacy in concept extraction tasks but highlights the neces-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/HomuraT/LLM4VKG

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

sity of fine-tuning for complex reasoning scenarios. Kom-
mineni et al. [2024] establishes a semi-automated LLM-
RAG pipeline that reduces expert dependency in ontology
construction while retaining human validation mechanisms.
Specialized applications like Li et al. [2024] show LLMs’
ability to generate educational ontologies from unstructured
materials, enhancing downstream analytics through struc-
tured knowledge integration. For systematic learning, Lo
et al. [2024] proposes an end-to-end LLM framework with
adaptive regularization, outperforming subtask-based ap-
proaches in cross-domain ontology generation. These works
collectively emphasize LLMs’ role in balancing automation
with domain-specific knowledge refinement.

3 Preliminaries
This section introduces the key concepts, definitions, and no-
tations used in this work, including VKGs, mapping patterns,
and the task definition.

3.1 Virtual Knowledge Graph
In this work, tuples are denoted by the bold font.

A VKG specification is a triple (T ,M,Σ), where T de-
notes an ontology (sometimes called TBox), M denotes a set
of mappings, and Σ denotes a DB schema.

The schema Σ consists of a collection of table schemata
in the form T (x1, . . . , xn), denoting a table T of attributes
x1, . . . , xn, and a set of database constraints, in this work
consisting of primary and foreign keys. With a slight abuse
of notation, we write e ∈ Σ to indicate that e is a schema
element, i.e., a table T or an attribute xi. We use notation
Q(x) to denote a SQL query Q of answer attributes x. Given
a database instance D of Σ, the evaluation Q(x)D of Q(x)
over D is a set (ignoring duplicates) of answers (x 7→ o)
mapping attributes in x to values in D.

An ontology T is a set of axioms in some Description
Logic (DL) language (usually DL-LiteR [Poggi et al., 2008],
the mathematical underpinning of OWL 2 QL [Motik et al.,
2012]). Axioms are expressed in terms of three pairwise-
disjoint sets NC, NP, and ND denoting respectively class
names, object property names, and data property names.
Without loss of generality, we assume these three sets to con-
tain only class and property names actually occurring in T .

A Knowledge Base (KB) is a pair (T ,A), where T is an
ontology and A is a KG (sometimes called ABox). As custom
in the DL literature, we assume A to be a set of unary and
binary first-order atoms (intuitively, each atom corresponds to
an RDF triple). In VKGs, A is not materialized, but provided
indirectly by means of mappings.

A mapping m ∈ M is a pair of the form (s:Q(x), t:L)
where the expression s:Q(x), called source, specifies a SQL
query Q(x) over Σ and of answer attributes x, and expres-
sion t:L, called target, specifies a set L of first-order atoms.
Atoms in L can be of the form C(t1(x1)), p(t1(x1), t2(x2)),
or d(t1(x1), t2(x2)), where C ∈ NC, p ∈ NP, d ∈ ND, and
t1(x1) and t2(x2) are first-order terms called templates.

For example, the following is a mapping using the (con-
crete) syntax of the Ontop VKG system [Calvanese et al.,
2017] for C(t1(x1)). Q(x) is “SELECT ID FROM Provider”,
L(t(x)) is “data:vendor-{ID} a sc:Vendor”, and x is (ID).

Example mapping 1:
source SELECT ID FROM Provider
target data:vendor-{ID} a sc:Vendor .

Moreover, the following is another example for
p(t1(x1), t2(x2)), where x1 and x2 are (ProviderID)
and (ProductID) respectively.
Example mapping 2:
source SELECT ProviderID, ProductID FROM Provider-Product
target data:product-{ProductID}

sc:seller data:vendor-{ProviderID}.

Given a set M and a database instance D, the virtual ABox
MD exposed by D through M is the set:

{L[x 7→ o] | (x 7→ o) ∈ Q(x)D, (s:Q(x), t:L) ∈ M, L ∈ L}

where L[x 7→ o] denotes the ground atom obtained after
replacing attributes in x with their corresponding values in
o. For instance, given an atom C(t(x1, x2)) and an answer
((x1, x2) 7→ (o1, o2)), C(t(x1, x2))[(x1, x2) 7→ (o1, o2)] de-
notes the ground atom C(t(o1, o2)).

Assuming the SQL query from Example 1 retrieves the so-
lution mappings (ID 7→ 1) and (ID 7→ 2), the resulting RDF
graph will be as follows:
data:vendor-1 a sc:Vendor . data:vendor-2 a sc:Vendor .

3.2 Mapping Patterns
Calvanese et al. [2023] analyzed many common scenarios
of VKGs, and summarized the results as mapping patterns.
These mapping patterns encapsulate a distilled set of best
practices for creating mappings and designing ontology struc-
tures. We adopt four of the most common schema-driven
patterns: (1) Schema Entity (SE), (2) Schema Relationship
(SR), (3) Schema Relationship with Merging (SRm), and
(4) Schema Hierarchy (SH). The schema components of these
mapping patterns are illustrated in Figure 2.

SRm

SE SR

SH

Figure 2: The DB schema structures of SE, SR, SRm, and SH. T∗
denotes table names, K∗ denotes primary keys, K∗/A∗ denotes
other attributes, and the arrow← denotes foreign key constraints.

For each schema structure in Figure 2, mapping patterns
specify corresponding mapping and ontological axioms. For
example, the mapping corresponding to SR is:

(s:TR, t:pR (tCE (KRE) , tCF (KRF))).

Example in Figure 1 can be seen as an instantiation of pattern
SR, which is identical to Example mapping 2, where CE is
sc:Vendor, CF is sc:Product, and pR is sc:seller.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

3.3 Task Definition
The VKG construction task can be seen as a function, which
takes a DB schema Σ and an initial ontology T0 as inputs, and
produces a VKG specification P = (T ,M,Σ) with T0 ⊆ T ,
such that T captures the domain of interest, and M correctly
establishes the relation between T and Σ. Typically, the qual-
ity of P needs to be assessed by either human experts or
benchmarks, e.g., by verifying that queries answerable in the
source database remain answerable in the VKG.

4 Methodology
In this work, we introduce LLM4VKG, an LLM-based
framework designed to support VKG construction by au-
tomating tasks that typically require human judgment, such
as concept matching and naming. Furthermore, we utilize
several mapping patterns to refine and guide the VKG con-
struction process, ensuring a well-structured output.

The overall framework of LLM4VKG is illustrated in Fig-
ure 3. The framework comprises two main steps: (1) Map-
ping Pattern Recognition, which extracts mapping pattern in-
stances from the DB schema using SPARQL queries, and
(2) Ontology Completion & Mapping Bootstrapping, which
leverages LLMs and mapping pattern instances to complete
the input ontology and generate mappings.

4.1 Mapping Pattern Recognition
To recognize the occurrences of mapping patterns in a given
database schema Σ, we first convert Σ into a DB graph GΣ in
a straightforward way and then, for each mapping pattern, we
design a dedicated SPARQL query to match the correspond-
ing graph pattern in GΣ.

Due to space constraints, we skip the details of the defi-
nition of GΣ, which is provided in Appendix A. Instead, for
our running example in Figure 1, we visualize the DB graph
in Figure 4. Then, we utilize SPARQL queries to encode the
structures depicted in Figure 2. An example query for the SR
pattern is:
SELECT DISTINCT ?T_E ?K_E ?K_RE ?T_R ?K_RF ?K_F ?T_F {
?T_E :hasPrimaryKeyColumn ?K_E .
?T_F :hasPrimaryKeyColumn ?K_F .
?T_R :hasPrimaryKeyColumn ?K_RE, ?K_RF .
?K_RE :foreignKeyReferences ?K_E .
?K_RF :foreignKeyReferences ?K_F .

}

Note that this query deals with the case in which both TE

and TF have primary keys of single columns, but can be eas-
ily generalized to keys with multiple columns. Finally, these
SPARQL queries are executed on GΣ to derive the recognized
mapping pattern instances.

4.2 LLM Modules
In LLM4VKG, as depicted in Figure 3, the key component
is “Element Level DB-to-Ontology Alignment”, which at-
tempts to match a given DB element to an ontology element.
If no suitable match is found, it generates a new ontology
element representing the DB element. It consists of three se-
quential modules2 to leverage (possibly different) LLMs:

2The detailed prompts for the modules are in Appendix B.

• Retriever takes an element of the schema (e.g., Provider
for a table name, Provider.Tag for a column name) and
a set of ontology elements Eon ⊆ NC∪NP∪ND as in-
puts. This module uses a pre-trained sentence similar-
ity language model3 MR to retrieve top-n candidate ele-
ments E′

on, where n is a hyperparameter. The process is
expressed as: E′

on = RetrievernMR(edb,Eon).
• Similar to Retriever, Matcher takes a DB schema el-

ement edb and a set of ontology elements Eon as in-
puts. However, Matcher uses a generative language
model4 MM to generate a pair (d, em

on) where d is a la-
bel denoting the matching degree (with possible values
High, Medium, or Low) and em

on is an element from Eon
matched to edb. When d is Low, emon is a null value, indi-
cating that no element in Eon can be matched. The pro-
cess is expressed as: (d, em

on) = MatcherMM(edb,Eon).
• Namer takes as inputs an element e1 ∈ Σ and optionally
e2 ∈ Σ∪NC∪NP∪ND, and uses a generative language
model MN to generate a class or property name accord-
ing to the inputs. The generation uses the ontology as the
context to make sure the names are meaningful. When
only e1 is provided, Namer generates a fresh class or
property name in the ontology based on the name of e1.
If two elements are provided and e2 ∈ NC ∪ NP ∪ ND,
Namer generates a fresh sub class or property of e2, and
names it based on the name of e1; if e2 ∈ Σ, Namer
generates a fresh object property and names it accord-
ing to the pair (e1, e2). The process is expressed as:
NamerMN(e1, e2).

Element Level DB-to-Ontology Alignment Given a DB
schema element edb and a set of ontology elements Eon, we
first try to match edb to Eon directly, using Retriever and
Matcher: (d, em

on) = MatcherMM(edb,RetrievernMR(edb,Eon)).
If d is High, em

on will be the matched ontology element. Oth-
erwise, Namer will be used to generate a new element (a class
or property) of the ontology and name it based on edb:

DB2Ont(edb,Eon) =



em
on d = High

NamerMN(edb, e
m
on) d = Medium

NamerMN(edb) d = Low,
Eon ⊆ NC∪ND

NamerMN(e
1
db, e

2
db) d = Low,

Eon ⊆ NP
In the last case, Namer generates a name as an object property
based on the pair (e1db, e

2
db), which will be used to deal with

the mapping patterns SR (edb = TR) and SRm (edb = KEF),
and for both patterns e1db = TE , e

2
db = TF . For example, in

Figure 1, edb is Provider-Product, e1db is Provider, and e2db is
Product.

4.3 Ontology Completion & Mapping
Bootstrapping

Now we present how to perform ontology completion and
mapping bootstrapping using the above LLM modules over

3See sentence similarity models in this URL: https:
//huggingface.co/models?pipeline tag=sentence-similarity

4See generative models in this URL: https://huggingface.co/
models?pipeline tag=text-generation

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://huggingface.co/models?pipeline_tag=sentence-similarity
https://huggingface.co/models?pipeline_tag=sentence-similarity
https://huggingface.co/models?pipeline_tag=text-generation
https://huggingface.co/models?pipeline_tag=text-generation

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Inputs

Incomplete

Ontology

Mapping Pattern
Recognition

DB Graph
Construction

Mapping Pattern
Query Execution

Mapping Pattern
Recognition

DB Graph
Construction

Mapping Pattern
Query Execution

DB Schema

Mapping Pattern

Instances

Mapping Pattern

Instances

Outputs

Mappings & Ontology

Ontology Completion &
Mapping Bootstrapping

Retriever Matcher Namer

Element Level DB-to-Ontology Alignment

Ontology Completion &
Mapping Bootstrapping

Retriever Matcher Namer

Element Level DB-to-Ontology Alignment

Matcher

High

Medium

Low

High

Medium

Low

Matched
Key

Optional

Namer

New Name

Retriever

Top n

Figure 3: An overview of the LLM4VKG framework. The azure background represents the submodules of the LLM4VKG.

Tag

Provider Provider-Product Product

ProviderID ProductID DescID ID

TableTable ColumnColumn KeyKey Primary KeyPrimary Key Foreign KeyForeign Key ColumnColumn

Figure 4: An example of the DB graph.

the mapping pattern instances. To avoid potential overlaps in
mapping patterns, we process them in the specific sequence
of SH, SR, SRm, and SE.
SH This mapping pattern describes a hierarchical relation-
ship between two classes. Following the pattern, TE and TF
are matched to class names:

CE = DB2Ont(TE ,NC) CF = DB2Ont(TF,NC)

and a sub-class axiom CF ⊑ CE is added to the ontology.
Note that no mappings are generated for this pattern.
SR This mapping pattern describes an object property from
TE to TF, via TR. Following the pattern, TR is matched to an
object property name:

pR = DB2Ont(TR,NP)

and mappings are generated as follows:

(s:TR, t:pR (tCE (KRE) , tCF (KRF)))

where the name of the topmost ancestor of CE or CF is used
as the template for tCE

or tCF . For example, if CE is Student
and its topmost ancestor is Person, KRE is sid, then tCE

takes
the form :Person/{sid}.
SRm This mapping pattern describes an object property
from TE to TF, via KEF. Therefore, KEF is matched to an
object property name:

pEF = DB2Ont(KEF,NP)

If KEF consists of multiple columns, the names of these
columns are concatenated using the word “and” (e.g., ID and
Tag) to preserve their joint semantic significance. This uni-
fied string will serve as one DB schema element during the
matching process. Mappings are generated as follows:

(s:TE, t:pEF (tCE (KE) , tCF (KEF)))

SE This mapping pattern specifies the correspondence be-
tween a table representing an entity5, characterized by a pri-
mary identifier and its attributes, and a class in the ontology
with associated data properties.

If TE or an attribute a ∈ K ∪ A corresponds to an object
property, the corresponding table and column are excluded
from the process. Let AD denote the set of columns that do
not match the object properties. Then, TE is matched to a
class name, and each a ∈ AD is matched to a data property
name:

da = DB2Ont(a,ND) CE = DB2Ont(TE ,NC)

Mappings are generated as follows:

(s:TE , t:CE(tE(K)), {da(tE(K), a)}a∈AD
)

5 Experimental Setups
Datasets We evaluate LLM4VKG on RODI [Pinkel et al.,
2018] and RODI-T (x%), a variant of RODI in which x% of
the ontology vocabulary is removed from the ontology start-
ing from the leaf nodes. A RODI sample comprises three
main elements: a database schema, a golden ontology, and
a set of query pairs. Each query pair includes an SQL query
and a SPARQL query, both of which are formulated to answer
the same question. The output of the SQL query is treated as
the label, whereas the output of the SPARQL query, based on
the golden ontology, is regarded as the prediction. The do-
main and statistical details of the RODI dataset are presented
in Table 1.

Domain # Samp # Tbl # Col # FK # QP # NC # NP # ND
Conference 26 38.3 93.4 51.2 29.8 55.5 39.3 17.0
Geodata 5 154.6 290.8 64.4 49.4 23.0 44.0 27.0
Oil & Gas 2 70.0 962.0 78.0 228.0 378.5 148.0 237.0

Table 1: Statistics of the RODI dataset across three domains, show-
ing the average number of samples, tables, columns, foreign keys,
query pairs, classes, object properties, and data properties.

5As in Entity-Relationship [Chen, 1976] diagrams.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Evaluation Process Some mapping generation systems
produce mappings and an ontology based solely on the DB
schema, leading to a vocabulary that differs from the golden
ontology in RODI. To evaluate the quality of the VKG, ontol-
ogy matching between the generated ontology and the RODI
golden ontology is necessary. The evaluation includes the fol-
lowing steps: (1) Match the ontology generated by the VKG
construction system to the golden ontology in the sample us-
ing LogMap [Jiménez-Ruiz and Grau, 2011], and add the
matching names (i.e., names only, without structure) from the
golden ontology as equivalent classes or properties in the gen-
erated ontology. (2) Construct the VKG based on the database
schema, the generated ontology, and mappings. (3) Compare
the results of each query pair of the SQL query and the corre-
sponding SPARQL query.

Metrics To measure the quality of generated mappings au-
tomatically, we follow Pinkel et al. [2018] and use the F1
metric computed by comparing the reference set (by SQL
query) and test set (by SPARQL query). Let ref be the re-
sults from the SQL query, and res be the results from the
SPARQL query, then the precision P = 1− |res\ref|

|res| , the recall

R = 1 − |ref\res|
|ref | and F1 = 2×P×R

P+R , where ref \ res denotes
the elements in ref but not in res (and vice-versa).

Comparative Baselines We consider baselines from two
categories: (1) Traditional mapping generation systems, in-
cluding state-of-the-art systems like BootOX and IncMap, as
well as those used in the RODI paper [Pinkel et al., 2018]
(Tradition); and (2) direct application of LLMs for map-
ping generation, provided the ontology and database schema
(Vanilla LLM).

• Tradition: (a) COMA [Aumueller et al., 2005], In-
cMap [Pinkel et al., 2013], and BootOX [Jiménez-Ruiz
et al., 2015] leverage both DB schema and Ontology.
(b) D2RQ [Bizer and Seaborne, 2004], MIRROR [de
Medeiros et al., 2015], and ontop [Calvanese et al.,
2017] rely solely on DB schema.

• Vanilla LLM: o1 [OpenAI, 2024b], GPT-4o [OpenAI,
2024a], and DeepSeek-V3 [DeepSeek-AI, 2024]. Note
that the generated mappings often contain errors that we
fix through manual verification and correction (See Ap-
pendix C for details).

Implementation Details In this study, we leverage the
VKG system Ontop [Calvanese et al., 2017]6 to initialize the
generated VKG based on a database connection, an ontology,
and a set of mappings. For Retriever, we use bge-m3 [Chen
et al., 2024] as the backbone model. For Matcher and Namer,
we incorporate GPT-4o, GPT-4o-mini [OpenAI, 2024a], and
Qwen2.5-7b [Qwen, 2024] as backbone models, representing
various levels of performance across LLMs.

6 Results & Analysis
Results on RODI To evaluate the effectiveness of
LLM4VKG, we conduct experiments using the scenarios of
RODI, where the model takes the golden ontology as input,

6https://ontop-vkg.org/

treats it as incomplete, and actively completes it. The results
are summarized in Table 2 and Table 3.

Table 2 reports that LLM4VKG outperforms traditional
methods in all scenarios, achieving SOTA performance. The
most significant improvement is observed in the scenario
“Conference - adjusted naming”, which achieves an absolute
increase of +39%.

Furthermore, the results presented in Table 3 indicate
that, modulo manual verification and correction, both o1 and
DeepSeek-V3 achieve performance levels comparable to the
SOTA mapping generation systems BootOX and IncMap.
These findings highlight the potential of using LLMs directly
to produce effective mappings.

Finally, LLM4VKG achieves substantial improvements
over baseline methods, even when employing Qwen2.7-7b,
a small-scale open-source LLM, as its backbone model.
Specifically, compared to BootOX, LLM4VKG achieves im-
provements of +17%, +14%, and +8% in average F1 scores
on GPT-4o, GPT-4o-mini, and Qwen2.5-7b, respectively.

Scenario D2RQ MIRR. ontop COMA IncM. B.OX ours
Conference domain, adjusted naming
CMT 0.31 0.28 0.28 0.48 0.45 0.76 0.86
Conference 0.26 0.27 0.26 0.36 0.53 0.51 0.92
SIGKDD 0.38 0.30 0.38 0.66 0.76 0.86 0.93
Conference domain, restructured
CMT 0.14 0.17 0.14 0.38 0.44 0.41 0.55
Conference 0.21 0.23 0.13 0.31 0.41 0.41 0.59
SIGKDD 0.28 0.11 0.21 0.41 0.38 0.52 0.71
Conference domain, combined case
SIGKDD 0.21 0.11 0.21 0.28 0.38 0.48 0.72
Conference domain, missing FKs
Conference 0.18 0.17 - 0.21 0.41 0.33 0.51
Conference domain, denormalized
CMT 0.20 0.22 0.20 - 0.40 0.44 0.52
Geodata domain
Classic Rel. 0.06 - - - 0.08 0.13 0.18
Oil & gas domain
Atomic 0.08 0.00 0.10 0.02 0.12 0.14 0.19

Table 2: Fine-grained results of RODI using GPT-4o as the LLM for
the Matcher and Namer, with F1-scores reported . For each scenario,
the best number is emphasized in bold, and the second-best number
is distinguished by underlines.

Results on RODI-T(x%) Figure 5 shows that LLM4VKG
achieves an average F1 score of 0.46 even with 25% of
the vocabulary of the ontology removed, closely matching
the performance of BootOX. This highlights the ability of
LLM4VKG to infer naming rules and reconstruct missing

Tradition Vanilla LLM LLM4VKG(ours)
B.OX IncM. DS-V3 o1 G4o G4o G4o-m Q-7b

AN 0.71 0.58 0.53 0.37 0.09 0.91 0.85 0.87
Res 0.45 0.41 0.43 0.46 0.12 0.61 0.61 0.50
CC 0.48 0.38 0.31 0.51 0.14 0.72 0.69 0.68
MF 0.33 0.41 0.43 0.38 0.15 0.51 0.44 0.43
Den 0.44 0.40 0.44 0.48 0.16 0.52 0.52 0.34
avg. 0.48 0.44 0.43 0.44 0.13 0.65 0.62 0.56

Table 3: Main results: Average F1 scores of RODI across various
scenarios. Abbreviations: AN = Adjusted Naming, Res = Restruc-
tured, CC = Combined Case, MF = Missing Foreign Keys, Den =
Denormalized, avg. = Average, G4o = GPT-4o, G4o-m = GPT-4o-
mini, DS-V3 = DeepSeek-V3, Q-7b=Qwen2.5-7b.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://ontop-vkg.org/

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

0 25 50 75

0.0

0.2

0.4

0.6

0.8

1.0

RODI-T(x%)

 AN Res
 CC MF
 Den avg.

B.OX avg.

0 25 50 75

0.0

0.2

0.4

0.6

0.8

1.0

RODI-T(x%)

 AN Res
 CC MF
 Den avg.

B.OX avg.

Figure 5: Results of RODI-T(x%) for LLM4VKG.

ontology parts from existing elements. As more vocabulary
is removed, performance declines partly because ontology
alignment during evaluation may incorrectly flag correctly
structured outputs if they don’t precisely match the reference
ontology. Consequently, the final performance also depends
on the alignment method used. Nonetheless, LLM4VKG re-
mains robust with partial vocabularies, demonstrating its ef-
fectiveness in handling incomplete ontologies.
Ablation Experiments To evaluate the contribution of in-
dividual components to the performance of LLM4VKG, we
perform ablation experiments and present the results in Ta-
ble 4: (1) -Matcher disables the Matcher component and
directly selects the top-1 result from the Retriever as the
matched key, assigning a matching degree of High as the
matched output; (2) -SH, -SR, -SRm, and -SE indicate the
removal of the corresponding mapping pattern handling pro-
cesses during the mapping generation process. The results in-
dicate that removing the Matcher component (-Matcher) de-
creases the average F1 score from 0.65 to 0.53. This reduc-
tion reflects that relying only on text similarity is insufficient
for accurately mapping the database to the ontology, empha-
sizing the need for LLMs’ reasoning capabilities. Similarly,
eliminating the SE component (-SE) results in a significant
drop to an average F1 score of 0.16, highlighting its essen-
tial role in the mapping process. Other components, such
as SH, SR, and SRm, also contribute to performance, with
their removal leading to moderate decreases in the average F1
score. These ablation results underscore the necessity of each
component in maintaining the robustness and performance of
LLM4VKG.

Methods AN Res CC MF Den avg
ours 0.91 0.61 0.72 0.51 0.52 0.65
- Matcher 0.76 0.53 0.66 0.35 0.33 0.53
- SH 0.64 0.51 0.62 0.46 0.40 0.52
- SR 0.84 0.49 0.48 0.49 0.52 0.56
- SRm 0.84 0.53 0.65 0.49 0.52 0.61
- SE 0.19 0.26 0.28 0.00 0.08 0.16

Table 4: F1 scores of ablation experiments for the components of
LLM4VKG.

Fine-Grained Analysis for Query Types Table 5 presents
the F1 score of LLM4VKG and baseline models across differ-
ent query types. Overall, LLM4VKG consistently achieves a
higher F1 score than BootOX across all query types, high-
lighting its effectiveness in managing diverse and intricate
ontology queries. Among the three query types (C, D, O),
object property queries (O) are the most challenging because

multiple tables and columns are involved. LLM4VKG signif-
icantly outperforms BootOX, the best system, in this category
(0.59 vs. 0.05), demonstrating its superior ability to handle
better on relationships between different classes.

Additionally, while BootOX performs well on 1:1 map-
pings (0.82) but fails on n:1 mappings (0.00), LLM4VKG
achieves 0.93 for 1:1 and 0.36 for n:1, showcasing its capa-
bility to manage more complex mappings.

Scnario LLM4VKG BootOXGPT-4o GPT-4o-mini Qwen2.5-7b
C 0.71 0.70 0.47 0.53
D 0.69 0.63 0.47 0.50
O 0.59 0.61 0.46 0.05
1:1 0.93 0.92 0.80 0.82
n:1 0.36 0.33 0.26 0.00

Table 5: F1 scores of the queries on different match types. “C”
represents queries on classes, “D” on data properties, and “O” on
object properties. “1:1” and “n:1” stands for queries involving 1:1
or n:1 mappings among classes and tables, respectively.

RODI-T Error Analysis Figure 6 shows that as more vo-
cabulary is removed in RODI-T(x%), the F1 score for classes
(C), data properties (D), and object properties (O) decreases.
The decline is smallest for classes, followed by data prop-
erties, with object properties experiencing the most signifi-
cant drop. This is because classes and data properties involve
fewer elements, making it easier to generate names that are
similar to those in the golden ontology. In contrast, object
properties are more complex, involving multiple tables and
columns, which makes it harder to reproduce the exact prop-
erties in the golden ontology and leads to more errors.

0 25 50 75

0.0

0.2

0.4

0.6

0.8

RODI-T(x%)

 C
 D
 O

0 25 50 75

0.0

0.2

0.4

0.6

0.8

RODI-T(x%)

 C
 D
 O

Figure 6: Fine-grained results of RODI-T(x%) for LLM4VKG.

7 Conclusion & Future Work
In this work, we propose LLM4VKG, a framework that lever-
ages LLMs for VKG construction. LLM4VKG automati-
cally builds mappings and enriches the initial ontology based
on mapping patterns extracted from the DB schema. Addi-
tionally, we developed an automated evaluation framework
to simplify the assessment process. Our experiments demon-
strate that LLM4VKG is robust and efficient in handling in-
complete ontologies and complex mapping tasks. In future
work, we aim to (1) expand the framework with additional
mapping patterns; (2) in addition to the DB schema, uti-
lize the statistics of the data in the DB to enhance ontology
construction; and (3) develop a more comprehensive dataset
based on RODI to further improve and validate our approach.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work is partially supported by National Nature Sci-
ence Foundation of China under No. 62476058, by HEU
project CyclOps (GA n. 101135513), by the Province
of Bolzano and FWF through project OnTeGra (DOI
10.55776/PIN8884924), by the Province of Bolzano and EU
through projects ERDF-FESR 1078 CRIMA, and ERDF-
FESR 1047 AI-Lab, by MUR through PRIN project
2022XERWK9 S-PIC4CHU, and by the EU and MUR
through PNRR project PE0000013-FAIR. We thank the Big
Data Computing Center of Southeast University for providing
the facility support on the numerical calculations in this pa-
per. This work has been carried out while Marco Di Panfilo
was enrolled in the Italian National Doctorate on Artificial
Intelligence run by Sapienza University of Rome in collabo-
ration with Free University of Bozen-Bolzano.

Contribution Statement
†Guohui Xiao and Lin Ren contribute equally to this work.
∗Corresponding author: guohui.xiao@seu.edu.cn.

References
[Anthropic, 2024] Anthropic. Claude 3.5 sonnet. Anthropic

blog, 2024.
[Aumueller et al., 2005] D. Aumueller, H. Hai Do, S. Mass-

mann, and E. Rahm. Schema and ontology matching with
COMA++. In Proc. of SIGMOD’2005, pages 906–908,
2005.

[Azaria et al., 2024] A. Azaria, R. Azoulay, and S. Reches.
Chatgpt is a remarkable tool—for experts. Data Intelli-
gence, 6(1):240–296, 2024.

[Bizer and Seaborne, 2004] C. Bizer and A. Seaborne.
D2RQ-treating non-RDF databases as virtual RDF graphs.
In Proc. of ISWC’2004, volume 2004. Springer Hiroshima,
2004.

[Calvanese et al., 2017] D. Calvanese, B. Cogrel, S. Komla-
Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-
Muro, and G. Xiao. Ontop: Answering SPARQL queries
over relational databases. Semantic Web, 8(3):471–487,
2017.

[Calvanese et al., 2023] D. Calvanese, A. Gal, D. Lanti,
M. Montali, A. Mosca, and R. Shraga. Conceptually-
grounded mapping patterns for virtual knowledge graphs.
Data & Knowledge Engineering, 145:102157, 2023.

[Chen et al., 2024] J. Chen, S. Xiao, P. Zhang, K. Luo,
D. Lian, and Z. Liu. BGE M3-embedding: Multi-
lingual, multi-functionality, multi-granularity text embed-
dings through self-knowledge distillation, 2024.

[Chen, 1976] Peter P. Chen. The Entity-Relationship model:
Toward a unified view of data. ACM Trans. on Database
Systems, 1(1):9–36, March 1976.

[Chen, 2024] H. Chen. Large knowledge model: Perspec-
tives and challenges. Data Intelligence, 6(3):587–620,
2024.

[Das et al., 2012] S. Das, S. Sundara, and R. Cyganiak.
R2RML: RDB to RDF mapping language. W3C Rec-
ommendation, World Wide Web Consortium, September
2012. Available at http://www.w3.org/TR/r2rml/.

[de Medeiros et al., 2015] L. F. de Medeiros, F. Priyatna, and
Ó. Corcho. MIRROR: automatic R2RML mapping gener-
ation from relational databases. In Proc. of ICWE’2015,
volume 9114, pages 326–343. Springer, 2015.

[DeepSeek-AI, 2024] DeepSeek-AI. Deepseek-V3 technical
report, 2024.

[Giglou et al., 2024a] H. B. Giglou, J. D’Souza, and S. Auer,
editors. LLMs4OL 2024: The 1st Large Language Mod-
els for Ontology Learning Challenge, volume 4 of Open
Conference Proceedings. TIB Open Publishing, 2024.

[Giglou et al., 2024b] H. B. Giglou, J. D’Souza, F. Engel,
and S. Auer. LLMs4OM: Matching ontologies with large
language models. CoRR, abs/2404.10317, 2024.

[Gupta et al., 2012] S. Gupta, P. Szekely, C. A. Knoblock,
A. Goel, M. Taheriyan, and M. Muslea. Karma: A system
for mapping structured sources into the semantic web. In
Proc. of the 9th Extended Semantic Web Conf. (ESWC),
pages 430–434. Springer, 2012.

[Hertling and Paulheim, 2023] S. Hertling and H. Paulheim.
Olala: Ontology matching with large language models. In
Proceedings of the 12th Knowledge Capture Conference
2023, K-CAP 2023, Pensacola, FL, USA, December 5-7,
2023, pages 131–139. ACM, 2023.

[Jiménez-Ruiz and Grau, 2011] E. Jiménez-Ruiz and
B. Cuenca Grau. Logmap: Logic-based and scalable
ontology matching. In International Semantic Web
Conference, pages 273–288. Springer, 2011.

[Jiménez-Ruiz et al., 2015] E. Jiménez-Ruiz, E. Kharlamov,
D. Zheleznyakov, I. Horrocks, C. Pinkel, M. G. Skjæve-
land, E. Thorstensen, and J. Mora. BootOX: Practical
mapping of RDBs to OWL 2. In Proc. of ISWC’2015,
pages 113–132. Springer, 2015.

[Kommineni et al., 2024] V. K. Kommineni, B. König-Ries,
and S. Samuel. From human experts to machines: An
LLM supported approach to ontology and knowledge
graph construction. CoRR, abs/2403.08345, 2024.

[Li et al., 2024] G. Li, C. Tang, L. Chen, D. Deguchi, T. Ya-
mashita, and A. Shimada. LLM-Driven ontology learn-
ing to augment student performance analysis in higher ed-
ucation. In Knowledge Science, Engineering and Man-
agement - 17th International Conference, KSEM 2024,
Birmingham, UK, August 16-18, 2024, Proceedings, Part
III, volume 14886 of Lecture Notes in Computer Science,
pages 57–68. Springer, 2024.

[Lo et al., 2024] A. Lo, A. Q. Jiang, W. Li, and M. Jamnik.
End-to-End ontology learning with large language models.
CoRR, abs/2410.23584, 2024.

[Mogotlane and Dombeu, 2016] K. Mogotlane and
J. V. Fonou Dombeu. Automatic conversion of rela-
tional databases into ontologies : A comparative analysis

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

http://www.w3.org/TR/r2rml/

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

of protege plug-ins performances. International journal
of Web & Semantic Technology, 7:21–40, 10 2016.

[Mosca et al., 2023] R. Mosca, M. De Santo, and R. Gaeta.
Ontology learning from relational database: a review. J.
Ambient Intell. Humaniz. Comput., 14(12):16841–16851,
2023.

[Motik et al., 2012] B. Motik, B. C. Grau, I. Horrocks,
Z. Wu, A. Fokoue, and C. Lutz. OWL 2 web ontology lan-
guage: Profiles. W3C Recommendation, World Wide Web
Consortium, http://www.w3.org/TR/owl2-profiles/, 2012.

[OpenAI, 2024a] OpenAI. Hello gpt-4o. OpenAI blog, 2024.
[OpenAI, 2024b] OpenAI. Introducing openai o1-preview.

OpenAI blog, 2024.
[Pinkel et al., 2013] C. Pinkel, C. Binnig, E. Kharlamov, and

P. Haase. IncMap: pay as you go matching of relational
schemata to OWL ontologies. In OM, pages 37–48, 2013.

[Pinkel et al., 2018] C. Pinkel, C. Binnig, E. Jiménez-Ruiz,
E. Kharlamov, W. May, A. Nikolov, A. S. Bastinos, M. G.
Skjæveland, A. Solimando, M. Taheriyan, C. Heupel, and
I. Horrocks. RODI: Benchmarking relational-to-ontology
mapping generation quality. Semantic Web, 9(1):25–52,
2018.

[Poggi et al., 2008] A. Poggi, D. Lembo, D. Calvanese,
G. De Giacomo, M. Lenzerini, and R. Rosati. Linking data
to ontologies. J. on Data Semantics, 10:133–173, 2008.

[Qwen, 2024] Team Qwen. Qwen2.5: A party of foundation
models, September 2024.

[Sequeda and Miranker, 2015] Juan F. Sequeda and Daniel P.
Miranker. Ultrawrap mapper: A semi-automatic relational
database to RDF (RDB2RDF) mapping tool. In Serena
Villata, Jeff Z. Pan, and Mauro Dragoni, editors, ISWC
(Posters & Demos), volume 1486 of CEUR Electronic
Workshop Proceedings. CEUR-WS.org, 2015.

[Sequeda et al., 2023] J. Sequeda, D. Allemang, and B. Ja-
cob. A benchmark to understand the role of knowledge
graphs on large language model’s accuracy for question
answering on enterprise sql databases, 2023.

[Teymurova et al., 2024] S. Teymurova, E. Jiménez-Ruiz,
T. Weyde, and J. Chen. OWL2Vec4OA: Tailoring knowl-
edge graph embeddings for ontology alignment. CoRR,
abs/2408.06310, 2024.

[Xiao et al., 2019] G. Xiao, L. Ding, B. Cogrel, and D. Cal-
vanese. Virtual knowledge graphs: An overview of sys-
tems and use cases. Data Intelligence, 1(3):201–223,
2019.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

