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Phenotypic Profile-Informed Generation of Drug-Like Molecules via
Dual-Channel Variational Autoencoders

Hui Liu , Shiye Tian , Xuejun Liu∗

College of Computer and Information Engineering, Nanjing Tech University, Nanjing, 211800, China.
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Abstract

The de novo generation of drug-like molecules ca-
pable of inducing desirable phenotypic changes
is receiving increasing attention. However, pre-
vious methods predominantly rely on expression
profiles to guide molecule generation, but over-
look the perturbative effect of the molecules on
cellular contexts. To overcome this limitation,
we propose SmilesGEN, a novel generative model
based on variational autoencoder (VAE) architec-
ture to generate molecules with potential therapeu-
tic effects. SmilesGEN integrates a pre-trained
drug VAE (SmilesNet) with an expression profile
VAE (ProfileNet), jointly modeling the interplay
between drug perturbations and transcriptional re-
sponses in a common latent space. Specifically,
ProfileNet is imposed to reconstruct pre-treatment
expression profiles when eliminating drug-induced
perturbations in the latent space, while SmilesNet
is informed by desired expression profiles to gener-
ate drug-like molecules. Our empirical experiments
demonstrate that SmilesGEN outperforms current
state-of-the-art models in generating molecules
with higher degree of validity, uniqueness, novelty,
as well as higher Tanimoto similarity to known lig-
ands targeting the relevant proteins. Moreover, we
evaluate SmilesGEN for scaffold-based molecule
optimization and generation of therapeutic agents,
and confirmed its superior performance in gener-
ating molecules with higher similarity to approved
drugs. SmilesGEN establishes a robust framework
that leverages gene signatures to generate drug-
like molecules that hold promising potential to in-
duce desirable cellular phenotypic changes. The
source code and datasets are available at: https:
//github.com/hliulab/SmilesGEN.

1 Introduction
In the realm of drug discovery, target-based drug design
(TDD) has emerged as the dominant strategy over the past
few decades, driven by advancements in molecular biology
and proteomics [Swinney and Anthony, 2011; Attwood et

al., 2021]. TDD is centered on the identification and valida-
tion of specific molecular targets-typically proteins or RNAs-
that play a critical role in disease processes [Munson et al.,
2024]. Once a target is confirmed, compounds are designed
or screened based on their ability to interact with the target in
a manner that modulates its activity, thereby leading to ther-
apeutic benefits [Meissner et al., 2022]. However, the pro-
cess of molecular target validation is inherently intricate and
resource-intensive, which result in a narrow focus on well-
characterized targets [Vincent et al., 2022]. Additionally,
TDD is vulnerable to off-target effects, where drugs inter-
act with unintended targets, potentially causing unpredictable
and sometimes severe side effects [Sadri, 2023].

In contrast, phenotypic drug discovery (PDD) adopts a dif-
ferent approach by concentrating on the observable effects
of compounds on disease-relevant biological systems [Berg,
2021; Vincent et al., 2022; Moffat et al., 2017]. In fact,
PDD has a long and established history, with many new
drugs identified based on the observed therapeutic effects
on disease phenotypes [Vincent et al., 2022]. A major ad-
vantage of PDD is that it does not require prior knowl-
edge of specific drug targets, making it particularly advan-
tageous in cases where the underlying molecular mechanism
of a disease is not well understood [Moffat et al., 2017;
Meissner et al., 2022]. However, the absence of a well-
defined molecular target in phenotypic drug discovery poses
significant challenges on refining the chemical structure of
lead compounds to optimize their efficacy, safety, and drug-
like properties. A promising strategy to overcome these chal-
lenges involves leveraging transcriptional response as indi-
cators of phenotypic changes to guide the drug design and
optimization process [Malandraki-Miller and Riley, 2021].
Expression profiles provide a detailed, high-resolution snap-
shot of how a compound influences cellular pathways and
processes, offering a molecule-level understanding of the ob-
served phenotypic outcomes. By comparing the expression
profiles of treated and untreated cells, researchers can identify
potential drug candidates that elicit desired phenotypic shifts.
Therefore, expression profiles can serve as phenotypic signa-
tures in the discovery process. Thereafter, the terms “expres-
sion profile” and “phenotypic profile” are used interchange-
ably in this study.

Several large-scale assays have been conducted to mea-
sure a wealth of drug-induced transcriptional responses in
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vitro. For example, the L1000 platform [Subramanian et
al., 2017] offers a cost-effective, high-throughput method
for generating expression profiles subjected to drug perturba-
tions. Based on such data resource, deep generative models,
such as generative adversarial networks (GANs) [Goodfellow
et al., 2014] and variational autoencoders (VAEs) [Kingma
and Welling, 2013], have been proposed to design molecules
with potential to elicit intended bioactivity [Malandraki-
Miller and Riley, 2021]. However, existing approaches gen-
erate molecules without considering the cellular context rele-
vant to specific disease. To guide drug discovery using phe-
notypic profile, several methods have been developed to uti-
lize drug-induced expression profiles as conditional variables
for molecular generation. These methods include Expres-
sionGAN [Méndez-Lucio et al., 2020], TRIOMPHE [Kaitoh
and Yamanishi, 2021], GxVAEs [Li and Yamanishi, 2024],
and Gex2SGen [Das et al., 2023]. Despite their advance-
ment, these phenotype-based methods have two primary lim-
itations. First, they rely exclusively on post-treatment expres-
sion profiles to guide drug generation, neglecting the change
of expression profiles induced by drug perturbations. Second,
they do not model the interplay between molecules and cel-
lular environment, which is crucial for generating molecules
with potential to induce desired phenotypic changes.

To address these issues, we propose SmilesGEN, a novel
deep generative framework designed for de novo generation
of drug-like molecules. SmilesGEN uniquely integrates drug-
induced gene expression changes with phenotype-informed
molecule generation within a unified framework. Unlike
previous approaches, SmilesGEN uses dual-channel vari-
ational autoencoders to explicitly model the interplay be-
tween molecules and cellular environment. By mapping
both molecules and expression profiles to a common latent
space, the drug-induced phenotypic changes can be straight-
forwardly formulated. SmilesGEN is designed to satisfy
two critical constraints. First, by mitigating the disturba-
tive effects of molecules on post-treatment phenotypic pro-
files, SmilesGEN aims to restore the pre-treatment cellular
state. Second, when conditioned on desired phenotypic pro-
files, SmilesGEN is engineered to generate molecules with
potential to induce such phenotypic outcomes. Extensive
experiments demonstrate that SmilesGEN outperforms cur-
rent state-of-the-art methods, generating molecules with po-
tential bioactivity and desirable drug-like properties. By es-
tablishing the link between molecule generation and cellular
context, SmilesGEN effectively increases the likelihood of
generating molecules that interact productively with disease-
associated cellular machinery.

The main contributions of this study are summarized as
below:

• Phenotype-informed de novo molecule genera-
tion: Unlike previous methods designed to generate
molecules with proper physicochemical property, this
study aims to generate molecules that potentially elicit
desirable phenotypic outcomes.

• Explicit formalization of drug perturbative effect on
phenotypic change: this study explicitly formalizes the
phenotypic change to capture the net effect of the drug

perturbation, enabling to extract more informative fea-
tures for molecular generation.

• Superior performance over state-of-the-art (SOTA)
methods: Extensive experiments demonstrate that our
method outperforms two baselines and five previous
methods, and generates therapeutic molecules with
chemical structures highly similar to those of known lig-
ands.

2 Related Work

2.1 De Novo Drug Generation

Some generative models have been employed to design
novel molecular structures, aiming to explore chemical space
and generate molecules with both novelty and chemical va-
lidity. These approaches often utilize Simplified Molec-
ular Input Line Entry System (SMILES) strings as input,
which are well-suited for generative models like recurrent
neural networks [Segler et al., 2018; Merk et al., 2018],
VAEs [Gómez-Bombarelli et al., 2018; Blaschke et al., 2018;
Zhang and Chen, 2022], and Transformers [Wang et al.,
2022; Dollar et al., 2021]. Attention-based models lever-
age attention mechanisms to learn the “molecular grammar”
from SMILES strings, enabling the generation of coherent
molecular sequences. Despite the advantages of compact
and standardized representation provided by SMILES, these
methods often produce invalid molecular structures, as the
stringed representation of SMILES does not always guar-
antee chemical validity. So, some methods employ Graph
Neural Networks (GNNs) to represent and generate molec-
ular structures [De Cao and Kipf, 2018; Li et al., 2018;
Jin et al., 2020], in order to capture the chemical structure
of molecules. In addition, reinforcement learning techniques
have been incorporated into some methods to optimize the
structures of generated molecules [Zhavoronkov et al., 2019;
Popova et al., 2018].

2.2 Drug Generation from Expression Profile

With the advancement of RNA sequencing technology, the
generation of large-scale multi-omics data has enabled re-
searchers to integrate omics data into generative models
for the design of de novo molecules. For instance, TRI-
OMPHE [Kaitoh and Yamanishi, 2021] employed a varia-
tional autoencoder framework conditioned on e n profiles
to generate molecules. Gex2SGen [Das et al., 2023] and
GxVAEs [Li and Yamanishi, 2024] followed similar ideas
that used the desired expression profiles as input to design
drug-like molecules capable of eliciting phenotypic changes.
Mendez-Lucio et al. [Méndez-Lucio et al., 2020] further
employed a generative adversarial network (GAN) in con-
junction with expression profiles to automatically design
molecules with a high probability to induce therapeutic ef-
fects. Although the integration of transcriptomic profiles into
generative models marks a significant advancement, these
methods overlook the interplay between drug molecules and
cellular context.
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Figure 1: SmilesGEN framework comprises two interacting variational autoencoders, SmilesNet and ProfileNet, which work jointly to extract
features from molecules and phenotypic profiles and reconstruct molecules and post-treatment signatures, as well as pre-treatment signatures.

3 Methods
3.1 SimlesGEN Framework
The proposed SmilesGEN framework comprises dual-
channel VAEs: a molecule VAE (SmilesNet) and an ex-
pression profile VAE (ProfileNet). As shown in Figure 1,
SmilesNet is a VAE [Chung et al., 2014] that utilizes gated
recurrent unit (GRU) backbone for the encoding and genera-
tion of molecules. SmilesNet is pretrained on a large-scale
SMILES descriptors, enabling it to explore the extensive
chemical space and generate meaningful molecular struc-
tures. ProfileNet is another VAE composed of multiple feed-
forward layers to encode and decode expression profiles. A
key feature of ProfileNet is to explicitly formalize the net ef-
fect of drug perturbations on cellular state in the latent space,
by enforcing the constraint that the encoded post-treatment
expression profile, when adjusted by the molecular represen-
tation, should restore the corresponding pre-treatment expres-
sion profile. Conceptually, this formalization simulates the
therapeutic effects in a reverse direction that removal of drug
treatment allows the cellular environment to revert to its un-
perturbed state. By modeling the dynamic interplay between
molecules and cellular environments, our model enhances
its capacity to learn informative and expressive features re-
lated to both molecule structures and their induced pheno-
typic changes. Once trained, the encoded expression pro-
files are fed into the SmilesNet decoder to generate molecules
with a high likelihood of eliciting the desired phenotypic out-
comes.

3.2 Drug Variational Autoencoder
The molecules are represented using SMILES strings, a com-
pact and standardized notation for describing molecular struc-
tures. Let a molecule S be denoted by a string S =
[s1, s2, · · · , sn], in which each character corresponds to an
atom or a chemical bond. Suppose the posterior distribution

learned by SmilesNet encoder is denoted as qϕ(Zs|S) that
is approximate to a normal distribution N (µs,σs), where
µs and σs denote the mean and standard deviation. A la-
tent variable Zs is sampled from qϕ(Zs|S) and then used
to reconstruct the molecule S following a stochastic process
S ∼ pφ(S|Z) parameterized by φ:

pφ(S|Zs, Zx) =
n∏
i=1

pφ(si|s1:i−1, Zs, Zx). (1)

in which Zx represents the conditional variable drawn from
the probability distribution learned from drug-induced phe-
notypic profiles (see below). During the pre-training phase,
Zx in is substituted with Zs. SmilesNet tries to maximize the
lower bound of the true log-marginal likelihood as follows:

LS(ϕ, φ) =EZs∼qϕ(Zs|S)(log pφ(S|Zs, Zx))
−DKL(qϕ(Zs|S)||pφ(Zs))

(2)

where E(·) is an expectation operation, ϕ and φ denote the
parameters of the SmilesNet encoder and decoder, respec-
tively.

3.3 Profile Variational Autoencoder
Denote the post-treatment expression profile by X =
(x1, x2, · · · , xm), where each element represents the expres-
sion levels of a gene when subjected to a molecule. Simi-
larly, denote by Y = (y1, y2, · · · , ym) the pre-treatment ex-
pression profile of corresponding genes. Suppose the pos-
terior distribution learned by ProfileNet encoder is denoted
as qθ(Zx|X) that is approximate to a normal distribution
N (µx,σx), where µx and σx denote the mean and stan-
dard deviation. From the posterior distribution, a latent vari-
able Zx is sampled and taken as the conditional variable by
ProfileNet decoder to reconstruct X following a generative
process X ∼ pψ(X|Zx). ProfileNet aims to maximize the
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marginal likelihood to generate the expression profile from
the generative process:

LX(θ, ψ) = EZx∼qθ(Zx|X)(log pψ(X|Zx))
−DKL(qθ(Zx|X)||pψ(Zx))

(3)

where θ and ψ are actually the parameters of the ProfileNet
encoder and decoder, respectively.

3.4 Modeling Drug-Induced Phenotypic Change
We aim to explicitly formalize the impact of drugs on cellu-
lar states within the latent space. Following the assumption
of linear additivity that has been widely used in modeling
cellular response to drug perturbations [Hetzel et al., 2022;
Huang and Liu, 2024], we assume that the linear subtraction
of two random variables capture the data distribution of the
pre-treatment expression profiles (control state), when miti-
gate the effect of drug perturbation from post-treatment ex-
pression profiles. As a result, we can draw samples from
the resulting random variable to reconstruct the pre-treatment
expression profile using the ProfileNet decoder. Denote the
variable Zy is approximated by the reparameterization trick:

Zy = (µx − µs) + (σx + σs)ϵ, (4)

in which ϵ is sampled from a standard normal distribution
N (0, I). Following the same generative process pψ(·), we
expect to reconstruct the pre-treatment expression profile Y
when conditioned on Zy . So, we define another loss function
as below:

LY (θ, ψ) = EZy∼N (µx−µs,σx+σs)(log pψ(Y |Zy))
−DKL(qθ(Zy|X)||pψ(Zy))

(5)

3.5 Full Objective
Taken together, we define the total loss function as below:

L(ϕ, φ, θ, ψ) = LS(ϕ, φ) + LX(θ, ψ) + LY (θ, ψ) (6)

The parameter are optimized by minimizing the total loss
function. The training process of SmileGEN consists of
two distinct stages. As outlined in Algorithm 1, the first
stage involves pretraining SmilesNet on large-scale dataset
of molecules. Once pretraining is completed, the encoder of
SmilesNet is frozen. In subsequent training stage, the model
takes as input the drug S, its perturbed expression profile X ,
and unperturbed expression profile Y to reconstruct them.
The parameters are optimized by minimizing the objective
loss function. After training, we retain the ProfileNet encoder
and SmilesNet decoder to generate drug-like molecules from
perturbed expression profiles.

In our practice, we employed the bidirectional GRUs as the
backbone of SmilesNet encoder and decoder. Both the en-
coder and decoder were composed of three hidden layers of
size 192. The ProfileNet encoder and decoder adopted multi-
ple forward-feed layers with sizes 512, 256, and 192, respec-
tively. During the pretraining stage, SmilesNet was optimized
using the Adam optimizer with a learning rate of 5e-4 and a
dropout rate of 0.1. The maximum length of the generated
SMILES strings was restricted to 100 characters. In the sub-
sequent training stage, both SmilesNet and ProfileNet were

Algorithm 1 Training Procedure of SmilesGEN.

Data: SMILES string S, drug-perturbed profiles X, unper-
turbed profiles Y

1: /*Pre-training of SmilesNet*/
2: for i← 1 to SEpoch do
3: Train SmilesNet to minimize Eq.(2).
4: Update parameters φ and ϕ.
5: end for
6: Freeze SmilesNet encoder parameter ϕ.
7: /*Joint Training of SmilesNet and ProfileNet*/
8: for j ← 1 toGEpochs do
9: Train SmilesNet and ProfileNet to minimize Eq.(6).

10: Update parameters θ, ψ, and φ.
11: end for

optimized using Adam optimizer with a reduced learning rate
of 1e-4. The maximum epochs of the pre-training and training
stages were set to 100 and 500, respectively. The batch size
for both stages was set at 64. SmilesGEN was implemented
using PyTorch 2.3.0. The training and all evaluation exper-
iments were conducted on a CentOS Linux 8.2.2004 (Core)
system, equipped with a GeForce RTX 4090 GPU and 128GB
of memory.

4 Experiments
4.1 Datasets
For performance evaluation, we used the expression profiles
induced by the genetic perturbation of 10 commonly tar-
get genes associated with the treatment of prevalent cancers.
Among them, eight genes (AKT1, AKT2, AURKB, CTSK,
EGFR, HDAC1, MTOR, and PIK3CA) were knockdown, and
two genes (SMAD3 and TP53) were over-expressed by ge-
netic perturbations. To evaluate the generated molecules, we
obtained inhibitors and agonists that have been confirmed
to target these proteins from the Drug Target Commons
(DTC) database [Tang et al., 2018]. We compute the per-
formance metrics between these inhibitors/agonists and gen-
erated molecules.

We also utilized the expression profiles of cancer pa-
tients from The Cancer Genome Atlas (TCGA) reposi-
tory [Weinstein et al., 2013] to guide the generation of ther-
apeutic molecules. Specifically, we extracted the disease-
specific expression profiles of three types of cancers: triple-
negative breast cancer (TNBC), colorectal cancer (CRC), and
lung adenocarcinoma (LUAD). To evaluate the generated
molecules, we retrieved a list of drugs approved for treat-
ment of these cancers from DrugBank database [Wishart et
al., 2006]. The generated molecules were then assessed based
on their structural similarity to the approved drugs, holding
the rationale that structurally similar molecules are likely to
exhibit therapeutic effects against the diseases.

4.2 Evaluation Metrics
For the generated molecules, we assessed their validity,
uniqueness, novelty, and diversity. High validity and unique-
ness are indicators of an effective molecule generation pro-
cess, while high novelty indicates the model is not overfitting
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Figure 2: Performance comparison in terms of validity, uniqueness and novelty of generated molecules by SmilesGEN and four competing
methods using the expression profiles induced by genetic perturbations.

Target Protein Euclidean Cosine ExpressionGAN TRIOMPHE BIAAE FAME GxVAEs SmilesGEN
AKT1 0.35 0.18 0.32 0.23 0.43 0.44 0.66 0.98
AKT2 0.36 0.33 0.29 0.50 0.42 0.55 0.38 0.81

AURKB 0.29 0.34 0.36 0.25 0.43 0.55 0.50 0.63
CTSK 0.18 0.29 0.31 0.32 0.37 0.43 0.41 0.51
EGFR 0.26 0.26 0.30 0.47 0.47 0.76 0.58 0.81

HDAC1 0.39 0.25 0.34 0.24 0.42 0.46 0.49 0.56
MTOR 0.33 0.19 0.39 0.30 0.49 0.42 0.50 0.75

PIK3CA 0.25 0.24 0.26 0.32 0.35 0.55 0.43 0.75
SMAD3 0.44 0.32 0.44 0.38 0.45 0.52 0.51 0.76

TP53 0.40 0.36 0.46 0.59 0.58 0.73 0.71 1.00

Table 1: Comparison of highest Tanimoto coefficients achieved the SmilesGEN and seven competing methods

to the training data. High diversity reflects the model’s ability
to generate molecules beyond the molecules in training set.
To assess the drug-likeness of the generated molecules, we
employed the quantitative estimate of drug-likeness (QED)
score. Additionally, we evaluated the similarity between the
generated molecules and known ligands of target proteins us-
ing Tanimoto similarity based on molecular fingerprints. This
multifaceted assessment ensures the effectiveness and appli-
cability of our model in generating molecules with potential
therapeutic effect.

4.3 Evaluation on Benchmark dataset
To validate the model’s capability to generate molecules
based on desired expression profiles, we conducted experi-
ments using the expression profile induced by genetic pertur-
bations in the MCF7 cell line, a benchmark dataset that has
been utilized in previous studies. Specifically, we used the
knockdown-induced expression profiles of eight target genes
(AKT1, AKT2, AURKB, CTSK, EGFR, HDAC1, MTOR,
and PIK3CA) to generate inhibitors, and overexpression-
induced profiles of two target genes (SMAD3 and TP53) to
generate agonists. We first conducted a comparative anal-
ysis of our model against four existing methods in terms
of validity, uniqueness, and novelty metrics. The compet-
ing methods include GxVAEs [Li and Yamanishi, 2024], BI-
AAE [Shayakhmetov et al., 2020], FAME [Pham et al., 2022]
and TRIOMPHE [Kaitoh and Yamanishi, 2021]. As shown in
Figure 2, the experimental results indicate that the molecules
generated by our model achieved higher degree of validity,

uniqueness, and novelty than four competing methods.
Next, we evaluated the performance of SmilesGEN against

seven existing models by assessing the Tanimoto coefficient
between generated molecules and known ligands. To bench-
mark our method, we included two baseline models based
on molecular similarity search (Euclidean and Cosine sim-
ilarity), alongside five other competing methods: Expres-
sionGAN [Méndez-Lucio et al., 2020], TRIOMPHE [Kaitoh
and Yamanishi, 2021], BIAAE [Shayakhmetov et al., 2020],
FAME [Pham et al., 2022], and GxVAEs [Li and Yamanishi,
2024]. For each target gene, 50 molecules were generated
using each method, and the Tanimoto coefficients were com-
puted between the generated molecules and the known lig-
ands specific to that target gene. The highest Tanimoto co-
efficients for each method were reported, as shown in Ta-
ble 1. Notably, SmilesGEN consistently achieved signif-
icantly higher Tanimoto coefficients compared to all other
methods. Although the current state-of-the-art model, Gx-
VAEs, outperformed the other competing methods, its perfor-
mance remained notably inferior to that of SmilesGEN. Fur-
thermore, Figure S1 showcases the molecular structures with
the highest Tanimoto similarity to known ligands, as gener-
ated by SmilesGEN and five competing methods. Such visual
comparisons further underscore SmilesGEN’s superior abil-
ity to generate molecules with the highly similar structures to
known ligands.

Moreover, we further evaluated the drug-likeness and di-
versity of the molecules generated by SmilesGEN. For each
target gene, we generated 1,000 candidate molecules and an-
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AKT1 HDAC1

Optimized Ligand Optimized Ligand

AKT2 MTOR

AURKB PIK3CA

CTSK SMAD3

EGFR TP53

(a)

AKT1 CHEMBL86795
LogP 1.56 SA 1.83
QED 0.56 HBA 2
MW 118.1 HBD 1

SmilesGEN
2.77 SA 2.13
0.49 HBA 3
220.2 HBD 1

HDAC1 CHEMBL16300
LogP 0.81 SA 1.42
QED 0.44 HBA 3
MW 137.1 HBD 2

SmilesGEN
1.91 SA 1.73
0.44 HBA 4
223.3 HBD 2

AKT2 CHEMBL188048
LogP 0.60 SA 2.69
QED 0.64 HBA 7
MW 216.2 HBD 2

SmilesGEN
4.09 SA 2.11
0.56 HBA 3
287.4 HBD 0

AURKB CHEMBL110381
LogP 2.08 SA 1.87
QED 0.56 HBA 3
MW 196.2 HBD 1

SmilesGEN
3.23 SA 2.00
0.48 HBA 3
246.3 HBD 1

CTSK CHEMBL77456
LogP 2.13 SA 2.19
QED 0.66 HBA 3
MW 184.2 HBD 0

SmilesGEN
4.09 SA 1.95
0.73 HBA 4
294.4 HBD 0

EGFR CHEMBL104468
LogP 2.78 SA 2.27
QED 0.64 HBA 4
MW 281.3 HBD 0

SmilesGEN
3.30 SA 2.19
0.73 HBA 4
307.3 HBD 0

MTOR CHEMBL85443
LogP 1.47 SA 1.92
QED 0.66 HBA 3
MW 145.2 HBD 1

SmilesGEN
1.87 SA 2.51
0.59 HBA 9
349.4 HBD 2

PIK3CA CHEMBL1817865
LogP 0.54 SA 2.57
QED 0.55 HBA 4
MW 134.1 HBD 3

SmilesGEN
2.92 SA 2.77
0.52 HBA 7
327.4 HBD 3

SMAD3 CHEMBL1470679
LogP 1.32 SA 2.25
QED 0.69 HBA 3
MW 176.6 HBD 1

SmilesGEN
3.04 SA 2.41
0.86 HBA 3
274.4 HBD 1

TP53 CHEMBL1162293
LogP 2.29 SA 1.79
QED 0.58 HBA 1
MW 161.1 HBD 2

SmilesGEN
3.21 SA 2.07
0.68 HBA 5
276.2 HBD 1

(b)

Figure 3: Performance evaluation for scaffold-based molecule optimization. (a) Optimized molecules based on benzene ring toward specific
gene targets and their nearest known ligands. (b) Comparison between optimized molecules and corresponding short-chain ligands.

alyzed their physicochemical properties, including the quan-
titative estimate of drug-likeness (QED), logarithm of parti-
tion coefficient (LogP), molecular weight (MW), hydrogen
bond acceptor (HBA), and hydrogen bond donor (HBD). The
kernel density distributions of these physicochemical prop-
erties for both the generated molecules and the known lig-
ands are presented in Figure S2. The results revealed that
the QED distribution for our generated molecules exhibited
a peak around 0.7, while 90% known ligands displayed peak
QED values below 0.55, implying the generated molecules
have higher degree of drug-likeness than known ligands. For
other physicochemical metrics, the broader distribution range
of the generated molecules compared to known ligands fur-
ther confirmed the better diversity achieved by our method.

In addition, we applied Lipinski’s Rule of Five (logP<10,
molecular weight<500, hydrogen bond donors<5, hydrogen
bond acceptors<10) to filter the 1,000 generated molecules,
and then computed the Tanimoto similarities between the
filtered molecules and known ligands. Table S1 showed
the details of generated molecules with Tanimoto similari-
ties exceeding 0.7. It is worth noting that among the re-
fined molecules, more than 50% of the molecules generated
towards desired expression profiles induced by seven gene
perturbations (AKT1, AURKB, EGFR, MTOR, PIK3CA,
SMAD3, TP53) exhibited high similarity with known ligands
(Tanimoto≥0.7). We showcased the molecular structures of
the generated molecules with highest Tanimoto similarity to
known ligands (Figure S3). These findings provide strong

evidence of our method’s capability to generate structurally
diverse molecules with high drug-likeness.

4.4 Profile-Based Molecule Optimization
Molecule optimization is another important task in drug dis-
covery, as it significantly contributes to improving thera-
peutic efficacy and pharmacokinetic properties. For proof-
of-concept purpose, we evaluate our model in optimiz-
ing benzene rings—one of the most common scaffolds in
drugs—towards active-like molecules, guided by the gene
signature induced by genetic perturbations. Specifically, the
SMILES of benzene rings and desired expression profiles
were taken as input to generate molecular structures. Fig-
ure 3(a) presents the optimized molecules alongside their
nearest known ligands. The results demonstrate that the gen-
erated molecules not only effectively retained the benzene
ring scaffold, but also incorporated functional groups con-
taining atoms such as oxygen (O), nitrogen (N), sulfur (S),
and fluorine (F), showcasing the model’s ability to enhance
structural diversity and functionality.

Furthermore, we extended the optimization process to
short-chain ligands associated with specific target genes. Fig-
ure 3(b) presented the short-chain ligands alongside their op-
timized counterparts, as well as their physicochemical prop-
erties, including LogP, QED, MW, SA, HBA, and HBD.
We found that the optimized molecules incorporated addi-
tional benzene rings or functional groups, thereby expand-
ing the molecular structures while maintaining or improving
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Target Protein Approved Drug Name Approved Molecule Generated Molecule Tanimoto

TNBC Ribociclib 0.56

CRC Cetuximab 0.50

LUAD Alectinib 0.98

Table 2: Comparison between approved drugs and generated molecules for three types of cancers

their QED values relative to the original short-chain ligands.
Meanwhile, other physicochemical properties were enhanced
to varying degrees. These findings highlight the strong capa-
bility of our model in molecular optimization, offering robust
support for drug design and development.

4.5 Therapeutic Molecule Generation
We further applied SmilesGEN to design therapeutic
molecules for triple-negative breast cancer (TNBC), colorec-
tal cancer (CRC), and lung adenocarcinoma (LUAD). These
cancers are all characterized as malignant tumors, and a
significant proportion of patients either do not respond to
approved drugs or develop resistance over time. We ob-
tained the expression profiles of patients with these cancers
from The Cancer Genome Atlas (TCGA). Given the rationale
that molecules capable of reversing disease-specific expres-
sion profiles might possess therapeutic potential [Tong et al.,
2023; Yamanaka et al., 2023]. Therefore, we averaged the
expression profiles across patients of the same cancer type
and inverted the averaged expression profiles by multiply-
ing the values by -1. These disease-specific reversal profiles
were subsequently input into SmilesGEN to generate candi-
date therapeutic molecules.

For each type of cancer, we generated 1,000 candidate
molecules. After refining the generated molecules using
the Lipinski’s Rule of Five, we obtained 783, 859, and 662
molecules for TNBC, CRC, and LUAD, respectively. Fig-
ure 4 displays the distribution of quantitative estimate of QED
values of these molecules compared to approved drugs for
treating these diseases. It is noteworthy that the mean QED
values of the molecules generated for LUAD and TNBC ex-
ceeded 0.75, suggesting that our model is highly effective in
generating drug-like molecules with therapeutic potential.

We further calculated the Tanimoto similarity between our
generated molecules and known approved drugs. Table 2
highlights the molecules generated by our model that exhibit
significant similarity to approved drugs for respective can-
cers. For example, Ribociclib, an approved drug for TNBC
treatment [Li et al., 2022], is a specific inhibitor of cyclin-
dependent kinase 4/6 (CDK4/6), used in the treatment of
hormone receptor-positive and human epidermal growth fac-
tor receptor 2-negative (HR+/HER2-) advanced or metastatic

breast cancer in postmenopausal women. The molecules gen-
erated by our model for these three cancers exhibited high
Tanimoto similarity to these approved drugs. Notably, when
generating therapeutic molecules for lung cancer using the
reversal profile, the Tanimoto similarity between the gener-
ated molecules and Alectinib Hydrochloride reached 0.98.
This high degree of similarity indicates that SmilesGEN ef-
fectively captures structural features similar to those of ap-
proved drugs, suggesting that our model can generate hit-like
molecules with high therapeutic potential.
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Figure 4: Distribution of QED values of generated molecules using
the reversal profiles of three types of cancers.

5 Conclusion

In this paper, we introduce the SmilesGEN, a novel genera-
tive model designed to generate hit-like molecules based on
desired phenotypic profiles. Our model explicitly models the
interplay between molecules and cellular environments in the
latent space, driving the model to learn informative and ex-
pressive features of molecules and expression profiles. Ex-
perimental results show that SmilesGEN outperforms current
state-of-the-art models and can generate hit-like molecules
with potential therapeutic effects. We believe that Smiles-
GEN represents an alternative approach to bridging chemistry
and biology in the long and difficult road of drug discovery.
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