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Abstract
In multi-view classification tasks, integrating infor-
mation from multiple views effectively is crucial
for improving model performance. However, most
existing methods fail to fully leverage the complex
relationships between views, often treating them in-
dependently or using static fusion strategies. In this
paper, we propose a View-Association-Guided Dy-
namic Multi-View Classification method (AssoD-
MVC) to address these limitations. Our approach
dynamically models and incorporates the relation-
ships between different views during the classifi-
cation process. Specifically, we introduce a view-
association-guided mechanism that captures the de-
pendencies and interactions between views, allow-
ing for more flexible and adaptive feature fusion.
This dynamic fusion strategy ensures that each
view contributes optimally based on its contextual
relevance and the inter-view relationships. Exten-
sive experiments on multiple benchmark datasets
demonstrate that our method outperforms tradi-
tional multi-view classification techniques, offer-
ing a more robust and efficient solution for tasks
involving complex multi-view data.

1 Introduction
Rapid advancement in technology has led to an exponential
increase in the generation of multi-view data, including im-
ages, text, audio, and video [Fu et al., 2025; Jiang et al., 2021;
Li et al., 2023; Wen et al., 2023; Zhang et al., 2024a].
This abundance of data presents opportunities and challenges
for researchers and practitioners in diverse fields, such as
computer vision and natural language processing. Integrat-
ing multiple views information from can significantly en-
hance the performance of machine learning models, improv-
ing their ability to understand complex, real-world scenar-
ios [Jiang et al., 2024; Liang et al., 2024; Guo et al., 2024;
Fu et al., 2024b].

Most of multi-view classification algorithms exploits two
fundamental principles which ensures their success: (i) con-

∗Corresponding author.

sensus, and (ii) diversity principles. The consensus principle
seeks to maximize the agreement between multiple represen-
tations of the data. The diversity principle demonstrates that
in a multiview learning problem, each representation or view
of the data may contain some information which other views
do not have. Based on these two principles, many fusion algo-
rithms for multi-view classification have been proposed. For
example, [Liang et al., 2022] introduced the association in-
formation between modality features into multi-modal data
fusion and proposed an association-based fusion strategy for
multi-modal classification (MMC) in an interpretable manner.
[Chen et al., 2023] proposed a joint deep learning framework
to learn an underlying feature representation from heteroge-
neous views.

We analyze fusion methods within kernel-based, graphi-
cal, encoder-decoder, and attention-based fusion frameworks.
Fig. 1 illustrates three typical structures of fusion models [Li
and Tang, 2024]. In Fig. 1(a), text and images are processed
through simple operations (dot product, multiplication, and
addition). In Fig. 1(b), the Fusion Network is designed
to combine the individual image and text embeddings. In
Fig. 1(c), models use an integrated encoding-decoding pro-
cess to handle multi-view inputs simultaneously. Most ex-
isting fusion methods implicitly exploit the relationships be-
tween views during the fusion process, where the interactions
among views are typically captured without explicit model-
ing. This implicit approach, while effective in many cases,
may not fully capture the nuanced relationships between the
different views, leading to suboptimal fusion performance in
certain complex multi-view scenarios. The lack of explicit
modeling of view relationships could potentially limit the
ability of the model to explore consensus or diversity more
effectively. To address this limitation, it is crucial to consider
explicitly modeling the relationships between views in multi-
view fusion frameworks. As shown in Fig. 1(d), we propose
an explicit modeling step for the relationships between views
before the fusion of the view features.

Moreover, traditional fusion methods have largely over-
looked the dynamic variation in the quality of multi-view
data. The oversight often results in fusion methods that fail
to adapt to the evolving nature of multi-view data, leading to
performance degradation in real-world applications. There-
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Figure 1: Difference among existing multi-view fusion strategies and ours.

fore, there is a need for fusion techniques that not only inte-
grate information across views but also dynamically adjust to
the varying quality of each view.

To address these issues, we propose an end-to-end frame-
work called a view-association-guided dynamic multi-view
classification method (AssoDMVC). AssoDMVC is com-
prised of two fundamental components: a view association
encoding module, and a view association-guided dynamic
weighting fusion module.

Our main contributions are summarized as follows:
• A view association encoding module is designed to ex-

plicitly model the relationships between views, offering
guidance for the interaction between different views in
downstream tasks, thereby enhancing the effectiveness
of the fusion process.

• A novel end-to-end framework, the view-association-
guided dynamic multi-view classification method (As-
soDMVC), is proposed to address the challenges of
multi-view data fusion, providing a more effective and
comprehensive solution for integrating diverse views.

• The extensive comparison experiments on six public
datasets show that AssoDMVC achieves competitive
performance compared to the the state-of-the-art MVC
methods.

2 Related Work
Multi-view classification (MVC)is a powerful approach that
leverages multiple sources of information (views) to improve
the accuracy and robustness of classification tasks. In multi-
view classification, each view provides a different perspective
or representation of the same underlying data, and combining
these views effectively can lead to better performance than
relying on a single view[Fu et al., 2024a].

In recent years, many multi-view classification models
with complex objectives were further proposed. [Chen et
al., 2021] proposed a joint framework for multi-view spec-
tral clustering by learning an adaptive transition probabil-
ity matrix. The nuclearnorm-based optimization method

was proposed to conduct multi-view image data fusion via
a joint learning framework[Huang et al., 2020].Sparsity-
based optimization methods are also essential in multi-view
classification[Wang et al., 2022a].

Fusion methods play a important role in MVC. The qual-
ity among multi-view features is different, lots of works
consider their contribution to the final tasks[Liang et al.,
2025]. Multi-view classification methods can be roughly di-
vided into the feature level fusion-based and decision level
fusion-based. Based on where the view contribution are con-
sidered, these methods can be grouped into feature level
weighting-based method (FW) and decision level weighting-
based method (DW). FW learns the contribution weight of
each feature[Jiang et al., 2022]. For example, EmbraceNet
[Choi and Lee, 2019] assigns 1 to the weight value of one
view while 0 to others for each example according to a multi-
nomial distribution. An adaptive-weighting discriminative re-
gression approach (AWDR) [Yang et al., 2019] adopts the
square root form of view weight to distinguish features from
different views. [Zhang et al., 2024b] proposed discrimina-
tive multi-view fusion via adaptive regression (DMVF), it si-
multaneously discriminates the contribution diversity of dif-
ferent views and samples in an adaptive weighting manner,
reducing the influence of low-quality views and outliers for
classification. DW learns to assign weights at the decision
level. For example, [Han et al., 2022] proposed a trusted
multi-view classification (TMC), which models the confi-
dence of each view at an evidence level using the Dempster-
Shafer theory.

3 The Proposed Method
In this section, we first introduce a view association encoding
module, followed by the design of a view association-guided
dynamic weighting fusion module. Fig. 2 provides an overall
illustration of the proposed approach.

3.1 Basic Setting
The remainder of this section uses the following notation. Let
X = Rm1 ×Rm2 × · · · ×Rm|V | represent the instance space
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Figure 2: The whole frameword of the view-association-guided dynamic fusion network

(or feature space) of representations from |V | views, where
mi (1 ≤ i ≤ |V |) denotes the feature dimension of the i-th
view, and let Y = {l1, l2, . . . , lq} represent the label space
with q class labels. Let D denote an unknown distribution
over X×Y . A training set D = {(xv

i , yi), |, 1 ≤ v ≤ |V |, 1 ≤
i ≤ n} ∈ (X × Y)n is drawn independently and identically
from D, where xvi = (xv

i1, x
v
i2, . . . , x

v
imv

) ∈ Rmv is the fea-
ture vector of the v-th view with dimension mv , and yi ∈ Y
is the known label associated with xv

i . The task of multi-view
classification is to learn a prediction function f : X → Y
from D, which can assign an appropriate label f(x) ∈ Y to
an unseen instance x.

3.2 View Association Encoding Module
The module aims to explicitly model the association between
different views and learn the corresponding view association
embeddings. By capturing the complex between views, the
learned view association embeddings enable the model to bet-
ter understand how each view influences the others, thereby
optimizing the fusion process and facilitating more accurate
predictions.

First, we construct the view association graph based on the
similarity relationships between views. Let G = (V,E) rep-
resent the view association graph, where V denotes the set of
views and E denotes the set of edges. The adjacency matrix
A stores the weights associated with each edge, represent-
ing the similarity between views. Since the feature dimen-
sions of samples in each view are not consistent, the similar-
ity relationships between views cannot be directly calculated.
Therefore, modeling the relationships between views is con-
verted to examining the relationships between the features of
the same sample across different views. To reduce computa-
tional cost, the following strategy is adopted for calculating

the similarity between views:
• First, from the same view, select k samples. Let the sam-

ple set X v = {xv
1, x

v
2, . . . , x

v
n} be the set of all samples

in the v-th view, where each xv
i ∈ Rmv is the feature

vector of the i-th sample. Select k samples from these n
samples to form a sample set Sv

k = {xv
i1
, xv

i2
, . . . , xv

ik
},

where i1, i2, . . . , ik ∈ {1, 2, . . . , n}.
• Next, calculate the Euclidean distance between each of

these k samples and every other sample, resulting in an
n× k Euclidean distance matrix Dv , where the element
Dv

ij represents the distance between the i-th and j-th
samples:

Dv
ij = ∥xv

i − xv
j∥2 =

√√√√ mv∑
m=1

(xv
im − xv

jm)2. (1)

This matrix Dv is of size n × k, representing the Eu-
clidean distances between each sample and the k se-
lected samples. The obtained Euclidean distance matrix
D is subtracted pairwise to get the relative distance ma-
trix R between views:

Rij =
1

n× k
|Di −Dj |, (2)

where i, j ∈ {1, 2, . . . , |V |}. A smaller relative distance
indicates a higher similarity between the views. Finally,
we perform a normalization operation on R to obtain the
adjacency matrix A.

Subsequently, a graph autoencoder is applied to learn the
view association embeddings. The encoder in the graph au-
toencoder is instantiated by a Graph Isomorphism Network
(GIN) . Given a feature matrix H(t) ∈ R|V |×d(t)

for a node,
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where each row represents a view association embedding and
d(t) denotes the dimension of the node features, the GIN layer
updates the node as follows:

H(t+1) = f (t+1)[(1 + ϵ(t+1))H(t) + AH(t)], (3)

where H(t+1) ∈ R|V |×d(t+1)

is the updated feature matrix of
the nodes, and f (t+1) represents a neural network consisting
of two fully connected layers, followed by Batch Normaliza-
tion and a LeakyReLU activation function. ϵ(t+1) is a learn-
able parameter that controls the importance of a node’s own
features in neighborhood aggregation.

After passing through the GIN layer, H(T ) ∈ R|V |×d(T )

is
taken as the final view association embedding E ∈ R|V |×de ,
i.e., E = H(T ). The embedding loss function is:

Lle =
1

V 2

|V |∑
i=1

|V |∑
j=1

[cos(ei, ej)− Âij ]
2, (4)

where cos(ei, ej) represents the cosine similarity between the
embeddings of views Vi and Vj , and Â = A + I , where I is
the identity matrix.

3.3 View Association-Guided Dynamic Weighting
Fusion Module

View Association-Guided Representation Learning. In
multi-view data, each sample in the same dataset has multi-
ple related feature representations which leads to differences
in the dimensionality of the feature vectors of samples across
different views. This requires unifying the dimensionality of
feature vectors from different views to facilitate subsequent
computations. Therefore, the first step is to map instances
from different views in the original feature space to the same
latent space:

xv
z = Wxv + b, (5)

where W ∈ Rd×mv and b ∈ Rd are learnable parameters.
Then, to enable view association embeddings to better

adapt to downstream tasks, an attention-like mechanism,
called the Adjustment Module(AM), is designed to guide the
sample in focusing on distinct features across different views.
Specifically, a two-layer fully connected network is used to
transform the view association embeddings into guiding vec-
tors:

αv = σ(We2(We1ev + be1) + be2), (6)

where αv ∈ Rd is the guiding vectors of the v-th view, and
σ is the sigmoid function. Successively, the guiding vector is
element-wise multiplied (Hadamard product) with the vector
after the sample is unified to the same dimension. Subse-
quently, the selected features are input into their respective
learners.

zv = fv(xv
z ⊙ αv), (7)

where fv represents the learner of the v-th view consisting of
one fully connected layer, followed by Batch Normalization
and a ReLU activation function.

Dynamic Weighting Fusion. After the feature disentangle-
ment process, the features from each view are adjusted, and
their quality may vary depending on the specific characteris-
tics of each view. As a result, the importance and relevance
of these features differ across views. Therefore, we intro-
duce Dynamic Uncertainty(DU) to measure the uncertainty
of each view [Cao et al., 2024]. The dynamic uncertainty for
i-th view can be formulated as follows:

DUi =
C∑
i=1

|Softmax(zi)− µ| , (8)

where C is the class number, µ is the mean of probability, and
it holds µ = 1

C . The distribution of probabilities after soft-
max offers critical insights into a view’s uncertainty: A uni-
form distribution typically suggests high uncertainty, whereas
a peaked distribution implies low uncertainty in predictions.
In the multi-view fusion process, one view should dynami-
cally perceive the changes of other views and modify its rel-
ative contribution to the multi-view system. Therefore, we
introduce relative calibration as the weight for multi-view fu-
sion:

wi =

{
RCi =

DUi·(|V |−1)∑
i̸=m DUm

if RCi < 1

1 otherwise
(9)

Next, the fused features are obtained as follows

o =

|V |∑
i=1

wi · zi. (10)

Finally, the fused features are passed to a softmax function
for computing the class probability as follows:

ŷ = Softmax(o). (11)

3.4 Overall Objective Function
The AssoDMVC is trained with the following objective func-
tion in an end-to-end fashion:

L = Lce + λLle, (12)

where Lle is the view association embedding loss, λ is a trade-
off parameter, and Lce denotes the cross entropy loss, formu-
lated as

Lce = −
N∑
i=1

C∑
j=1

yij log(ŷij). (13)

4 Experiments
4.1 Datasets
Our experiments are conducted on six challenging multi-view
classification datasets which include image, text, audio, depth
and video datasets. (1) Animals with Attributes (AWA)[Lam-
pert et al., 2013] dataset, which includes 30,475 images from
50 categories with seven view features. (2) NUS-WIDE-
128 (NUS)[Tang et al., 2016] dataset, which includes 43,800
samples from 128 categories with seven view features. (3)
Reuters [Amini et al., 2009] dataset, which includes 111,740
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Accuracy

Groups Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace

Feature
EmbraceNet(IF19) 84.97± 0.23 72.43± 0.38 80.07± 0.21 83.58± 0.25 81.74± 0.34 80.90± 1.04

AWDR(PR19) 90.46± 0.06 72.44± 0.66 79.69± 0.27 83.32± 0.32 91.08± 0.09 85.11± 0.15
RAMC(INS22) 90.63± 0.13 72.51± 0.67 79.84± 0.25 83.48± 0.25 91.54± 0.11 85.21± 0.17

Decision

BV(TEVC21) 88.65± 0.43 68.69± 0.59 80.61± 0.25 83.98± 0.14 63.25± 0.14 82.01± 0.18
SSV(TEVC21) 82.37± 1.26 63.70± 0.64 79.51± 0.41 84.71± 0.22 85.10± 0.23 84.43± 0.31
MR(TEVC21) 87.10± 0.64 64.39± 0.85 78.24± 0.45 84.17± 0.19 79.92± 0.29 84.78± 0.21

TMOA(AAAI22) 89.17± 0.31 72.60± 0.48 79.11± 0.43 84.19± 0.27 84.72± 0.21 84.35± 0.25
TMC(ICLR22) 88.59± 0.25 72.73± 0.30 79.60± 0.56 84.23± 0.35 73.13± 0.15 71.18± 2.27

ETMC(TPAMI23) 88.24± 0.17 73.05± 0.67 79.80± 0.41 84.24± 0.42 88.70± 0.15 79.63± 1.89
ECML(AAAI24) 80.51± 0.41 72.53± 0.55 81.39± 0.18 85.88± 0.29 89.06± 0.21 81.95± 0.20

RMVC(IF25) 81.49± 0.31 60.61± 0.54 78.89± 0.20 82.97± 0.19 88.34± 0.09 81.56± 0.28
TUNED(AAAI25) 89.05± 0.45 74.08± 0.36 81.65± 0.32 86.02± 0.69 91.67± 0.30 84.79± 0.33

Ours AssoDMVC 90.86 ± 0.19 74.62 ± 0.15 81.79 ± 0.20 86.04 ± 0.57 93.85 ± 0.05 86.21 ± 0.15
Precision

Groups Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace

Feature
EmbraceNet(IF19) 82.14± 0.57 71.73± 0.32 80.42± 0.25 83.77± 0.34 80.95± 0.46 83.71± 1.10

AWDR(PR19) 89.32± 0.33 72.71± 0.61 79.87± 0.30 83.49± 0.34 91.83± 0.11 89.94± 0.32
RAMC(INS22) 89.41± 0.38 72.82± 0.64 80.12± 0.27 83.70± 0.28 92.19± 0.06 90.64± 0.08

Decision

BV(TEVC21) 86.57± 0.46 70.98± 0.95 80.77± 0.19 84.13± 0.19 64.63± 0.63 84.34± 0.61
SSV(TEVC21) 82.76± 1.10 67.23± 0.58 80.19± 0.49 85.16± 0.20 84.44± 0.18 94.13 ± 0.37
MR(TEVC21) 85.44± 0.64 64.90± 0.81 78.21± 0.48 84.25± 0.13 78.85± 0.29 86.56± 0.58

TMOA(AAAA22) 88.15± 0.62 72.73± 0.53 79.89± 0.72 84.40± 0.23 84.38± 0.30 87.59± 0.28
TMC(ICLR22) 87.76± 0.40 72.71± 0.22 79.86± 0.46 84.43± 0.49 73.26± 0.34 82.53± 2.01

ETMC(TPAMI23) 87.68± 0.63 72.39± 0.64 79.99± 0.33 84.38± 0.37 87.28± 0.15 83.40± 2.33
ECML(AAAI24) 86.27± 1.22 73.05± 0.26 81.52± 0.18 85.81± 0.27 74.21± 0.46 84.34± 0.38

RMVC(IF25) 81.35± 0.23 60.09± 0.41 80.32± 0.45 82.28± 0.49 89.26± 0.19 81.32± 0.23
TUNED(AAAI25) 89.02± 0.12 74.12± 0.33 81.12± 0.22 85.79± 0.12 92.01± 0.23 85.35± 0.15

Ours AssoDMVC 89.79 ± 0.23 75.00 ± 0.13 82.03 ± 0.20 85.89 ± 0.23 93.95 ± 0.13 86.52± 0.40

F1

Groups Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace

Feature
EmbraceNet(IF19) 80.04± 0.59 72.04± 0.34 79.85± 0.26 83.46± 0.21 78.36± 0.34 80.65± 1.13

AWDR(PR19) 86.86± 0.20 71.87± 0.62 79.59± 0.23 83.30± 0.29 87.26± 0.13 83.57± 0.30
RAMC(INS22) 87.08± 0.42 71.92± 0.65 79.73± 0.23 83.45± 0.23 87.95± 0.11 83.35± 0.27

Decision

BV(TEVC21) 85.72± 0.57 67.67± 0.57 80.52± 0.29 83.91± 0.11 57.79± 0.14 81.05± 0.35
SSV(TEVC21) 77.28± 1.45 60.52± 0.63 79.08± 0.40 84.48± 0.25 81.07± 0.26 80.80± 0.53
MR(TEVC21) 83.55± 0.77 63.10± 0.91 78.11± 0.45 84.12± 0.26 75.36± 0.32 83.87± 0.31

TMOA(AAAI22) 83.62± 0.91 71.81± 0.49 78.85± 0.30 84.25± 0.30 81.54± 0.26 82.63± 0.39
TMC(ICLR22) 84.47± 0.54 71.70± 0.43 79.60± 0.56 84.19± 0.29 64.06± 0.12 68.50± 2.77

ETMC(TPAMI23) 84.60± 0.49 72.19± 0.68 79.72± 0.40 84.24± 0.42 86.03± 0.20 80.97± 1.48
ECML(AAAI24) 84.82± 1.05 72.01± 0.52 81.35± 0.16 85.89± 0.28 75.87± 0.35 82.30± 0.15

RMVC(IF25) 80.62± 0.59 59.97± 1.46 79.21± 0.85 83.24± 0.70 88.14± 0.09 81.66± 0.15
TUNED(AAAI25) 88.11± 0.73 73.65± 0.55 81.46± 0.45 85.24± 0.44 91.84± 0.42 85.06± 0.57

Ours AssoDMVC 88.38 ± 0.34 74.50 ± 0.15 81.77 ± 0.15 85.93 ± 0.20 92.73 ± 0.11 86.72 ± 0.40

Table 1: Comparison results with SOTA methods. The best and the second best results are highlighted by boldface and underlined respectively.
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samples from six categories with five multilingual view fea-
tures. To enable the model to process this dataset, PCA is
used to reduce the dimensions of all views to 1000. Accord-
ing to [Han et al., 2022; Liu et al., 2021], Gaussian noise is
added to either 5-view or 3-view datasets, resulting in two
versions named Reuters5 and Reuters3, respectively.(4) Vox-
Celeb [Nagrani et al., 2020] dataset, which includes 153,516
samples from 1,251 categories with five audio view features.
(5) YoutubeFace dataset, which includes 3,425 videos from
1,595 different people with five view features. According to
[Wang et al., 2022b], we use a subset of 31 categories from
this dataset, with a total of 101,499 frames.

We employ three measures to evaluate the performance
of each method, which are accuracy, precision and F1 score
[Liang et al., 2024].

4.2 Experimental Results with Other Methods
To validate the effectiveness of the our method, compre-
hensive comparison experiments are conduced with eight re-
lated weighting-based multi-view classification methods. The
compared methods can be classified into the following two
groups according to the level of weighting:

1. The first category is the feature level including Em-
braceNet, AWDR and RAMC [Jiang et al., 2022]. Em-
braceNet assigns 1 to the weight value of one view
while 0 to others for each example according to a multi-
nomial distribution. AWDR is an adaptive-weighting
discriminative regression approach. Following [Yang
et al., 2019], the parameter λ is chosen from the set
{10−3, 10−2, · · · , 103}, while k varies within the range
{1, 3, · · · , 9}. RAMC employs an L2,1-norm loss func-
tion to acquire a joint weighted projection space across
all views. This method preserves the correlation and di-
versity among views through a self-supervised weight-
ing strategy. Similarly, the parameter λ is chosen from
the set {10−3, 10−2, · · · , 103} and k ranges from the
range {1, 3, · · · , 9}.

2. The second category is the decision level including BV,
SSV, MR [Liang et al., 2021], TMC [Han et al., 2022],
TMOA [Liu et al., 2022], ETMC [Han et al., 2023],
ECML [Xu et al., 2024], RMVC [Yue et al., 2025]
and TUNED [Huang et al., 2025]. BV assigns 1 to
the weight value of the view with the best performance
while 0 to others according to whole classification per-
formance of each view. MR assigns 1 to the weight value
of the view with the best performance while 0 to others
for each example according to the classification perfor-
mance of each view of each example. SSV assigns the
same values to all views. TMC, TMOA, ETMC, ECML
and RMVC are trusted fusion methods.

For the proposed AssoDMVC, in order to make the model
elegant and lightweight, we set each module to contain one
or two fully connected layer, and the number of neurons in
the fully connected layer is selected from [128, 256]. We
initialize the learnable parameters ϵ in GIN by 0. The results
in Tables 1, are presented through the mean metric value and
the standard deviation obtained from 5-fold cross-validation.
From Table 1, the following observations can be made:

1. The AssoDMVC method shows remarkable perfor-
mance in accuracy, especially on the VoxCeleb and
YoutubeFace datasets, achieving 93.85% and 86.21%,
respectively. Additionally, AssoDMVC consistently
maintained top or near-top performance across most
datasets, including AWA, NUS, Reuters5, and Reuters3,
achieving 90.86%, 74.62%, 81.79%, and 86.04%, re-
spectively. The F1 score, which balances precision and
recall, provides a comprehensive measure of classifica-
tion performance. The AssoDMVC shows significant
advantages in F1 scores as well, especially on the AWA,
NUS, and Reuters5 datasets, where it achieves 88.38%,
74.50%, and 81.77%, respectively, reflecting a good bal-
ance between precision and recall.

2. The AssoDMVC shows stable performance across mul-
tiple datasets, not only outperforming SOTA methods on
some datasets but also matching or coming close to the
best performing methods on others. This demonstrates
its broad applicability in multi-view learning tasks.

Overall, the AssoDMVC method outperforms existing SOTA
methods across several key performance metrics. By intro-
ducing new strategies for view relation and dynamic fusion,
AssoDMVC handles the complexity and diversity of multi-
view data more effectively, demonstrating stronger adaptabil-
ity and higher model performance.

4.3 Further Analysis
In the part, we further analysis our model from three aspects:
each module effectiveness, hyper-parameter sensibility, im-
pact of different weight strategy.

Ablation Experiments. To validate the effectiveness of the
components in AssoDMVC, we performed experiments to
assess the impact of the view association encoding mod-
ule (RM), adjustment module (AM), and dynamic weight-
ing (DW) on the experimental results. Results of the ablation
study are presented in Table 2.

As shown in the third and fourth rows of the table, adding
the RM results in a significant improvement in performance
across all datasets. Specifically, the model performs better
with the RM, achieving 90.49% on the AWA dataset, which
is significantly higher than the 82.27% without it. The AM
also has a significant impact on the experimental results.
Specifically, the accuracy on the AWA dataset increases from
90.49% to 90.76% when the AM is added. As seen in the first
and second rows of the table, adding the DW leads to signifi-
cant gains. For example, the accuracy on NUS increases from
69.84% to 73.17%. The last row of the table presents the re-
sults when all three modules are combined. It is evident that
the combination of all three modules yields the superior per-
formance across all datasets.

Parameter Sensitive Analysis. In the View Association
Encoding Module, to reduce computational cost, we select
k samples for graph construction. To assess the impact of dif-
ferent k values on the experimental accuracy, we perform a
comparison using various values of k. The results are shown
in the Fig. 3. The accuracy remains relatively consistent
across different k values, suggesting that we can select an ap-
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RM AM DW AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace

× × × 82.27 69.84 77.48 82.23 90.06 84.00
× × ✓ 81.35 73.17 78.32 83.74 91.50 85.86
✓ × × 90.49 74.17 81.12 85.38 93.54 85.93
✓ ✓ × 90.76 74.34 81.21 85.20 93.62 86.01
✓ × ✓ 90.68 74.09 81.29 85.50 93.55 85.88

✓ ✓ ✓ 90.86 74.62 81.79 86.04 93.85 86.21

Table 2: Ablation results for different components.

propriate k without being overly concerned about its impact
on model performance.
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Figure 3: Impact of k values on performance

Different Weight Strategies. We introduced three different
weighting strategies for the multi-view fusion process: Av-
erage Weighting (Avg), Learnable Weighting (LW), and No
Weighting (NW), and compared them with Dynamic Weight-
ing (DW).

1. Average Weighting (Avg): In this strategy, equal
weights are assigned to all views, meaning no differen-
tiation is made between the views.

2. Learnable Weighting (LW): This strategy allows the
model to learn the optimal weights for each view during
the training process.

3. No Weighting (NW): In the No Weighting strategy, no
explicit weights are applied to the views.

In the Fig. 4, Dynamic Weighting (DW) demonstrates a
clear advantage. Specifically, on the Reuters3 dataset, DW
achieved the highest performance at 86.04%, outperforming
other weighting strategies such as Average Weighting (Avg),
Learnable Weighting (LW), and No Weighting (NW), high-
lighting its effectiveness and superiority on this dataset. Sim-
ilarly, on the VoxCeleb dataset, DW also performed well,
reaching 93.85%, showing a slight improvement over other
methods.
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Figure 4: Impact of different weight strategies on performance

Visualization. To provide deeper insights into AssoD-
MVC, we visualize the learned view association embeddings
on the AWA dataset. As shown in Fig. 5, views 0, 2, 3, and
4 exhibit notably high correlations, suggesting strong mutual
dependencies among these views. These results indicate that
AssoDMVC effectively guides multi-view fusion by model-
ing the associations between views.
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Figure 5: Visualization of AssoDMVC on AWA

5 Conclusion
In this paper, we proposed a view-association-guided dy-
namic multi-view classification method, which effectively
models the relationships between views and dynamically ad-
justs their contributions. By introducing a view association
encoding module and a relative calibration mechanism, our
method enhances view interaction and improves fusion ac-
curacy. Experimental results show that our approach outper-
forms traditional fusion techniques, providing a more robust
and flexible solution for multi-view learning tasks. Future
work could explore more effective view interaction mecha-
nisms to further enhance the information fusion and collabo-
ration between views.
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