
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Fast and Stronger Lower Bounds for Planar Euclidean Shortest Paths

Stefan Funke , Daniel Koch and Claudius Proissl and Christian Staib and Felix Weitbrecht
University of Stuttgart, Germany

Abstract

We consider the problem of quickly providing
strong lower bounds for the planar Euclidean short-
est path (ESP) problem. Such lower bounds are
crucial for guiding the search in A∗ type ap-
proaches or for proving quality guarantees for al-
gorithms that compute approximate solutions. Our
contributions are two-fold: we show how to sim-
plify ESP instances such that computing and stor-
ing a visibility graph becomes feasible while dis-
tances within the simplified instance are guaranteed
to constitute lower bounds for the original problem
instance. Furthermore we show how to precompute
a space efficient data structure that allows to per-
form distance queries on visibility graphs within
few microseconds with negligible space overhead.

1 Introduction
Digital models of our environment are becoming more and
more accurate, be it as highly detailed 3D models of produc-
tion halls populated by autonomous robots, or as elevation
models of whole countries – see for example swissAlti3D
[Federal Office of Topography, 2024] which provides an ele-
vation model of all of Switzerland at a 0.5m resolution. This
paper aims to provide tools and techniques to master the chal-
lenge of efficiently navigating such large digital models.

Computing the Euclidean shortest path (ESP) is a funda-
mental problem with numerous applications in the real world.
For example, when planning a hiking tour in open terrain, one
might want to deviate from prescribed trails, yet still avoid
certain obstacles like swamps, rock formations etc. In an in-
dustrial environment, autonomous robots are to move work-
pieces or parcels from one place to another without interfer-
ing with obstacles in the production hall. Ignoring the effects
of currents and winds, planning the shortest route for a ship
on the ocean can also be considered an instance of the Eu-
clidean shortest path problem.

In all these cases, the problem can be abstractly formulated
as an ESP instance in the plane by defining obstacles (station-
ary machines in a production hall, swamps/rocks in a hiking
area, islands in the ocean) as polygons and specifying two lo-
cations as start/end point, see Figure 1 for an example. Here,

s

t

Figure 1: Instance of ESPP. Three obstacle avoiding s-t-paths with
the red dotted one being the shortest.

three paths from s to t (both obstacle vertices) are depicted
with the dotted/red one being the shortest.

It is well known that a shortest path between two obsta-
cle vertices consists solely of edges of the visibility graph,
which is a graph on all obstacle vertices with edges between
any two vertices/nodes that are mutually visible. Unfortu-
nately, due to the typically very large number of edges in the
visibility graph, its construction and even more the explicit
storage for non-miniscule problem instances is rather imprac-
tical. For example, in [Funke et al., 2024], the authors report
on the sizes of visiblity graphs of instances derived from the
coastlines of islands in the Mediterranean sea: there, for an
instance with only 316k obstacle vertices, the respective visi-
bility graph had more than half a billion edges.

This motivates the first contribution of this work, the sim-
plification of an ESP instance such that the resulting visibility
graph becomes manageable – both with respect to construc-
tion time as well as storage. Crucial property of our simplifi-
cation is that distances in the simplified instance always lower
bound the distances in the original instance. Hence, these dis-
tances can be used, e.g., to guide an A∗ type algorithm like
Polyanya [Cui et al., 2017] or to assess the quality of an ap-
proximate solution computed, e.g., as in [Funke et al., 2024].

Yet, even if we manage to simplify an ESP instance such
that it can comfortably be stored in main memory, the typ-
ically very high density of visibility graphs makes shortest
path distance computations in this graph via Dijkstra-like al-
gorithms comparatively slow. A natural solution is to ap-
ply speed-up techniques like Contraction Hierarchies, [Geis-
berger et al., 2012a], which, after some quick preprocessing,
can answer shortest path queries within milliseconds or faster

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

even on graphs with millions of nodes. Unfortunately, the
high density of visibility graphs often renders the preprocess-
ing phase of these techniques infeasible.

So the second contribution of this work is the efficient con-
struction of a data structure for quickly retrieving shortest
path distances in visibility graphs based on the hub label-
ing approach. Such schemes have been applied extensively to
relatively sparse graphs like road networks and lead to query
times that are amongst the fastest possible, see [Cohen et al.,
2003], [Abraham et al., 2012]. But they are not that widely
used in practice due to their considerable space consumption,
which is at least one order of magnitude above that of the un-
derlying graph for all applications of hub labeling we have
encountered. An efficient technique to quickly estimate the
importance of vertices of the visibility graph is crucial for the
successful instrumentation of a hub labeling scheme. We pro-
pose such a method based on a new notion of node reach and
show experimentally that the resulting lookup data structure
uses roughly the same space as the visibility graph, yet yields
query times that are faster by several orders of magnitude. On
top of that we propose a method to efficiently answer one-to-
all distance queries achieving a speedup of around 30 com-
pared to Dijkstra’s algorithm.

1.1 Related Work
The visibility graph for an ESP instance with n polygon ver-
tices can be computed in time O(n log n +K) where K de-
notes the number of edges of the resulting visibility graph,
see [Ghosh and Mount, 1991]. Unfortunately, K could be
very large – Θ(n2) in theory, but also prohibitively large in
practice. Another group of algorithms based on the idea of a
continuous Dijkstra is able to beat the inherent Ω(n2) lower
bound of visibility-graph-based approaches. [Mitchell, 1996]
achieved a running time of O(n3/2+δ) for any δ > 0, which
later was improved to an optimal O(n log n) in [Hershberger
and Suri, 1999]. These algorithms are extremely complex
and mostly of theoretical interest. A conceptually simple
fully polynomial time approximation scheme (FPTAS) which
guarantees a result of cost at most (1 +O(ϵ)) times the opti-
mum in running time O(nϵ log

1
ϵ (

1√
ϵ
+ log n)) was presented

in [Aleksandrov et al., 2000]. It essentially computes a very
fine discretization to meet the quality guarantee and then runs
Dijkstra on that discretization. The constants involved make
this approach unsuitable in practice, even for small problem
instances. More on the practical side, Polyanya [Cui et al.,
2017] carefully instantiates A∗ on a navigation mesh and
hence does not require any precomputation (apart from an un-
derlying navigation mesh). It computes the optimal shortest
path and has been shown to outperform other state-of-the-art
algorithms. For dynamic settings, where even the precom-
putation of a navigation mesh is not feasible, [Hechenberger
et al., 2020] allows for efficient queries, though considerably
slower than e.g. [Cui et al., 2017]. Finally, in last year’s IJ-
CAI, [Funke et al., 2024] present a data structure that after
modest preprocessing can answer approximate shortest path
queries for instances with several million obstacle vertices in
the milliseconds range. On average their returned paths were
less than 2% longer than the optimal paths. Instance-based

guarantees on the quality of the resulting paths were obtained
via lower bounds without specifying the computation time.

Note that in dimensions 3 and up, computing shortest paths
amidst polyhedral obstacles becomes NP-hard [Canny and
Reif, 1987]. Here lower bounds become even more impor-
tant, as computing an exact solution is usually not a viable op-
tion. We only consider the planar case in this paper, though.

2 Preliminaries
In the following we give a brief recap of the hub labeling
scheme from [Cohen et al., 2003] and [Abraham et al., 2012]
as they are the basis for our approach presented in Section 4.

2.1 Shortest Path Distances via Hub Labeling
We consider the shortest path problem in visibility graphs
G(V,E) with |V | = n, |E| = m where each vertex v ∈ V
has an associated point location in the Euclidean plane. The
length of an edge e = {v, w} ∈ E is set to be the Euclidean
distance between the points associated with v and w respec-
tively. The length of a path π in G is the sum of its edge
lengths. For a point-to-point query, we are given a source
s ∈ V and a target t ∈ V and want to find the length d(s, t)
of the shortest path from s to t in G. The standard solution is
Dijkstra’s algorithm [Dijkstra, 1959] which can compute dis-
tances to all nodes from a source node in time O(m+n log n).

In many applications where many queries have to be an-
swered, Dijkstra’s algorithm is too slow. There are label-
ing algorithms like [Cohen et al., 2003] which preprocess the
graph and create a label L(v) for each vertex v such that the
distance between given nodes s, t ∈ V can be computed just
by inspecting L(s) and L(t). For our work, we consider the
special case of hub labeling where the label L(v) consists of
a sequence of pairs (u, d(v, u)); the vertex u is a so-called
hub for v. The created labels must obey the cover property:
for any two vertices s, t ∈ V , L(s) ∩ L(t) must contain at
least one vertex on the shortest s− t-path as a hub. To answer
a query, one can simply inspect all vertices u ∈ L(s) ∩ L(t),
pick the one minimizing d(s, u)+d(t, u), and return the sum.
If each label is sorted by the hub vertex IDs, this can be done
by a sweep in time O(|L(s)|+ |L(t)|). In our example from
Figure 4, we have L(2) = {(2, 0), (9, 1), (13, 2), (15, 3)} and
L(11) = {(11, 0), (14, 1), (15, 2)}. So the shortest path dis-
tance of 5 between node 2 and 11 is determined by hub 15,
which is present in both labels. For a hub labeling to be effi-
cient we obviously prefer short labels.

A popular variant of hub labeling are so-called canonical
labelings. They are based on a total order ϕ on the vertices.
The label L(v) consists of all the vertices that are the highest
rank vertex for a shortest path from v to some w. Canon-
ical labelings were shown to satisfy the cover property, see
[Abraham et al., 2012]. The most popular technique in prac-
tice to find a good total order ϕ is as a by-product of another
speed-up technique called contraction hierarchies (CH). In
fact, once a CH is available, the respective canonical label-
ing can be found very efficiently. We briefly recap CH in the
following subsection.

Hub Labeling schemes are known for extremely fast query
times, but at the cost of a quite considerable space consump-
tion, which is typically at least one magnitude above the space

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

v

u1

u2

u3

u4

6

5

12

9

22
6

14

Figure 2: Contraction of node v: Shortcuts {u1, u4}, {u2, u4} do
not have to be created since removal of v does not alter the respective
shortest path distances. Shortcuts {u1, u2}, {u1, u3}, {u2, u3}, and
{u3, u4} have to be added with costs 11, 18, 17, and 21 respectively.

required to store the graph itself, see [Abraham et al., 2012]
for results on several (sparse) graph classes. In practice peo-
ple often stick with slower query times, e.g., achievable via
CH. Note that to our knowledge, only very sparse graphs have
been considered so far for the use of hub labeling schemes.

2.2 Hub Labeling via Contraction Hierarchies
Contraction Hierarchies (CH) [Geisberger et al., 2012a] are
one of the most popular acceleration techniques for shortest
path queries due to their low space consumption and yet de-
cent speedup. In their preprocessing phase, nodes are con-
tracted one by one in a certain order, see Figure 2 for an
example. The resulting shortcuts and the order in which
the contraction took place are the result of the preprocess-
ing phase and allow subsequent source-target queries to be
answered about four orders of magnitude faster than Dijkstra.

There is a very simple and efficient way of computing a hub
labeling (HL) based on a precomputed CH, allowing for even
faster source-target distance queries. Essentially, the label of
a node consists of all nodes visited during a CH query from a
node with their respective distances. Pruning nodes with sub-
optimal distances from labels, this allows for distance queries
within few microseconds even on continent-sized graphs, see
[Abraham et al., 2012].

In [Bast et al., 2016] a road network of Western Europe
was considered with about 18 million nodes and 42.5 mil-
lion edges. The CH preprocessing took a mere 5 minutes
and resulted in less than 40 million shortcut edges. After
that, a source-target query could be answered within 110µs,
which is more than 104 times faster than the average Dijkstra
query time of 2.2 seconds. Based on the CH, a HL could be
constructed within about 37 minutes which then allowed for
source-target distance queries within 0.56µs. Yet, the space
consumption of the constructed HL is quite enormous with
an average of 90 hubs per label. While the original graph to-
gether with the CH took less than 1 GB of memory, the HL
required about 18GB. In practice, CH query times often suf-
fice, so many real-world routing systems are not HL-based.

3 Shrunk Graph Creation
The basic idea of our simplification routine is quite simple:
given an ESP instance with a set of obstacle polygons, we re-
place each single obstacle polygon P by a simpler (i.e., fewer
vertices) polygon P ′ with P ′ ⊆ P . The latter guarantees that
distances between any two points in the original instance are
lower bounded by the distances in the simplified instance. As

P ′ could be viewed as a shrunken version of P we will call
the algorithm described in the following Shrinker.

Note that this is different from another popular technique
where each polygon is ’simplified’ by its convex hull polygon
which typically has fewer vertices but contains the original
polygon. Only if the convex hulls of the obstacle polygons
are pairwise disjoint can we guarantee that shortest paths only
turn at corners of the convex hulls, hence allowing for con-
siderably sparser visibility graphs. As we do not want to rule
out instances containing obstacles with intersecting convex
hulls, though, we will stick to our original idea of simplifica-
tion. Our shrinking process repeatedly cuts off convex cor-
ners of polygons such that the area of the resulting polygons
is a proper subset of the original area, yet as large as possible.
Figure 3 shows the principle of our approach.

The basis of our algorithm is a constrained Delaunay tri-
angulation [Chew, 1989] of each polygon. We maintain a
priority queue in which all convex corners of the current ob-
stacle polygon simplification are maintained. Their priority is
given by the triangular area that would be cut off with them.
We then repeatedly cut off the minimum priority corner until
a specified fraction of corners has been cut off. In Figure 3
we would cut off the corners v4 and v5 before v3.

Before we cut off a corner v we must ensure that the area
we would cut off is contained entirely in the polygon. This
check is implemented by traversing the polygon triangulation
along the segment connecting the neighbors of v. This seg-
ment would form the new polygon boundary, so it needs to
lie entirely within the existing polygon. If this segment inter-
sects any polygon boundaries, like it is the case for the corner
at v6 in Figure 3, the corresponding corner cannot be cut off.
If we cut off a corner we also reconsider their neighbors and
update their priorities if necessary. Note that this allows ver-
tices that were non-convex in the original obstacle polygon to
become convex later on, and then be cut off.

Observe that we do not need to update the polygon trian-
gulation itself during this process. We only remove convex
vertices, so whenever such a segment intersects a boundary
edge of the shrunken polygon, it must also intersect a bound-
ary edge of the original polygon, and vice-versa.

v1
v2

v3

v4

v5

v6

Figure 3: A polygon and its corners which are considered for shrink-
ing. Green disks indicate convex corners, orange squares indicate
concave corners. For some convex corners, a grey overlay shows the
area that would be cut off with the respective corner, and the dashed
lines show how the polygon boundary would change.

In the following we describe various instantiations of our
shrinking algorithm.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Individual Polygon Shrinking In this first version we look
at each polygon individually and shrink them independently
of each other. We can do this by executing the shrinking rou-
tine separately for each polygon. This lets us specify different
shrinking thresholds for different polygons – absolute or rel-
ative. This is the approach used in [Funke et al., 2024] to ob-
tain instance-based quality guarantees for their approximate
shortest path computations.

Global Shrinking Shrinking polygons independently of
each other ignores that some polygons should keep more
vertices not because of their original number of vertices but
rather because of their shape or location. Specifically, poly-
gon boundaries may not exhibit the same level of detail ev-
erywhere, or between different polygons. We could select in
each round globally the eligible corner with minimum area
amongst all obstacle polygons.

Locking ’Important’ Vertices In the approaches outlined
so far we only cared about keeping the obstacle polygon areas
as large as possible. These goals do not necessarily coincide
with keeping as many shortest paths as close as possible to
their original length. This is because some vertices are more
important to shortest paths than others. For example, in Fig-
ure 3, cutting off node v2 might lose less area than cutting
off node v1, yet, v1 can only appear on shortest paths in a
very local neighborhood, whereas v2 might appear in global
shortest paths between very far locations. So a natural idea
is to identify such ’important’ vertices which potentially ap-
pear in many shortest paths. To that end we compute many
shortest paths between random pairs of points and count how
many times each vertex is used in a shortest path to obtain an
importance ranking. Calculating exact shortest paths, e.g. via
Polyanya [Cui et al., 2017], is too expensive for this purpose,
so we use approximate shortest paths as constructed by the
approach of [Funke et al., 2024], which suffices because they
mostly follow the same patterns as the exact ones and can be
computed within milliseconds.

4 Hub Labeling on Visibility Graphs
Sparseness is one of the most important characteristics of
road networks, which is not surprising due to their near-
planarity. The average degree in a typical road network is less
than 6 as Euler’s polyhedron formula implies. This is one im-
portant aspect that makes CH precomputation efficient, since
during the course of the preprocessing phase, for each node,
every pair of neighboring nodes (according to original edges
as well as shortcuts) has to be considered, see [Geisberger et
al., 2012b] and our example in Figure 2. Visibility graphs
have a much higher average node degree. While it is easy to
construct worst case examples where n node visibility graphs
have an average node degree of Θ(n), even real-world visi-
bility graphs exhibit very high node degree. For example, the
visibility graph 20kCoast from our experimental section with
n = 20,000 nodes has an average degree of 635.8. Sum-
ming up over all nodes, more than 7 billion shortcut deci-
sions would have to be made if the ordinary CH construction
scheme was employed. Each decision requires some addi-
tional effort like a Dijkstra run, albeit quite local.

Hence the popular technique of creating a hub labeling via
a previously constructed CH seems not feasible for visibility
graphs at all due to their high density compared to road net-
works, which CH and HL are most frequently used for. Note
that in the absence of collinear points, for any edge {u, v} in
the visibility graph, u must be a hub for v or vice versa. Hence
|E|/|V | is a lower bound on the average hub label size.

4.1 An Alternative HL Construction Strategy
Fortunately, there is a somewhat naive strategy of comput-
ing a HL for a graph which does not require the precomputa-
tion of a CH beforehand, which relies on the original defini-
tion of a canonical labeling. We consider a bijective function
ϕ : V → {0, . . . , n− 1} on the vertices representing an order
on V . The function ϕ is also called a level function. We focus
on two nodes v, w ∈ V and want to characterize when w ap-
pears in the label of v. Let π = vv0v1 . . . vkw be the shortest
path from v to w. According to the definition of canonical la-
beling, w appears in the label of v if and only if ϕ(w) > ϕ(vi)
for i = 0, . . . , k and ϕ(w) > ϕ(v), that is, ϕ(w) is the largest
ϕ-value among the nodes in π. So given ϕ, we can naively
compute the hub label for a node v by computing a shortest
path tree for v, and on all shortest paths from v remember-
ing the distances to nodes with maximum ϕ value, which can
easily be done in O(n) time for a given shortest path tree.

An obvious advantage of this approach is that it can be
parallelized trivially. Still, the construction time will essen-
tially need to run n full Dijkstras which limits this approach to
medium sized graphs. Another problem is to determine a suit-
able contraction order ϕ. In most CH/HL constructions the
contraction order ϕ is determined ’on the fly’ while perform-
ing the contractions (e.g., by contracting the node with mini-
mum edge difference next, see [Geisberger et al., 2012a]). As
argued above, we cannot afford to perform the standard CH
construction, so we have to come up with other means for de-
termining ϕ. The approaches proposed in [Abraham et al.,
2012] have the severe drawback of requiring Θ(n2) space, so
they do not apply for all but very small instances. In our ex-
perimental section we will see that straightforward strategies
like random (choose a random permutation) or based on the
degree do not perform favourable.

Reach-based Level Functions
Our idea to quickly compute good level functions ϕ is in-
spired by the notion of reach as proposed in [Gutman, 2004].
The author defined a very intuitive notion of importance for
edges in the graph based on whether they appear in the middle
of long (with respect to the cost function) shortest paths. Us-
ing that notion, it is possible to prune Dijkstra searches and
achieve moderate speedups compared to Dijkstra of around
one order of magnitude.

For our purpose, we introduce a hop-based notion of node
reach and instrument that for good level functions ϕ resulting
in small average label sizes. Again consider a shortest path
π = v0v1v2 . . . vi . . . vk and define the reach r(vi, π) of vi
with respect to π as min(i, k − i). For a set of of paths Π
which all contain node v we set r(v,Π) := maxπ∈Π r(v, π).
Intuitively, r(v,Π) is large if v appears ’in the middle’ of a
long shortest path in Π. As [Gutman, 2004] we interpret a

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

1 2 3 5 6 84

14

1211

7

109

13

15

Figure 4: For unit edge costs and levels according to the node IDs,
the label of each node contains as hubs all nodes on the path to the
root. So in this example L(2) = {(2, 0), (9, 1), (13, 2), (15, 3)}.
Overall the sum of the label sizes is 8 · 4 + 4 · 3 + 2 · 2 + 1 = 49.
In HL-PHAST a query from 9 has to consider 49 edges. Note that
|L−1(v)| is 1 for all nodes on the lowest level, 3 on the second
lowest level, 7 on the third lowest level, and 15 for the root. In HLS
the same query requires inspection of only 3 + 7 + 14 = 24 edges.

large reach as an indicator for a node to be ’important’. After
computing reach values for a set of paths Π, we order the
nodes in increasing reach value and assign levels according
to their rank in this ordering. In practice, we pick a set of
random nodes, compute shortest path trees from each of them
and then consider all root-to-leaf paths in the shortest path
trees to update the reach values of all nodes. This can be
done easily in O(n) time for a given shortest path tree. In our
experimental evaluation we will see that even a very moderate
number of shortest path trees suffice to obtain level functions
ϕ for which the average size of the labels is close to the degree
in the original visibility graph.

4.2 One-to-All Queries via Hub-Label-Scan (HLS)
CH and HL were originally intended to speed up source-
target queries. Later CH were also instrumented to perform
faster one-to-all queries in a method called PHAST [Delling
et al., 2013] by performing a normal CH search from the
source followed by a scan over all edges towards lower-level
nodes in decreasing level-order. With a suitable layout and or-
dering of the nodes in memory, a speedup of almost a factor
of 20 compared to plain Dijkstra could be achieved. If sev-
eral one-to-all queries have to be performed, further speedup
was achieved via parallelization on GPU hardware, which is
not the focus of this paper, though. The main reason for the
speedup was the increased locality of memory accesses by
the scan over all edges compared to the rather chaotic mem-
ory accesses of Dijkstra’s algorithm.

To instrument HL for quick one-to-all queries one could
interpret each hub-distance pair (w, d(v, w)) of a node v as
an edge (w, v) with weight d(v, w). In a query from s we
first set distances of all nodes in the label of s, and afterwards
scan over all edges, setting distances accordingly (note that in
this case we do not even have to process the edges in a certain
order to guarantee correctness). In our experiments we call
this HL-PHAST; unfortunately this approach only led to very
moderate speedup compared to Dijkstra (less than a factor of
2). The main reason being that too many unnecessary edges
are looked at. See Figure 4 for a simple example.

As a remedy we precompute for each node v the set L−1(v)
of all nodes that contain v in their label (together with their
distance). Then our strategy is first to set the distances of all

Figure 5: Datasets: Urban environment (Tokyo), the world’s coast-
lines (South Korea and Japan), arrangement of Koch snowflakes,
game map Cauldron.

nodes in L(v) and then use L−1(w) for each w ∈ L(v) to de-
termine the distances to all other nodes. We call this approach
Hub-Label-Scan (HLS); in our experiments we observed that
HLS yields a speedup of up to a factor of 30 compared to
plain Dijkstra. In terms of space consumption, this essentially
doubles the space required to store the hub labeling.

5 Experiments
All our algorithms were implemented in C++, compiled with
g++ 11.4.0, and executed on a Ryzen 7950x 16-core Desktop
machine with 128GB of RAM running Ubuntu Linux 22.04.
For geometric computations we used the CGAL library [The
CGAL Project, 2023], in particular its geometry kernel, the
exact geometric predicates, as well as the constrained Delau-
nay triangulation code. Unless stated otherwise, averages and
maxima were calculated over 1000 trials. Source code and
data sets are available on a companion page [Funke, 2024].

We used several benchmark sets, some derived from game
maps from the repository of [Sturtevant, 2012], an urban en-
vironment with building footprints extracted from the Open-
StreetMap project [The OpenStreetMap Project, 2024], the
world’s coastlines as also used in [Funke et al., 2024] as well
as an arrangement of several Koch snowflakes [Koch, 1904],
see Figure 5 for visual depictions of our data sets.

5.1 Shrinking of ESP Instances
To evaluate the lower bound qualities of our shrunken ESP
instances, we chose 1,000 random source-target pairs of the
original ESP instance and for each of them computed their
shortest path using Polyanya [Cui et al., 2017]. If for a given
source-target pair dorg, dshrunk are the distance in the orig-
inal ESP instance and the shrunken instance, we calculated
error = 1− dshrunk

dorg
as a measure for the quality of the lower

bound. Clearly, the smaller the error, the better; error = 0
means we have a lower bound matching the actual distance.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

0% locked 2% locked
avg max avg max

0.005 · |V | 0.083% 1.038% 0.042% 0.520%
0.02 · |V | 0.017% 0.305% 0.007% 0.279%
0.08 · |V | 0.002% 0.047% 0.001% 0.041%
0.013 · |V | 0.421% 6.698% - -

Table 1: Coastline dataset: Lower bound error for random source-
target queries in free space.

0% locked 2% locked
avg max avg max

0.005 · |V | 0.470% 9.266% 0.553% 9.266%
0.02 · |V | 0.141% 3.852% 0.082% 2.603%
0.08 · |V | 0.03% 1.242% 0.019% 1.242%
0.013 · |V | 1.510% 17.219% - -

Table 2: Coastline dataset: Lower bound error for random source-
target queries from obstacle vertices.

In a first experiment we looked at the world’s coast-
lines with an instance consisting of 651,063 polygons with
15,318,978 obstacle vertices in total. Clearly, this instance
does not allow for the construction of its visibility graph.

We used the global shrinking strategy and removed vertices
until the desired cardinality of the vertex set was reached,
also varying the share of the locked important vertices, that
were prohibited from removal. Polygons with less than 4 ver-
tices were removed altogether. For comparison, we also state
the results for the shrinking routine from [Funke et al., 2024]
provided by the authors in source code which is essentially
the individual polygon shrinking strategy. In Table 1 we see
the results for source-target pairs chosen uniformly at random
in the free (non-obstacle) space. The table reads as follows:
when keeping 1/200th of all vertices, the average error of the
lower bound is only 0.083%, the maximum 1.038% when we
apply the pure global shrinking strategy. If we lock 2% of
the remaining nodes by importance as described in Section 3,
the error reduces almost by a factor of 2, both on average as
well as the maximum within 1,000 queries. The individual
shrinking approach as used in [Funke et al., 2024], shown in
the last row of the table, fares considerably worse. Even for
a larger remaining vertex set of 0.013 · |V |, both average and
maximum error are much higher than for our global shrinking
strategy with 0.005 · |V | remaining vertices.

At this point we have to mention that choosing random
source-target pairs in the free space is probably not the most
interesting experiment to conduct. As the oceans make up for
most of the earth’s surface, most queries start and end in the
middle of the ocean without interacting with too many obsta-
cles. So we repeated the experiment but chose the source-
target pairs randomly from the obstacle vertices of the origi-
nal problem instance. The results can be seen in Table 2. We
see errors, both on average but also the maxima, increasing
by almost an order of magnitude. Yet, the global shrinking
strategy with locking of important vertices still yields excel-
lent results, clearly beating the bounds from [Funke et al.,
2024] in the last row of the table.

We did not shrink the game instances, as they were so small
that the visibility graph can easily be constructed and stored.

0% locked 2% locked
avg max avg max

0.005 · |V | 0.882% 4.777% 0.882% 4.777%
0.02 · |V | 0.829% 4.777% 0.829% 4.777%
0.08 · |V | 0.718% 4.158% 0.718% 4.158%
0.013 · |V | 0.907% 4.777% - -

Table 3: Tokyo dataset: Lower bound error for random source-target
queries from obstacle vertices. |V | = 6, 125, 120.

n m avg neighbor
degree pairs

20kCoast 20,000 12.7 · 106 635.8 > 7 · 109
40kCoast 40,000 40.6 · 106 1016.0 > 45 · 109
fullCoast 188,269 173 · 106 920.9 > 211 · 109
Labyrinth 16,354 1.39 · 106 85.2 > 84 · 106
Expedition 21,603 2.13 · 106 98.6 > 170 · 106
Cauldron 32,716 2.40 · 106 73.3 > 151 · 106
Flake 150,528 66.9 · 106 444.4 > 53 · 109

Table 4: Benchmark instances for accelerated distance computation.

Finally, in Table 3 we see the results for the urban environ-
ment of Tokyo. Here both global shrinking as well as locking
of important vertices hardly has any effect. This could be
due to the completely different scene characteristics; as most
obstacles have very few vertices, it is more about removing
some obstacles altogether than simplifying them.

Note that none of the shrinking processes took more than 1
minute, so we refrained from a detailed timing analysis.

5.2 Accelerated Distance Computation
For the evaluation of our speed-up schemes for distance com-
putation in visibility graphs we used the graph instances in
Table 4. We have a visibility graph of the world’s sim-
plified coastlines with around 188k vertices, and two sub-
graphs thereof with 20k and 40k vertices, respectively. Ad-
ditionally we have three game maps from the repository of
[Sturtevant, 2012] with sizes of around 16k, 21k and 32k.
Most game maps have rather restricted visibility due to the
presence of many obstacles, so their visibility graphs are
less dense that those of coastline graphs. Finally we have
an instance of a Koch flake arrangement with around 150k
vertices. As mentioned before, we can easily derive from
the node degrees of the visibility graph a lower bound on
how many shortcut decisions a CH construction algorithm
would have to make to compute the CH. We see that even
for the small graph 20kCoast, this number is more than
7 billion, making the standard CH construction impractical
since every decision also requires a witness search. The
20kCoast/40kCoast/fullCoast visibility graphs need around
291MB/931MB/4GB in main memory, including additional
information like coordinates. So they are easily accommo-
dated within a desktop PC’s RAM.

Different Level Functions for HL Construction
We evaluated several strategies for determining the level
functions on the smallest coastline graph: random chooses
as ϕ a random permutation; degree assigns number 1 to n ac-
cording to increasing degree of the nodes; reach-i determines

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

HL constr avg label avg HL avg Dijk HL-PHAST HLS full Dijk
time size time time time time time

20kCoast 51s 743 2.3µs 18ms 20ms 4ms 37ms
40kCoast 712s 1,107 3.1µs 43ms 56ms 10ms 103ms
fullCoast 16,240s 1,282 3.0µs 237ms 304ms 14ms 479ms
Labyrinth 8.9s 102 0.6µs 3ms 3ms 0.1ms 5ms
Expedition 19.7s 280 1.6µs 5ms 10ms 1.0ms 11ms
Cauldron 37.4s 148 0.9µs 7ms 9ms 0.4ms 14ms
Flake 5,153s 738 2.0µs 100ms 150ms 24ms 224ms

Table 5: Query performances of our scheme averaged over 100 random queries.

level avg label HL build
time size time

random <1s 3,831 103.0s
degree <1s 1,558 103.4s
reach-10 <1s 843 103.2s
reach-50 <1s 784 103.3s
reach-100 <1s 766 102.7s
reach-1k 5.1s 744 103.8s
reach-10k 51.0s 743 104.1s
reach-100k 521.5s 743 103.6s

Table 6: Average label sizes and construction times for 20kCoast
and different level functions.

the hop-based reach value from a set of shortest path trees
with i random sources. In Table 6 we list both construction
time for the level function as well as the actual HL construc-
tion. Unsurprisingly, the latter is essentially unaffected by the
level function; the former scales linearly with the number of
random sources. The most relevant quantity is the average
label size, though. For example when computing the level
function based on 1000 shortest path trees, the level function
construction took around 5 seconds and resulted in an average
label size of 744. This is considerably better than a random
level assignment (3,831) as well as a degree-based assign-
ment (1,558). We also observe that it is not worth spending
too much time on constructing a good level function. While
the average label size improves drastically from reach-10 to
reach-50, there is no improvement after reach-10k, so we will
use reach-10k for the following experiments. Note that 743 is
not too far away from the lower bound for the average label
size given by n and m. So we can store hub labels within
space of the same order of magnitude that is required to store
the visibility graph itself. The results for the other benchmark
graphs showed the same behaviour, making reach-10k a uni-
versally good choice for determining the level function.

Query Times: Source-Target and One-to-All
Of course, the most interesting quantity to measure is query
time. For that we considered all benchmark instances, com-
puted the level function based on reach-10k and constructed
hub labels. In Table 5, column avg HL time, we report on the
average query times for 100 random source-target distance
queries using the constructed hub labels. Column avg Dijk
time denotes the respective query times for a source-target
Dijkstra on the visibility graph (as e.g., employed in [Funke
et al., 2024]). We see for our largest graph fullCoast that av-
erage query times decrease from 237ms to 3µs, a speed-up

of more than 4 orders of magnitude. The hub labeling ex-
hibits an average label size of 1,282 which allows for a space
consumption in the same order of magnitude than the original
visibility graph even for the largest instance. The construction
time was still below 5 hours on our workstation system. For
the other, smaller instances, the speedup is less pronounced
but still at least 3 orders of magnitude.

In the next experiment we measured the time to compute
one-to-all distances using the HL-PHAST scheme as well as
our new improved HLS scheme. Again looking at our largest
benchmark instance, we see that while a full one-to-all Dijs-
tra takes about 479ms, the HL-PHAST approach yields only
a very moderate improvement to 304ms, but our new HLS
strategy computed one-to-all distances on average in 14ms –
a speedup of more than a factor of 30. This can be explained
by the fact that the number of ’edges’ to be considered drops
from around 241·106 in HL-PHAST to around 17·106 in HLS
(and probably some cache effects). The speedup seems to be
higher, the bigger the respective instance is, yet, we almost
always observe a speedup of a factor at least 10.

6 Conclusions
Large problem instances for the ESP problem typically do
not allow the explicit construction and storage of a visibility
graph – the natural structure to answer shortest path queries.
The first contribution of our paper is a technique to reduce a
given ESP problem instance I to a much smaller instance I ′

such that distances within I ′ are very strong lower bounds for
distances within I . In particular, our shrinking technique can
be used to reduce I to a size such that explicit construction
of the visibility graph of I ′ is possible but still yields lower
bounds less than 1% below the real distance on average.

The second contribution of our paper is the speedup of dis-
tance queries on a given visibility graph. While hub labeling
has been long known to be one of the fastest speedup tech-
niques for shortest path distance queries in sparse graphs, it
is not often used in practice due to its space overhead which
is typically at least one order of magnitude compared to the
storage of the underlying graph. We show that for visibility
graphs, the space overhead of hub labeling is negligible – in
all our experiments, labels use about the same space as the
original visibility graph itself. Based on that we can answer
point-to-point distance queries in a visibility graph several or-
ders of magnitude faster than plain Dijkstra. For one-to-all
queries we propose a new scheme which beats plain Dijkstra
by one order of magnitude.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Abraham et al., 2012] Ittai Abraham, Daniel Delling, An-

drew V. Goldberg, and Renato Fonseca F. Werneck. Hier-
archical hub labelings for shortest paths. In ESA, volume
7501 of Lecture Notes in Computer Science, pages 24–35.
Springer, 2012.

[Aleksandrov et al., 2000] Lyudmil Aleksandrov, Anil Ma-
heshwari, and Jörg-Rüdiger Sack. Approximation algo-
rithms for geometric shortest path problems. In STOC,
pages 286–295. ACM, 2000.

[Bast et al., 2016] Hannah Bast, Daniel Delling, Andrew V.
Goldberg, Matthias Müller-Hannemann, Thomas Pajor,
Peter Sanders, Dorothea Wagner, and Renato F. Werneck.
Route planning in transportation networks. In Algorithm
Engineering, volume 9220 of LNCS, pages 19–80. 2016.

[Canny and Reif, 1987] John F. Canny and John H. Reif.
New lower bound techniques for robot motion planning
problems. In FOCS, pages 49–60. IEEE Computer Soci-
ety, 1987.

[Chew, 1989] L. Paul Chew. Constrained delaunay triangu-
lations. Algorithmica, 4(1):97–108, 1989.

[Cohen et al., 2003] Edith Cohen, Eran Halperin, Haim Ka-
plan, and Uri Zwick. Reachability and distance queries via
2-hop labels. SIAM J. Comput., 32(5):1338–1355, 2003.

[Cui et al., 2017] Michael Cui, Daniel Damir Harabor, and
Alban Grastien. Compromise-free pathfinding on a navi-
gation mesh. In IJCAI, pages 496–502. ijcai.org, 2017.

[Delling et al., 2013] Daniel Delling, Andrew V. Goldberg,
Andreas Nowatzyk, and Renato F. Werneck. PHAST:
hardware-accelerated shortest path trees. J. Parallel Dis-
tributed Comput., 73(7):940–952, 2013.

[Dijkstra, 1959] Edsger W. Dijkstra. A note on two prob-
lems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[Federal Office of Topography, 2024] Switzerland Fed-
eral Office of Topography. swissalti3d. https:
//www.swisstopo.admin.ch/en/height-model-swissalti3d,
2024. Accessed: 2025-01-21.

[Funke et al., 2024] Stefan Funke, Daniel Koch, Claudius
Proissl, Axel Schneewind, Armin Weiß, and Felix Weit-
brecht. Scalable ultrafast almost-optimal euclidean short-
est paths. In IJCAI, pages 6716–6723. ijcai.org, 2024.

[Funke, 2024] Stefan Funke. Algorithms Research Group.
https://www.fmi.uni-stuttgart.de/alg/research/, 2024. Ac-
cessed: 2025-05-01.

[Geisberger et al., 2012a] Robert Geisberger, Peter Sanders,
Dominik Schultes, and Christian Vetter. Exact routing in
large road networks using contraction hierarchies. Transp.
Sci., 46(3):388–404, 2012.

[Geisberger et al., 2012b] Robert Geisberger, Peter Sanders,
Dominik Schultes, and Christian Vetter. Exact routing in
large road networks using contraction hierarchies. Trans-
portation Science, 46(3):388–404, 2012.

[Ghosh and Mount, 1991] Subir Kumar Ghosh and David M.
Mount. An output-sensitive algorithm for computing visi-
bility graphs. SIAM J. Comput., 20(5):888–910, 1991.

[Gutman, 2004] Ronald J. Gutman. Reach-based routing:
A new approach to shortest path algorithms optimized
for road networks. In ALENEX/ANALC, pages 100–111.
SIAM, 2004.

[Hechenberger et al., 2020] Ryan Hechenberger, Peter J.
Stuckey, Daniel Harabor, Pierre Le Bodic, and Muham-
mad Aamir Cheema. Online computation of euclidean
shortest paths in two dimensions. In ICAPS, pages 134–
142. AAAI Press, 2020.

[Hershberger and Suri, 1999] John Hershberger and Sub-
hash Suri. An optimal algorithm for euclidean shortest
paths in the plane. SIAM J. Comput., 28(6):2215–2256,
1999.

[Koch, 1904] HV Koch. Sur une courbe continue sans
tangente, obtenue par une construction géométrique
élémentaire. Arkiv for Matematik, Astronomi och Fysik,
1:681–704, 1904.

[Mitchell, 1996] Joseph S. B. Mitchell. Shortest paths
among obstacles in the plane. Int. J. Comput. Geom. Appl.,
6(3):309–332, 1996.

[Sturtevant, 2012] N. Sturtevant. Benchmarks for grid-based
pathfinding. Transactions on Computational Intelligence
and AI in Games, 4(2):144 – 148, 2012.

[The CGAL Project, 2023] The CGAL Project. CGAL User
and Reference Manual. CGAL Editorial Board, 5.6 edi-
tion, 2023.

[The OpenStreetMap Project, 2024] The OpenStreetMap
Project. OpenStreetMap. https://www.openstreetmap.org/,
2024. Accessed: 2025-05-01.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://www.swisstopo.admin.ch/en/height-model-swissalti3d
https://www.swisstopo.admin.ch/en/height-model-swissalti3d
https://www.fmi.uni-stuttgart.de/alg/research/
https://www.openstreetmap.org/

