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Abstract
Feature transformation involves generating a new
set of features from the original dataset to enhance
the data’s utility. In certain domains like material
performance screening, dimensionality is large and
collecting labels is expensive and lengthy. It highly
necessitates transforming feature spaces efficiently
and without supervision to enhance data readiness
and AI utility. However, existing methods fall short
in efficient navigation of a vast space of feature
combinations, and are mostly designed for super-
vised settings. To fill this gap, our unique perspec-
tive is to leverage a generator-critic duet-play team-
ing framework using LLM agents and in-context
learning to derive pseudo-supervision from unsu-
pervised data. The framework consists of three in-
terconnected steps: (1) Critic agent diagnoses data
to generate actionable advice, (2) Generator agent
produces tokenized feature transformations guided
by the critic’s advice, and (3) Iterative refinement
ensures continuous improvement through feedback
between agents. The generator-critic framework
can be generalized to human-agent collaborative
generation, by replacing the critic agent with hu-
man experts. Extensive experiments demonstrate
that the proposed framework outperforms even su-
pervised baselines in feature transformation ef-
ficiency, robustness, and practical applicability
across diverse datasets. Our code is publicly avail-
able at https://github.com/NanxuGong/LPFG.

1 Introduction
Feature transformation aims to rebuild a new feature space
from an original feature set (e.g. [f1, f2] → [ f1f2 , f1 −
f2,

f1+f2
f1

]). Feature transformation can advance the power
(structural, predictive, interaction, and expression levels) of
data to make data AI-ready. In many practices, feature
transformation is conducted either by human experts or by
machine-assisted search guided through downstream task
feedback. In certain domains, like material synthesis and
performance screening, feature transformation is particularly

∗Corresponding author

useful in capturing interactions and compositions within ma-
terial formulas to identify performance drivers. However, 1)
there are millions of candidate material ingredients (i.e., fea-
tures) for material synthesis; thus, it is inefficient to explore
and search all feature combinations and interaction possi-
bilities; 2) obtaining supervised material performance labels
often requires time-intensive and costly in-lab experiments.
This practical challenge highlights the need for a new AI task:
efficient and unsupervised feature transformation (EUFT).

There are two major challenges in solving EUFT: 1) ef-
ficient transformation, and 2) unsupervised transformation.
Firstly, there is an exponentially expanding range of feature
combination possibilities in a feature space, leading to an
overwhelmingly large discrete search space. Efficient trans-
formation is to answer: how can we avoid searching a large
feature combination space when generating feature transfor-
mations? Secondly, in supervised settings, most methods
exploit predictive accuracy feedback of a transformed fea-
ture set on a downstream ML model to guide optimal feature
transformation search. Under unsupervised settings, there is
no supervised knowledge as guidance. Unsupervised trans-
formation aims to answer: how can we discover supervision
knowledge from unsupervised data to steer the optimal fea-
ture transformation generation?

There are significant gaps in current methodologies for
EUFT. 1) Manual feature transformation requires domain
and empirical expertise to formulate task-specific strategies,
thus is inefficient and doesn’t generalize well in unsupervised
settings. 2) There are studies that solve feature transforma-
tion as discrete or continuous search tasks [Wang et al., 2022;
Wang et al., 2023a]. Technical solutions include reinforce-
ment learning, genetic algorithm, and generative learning
based reformulations. They either search optimal feature
sets in a discrete or continuous space. However, the models
are time-consuming and require downstream supervised feed-
back to guide search. 3) LLM agent based methods [Gong et
al., 2024; Zhang et al., 2024; Hollmann et al., 2024] inter-
pret the prompt using their pretrained general and world to-
ken knowledge to generate outputs that align with the given
patterns, scores, or comparison patterns of features to gen-
erate tokenized feature transformations. But, existing meth-
ods target at supervised settings, instead of unsupervised set-
ting. They regard LLM as a generator and ignore its other
abilities: in-context learning enabled teaming, diagnosis and
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critics, duet-play can deliver better feature transformations in
more challenging computational or learning settings.

Our insights: a duet-play generator-critic teaming per-
spective to derive supervision from unsupervised data. We
highlight two research insights. To address efficient trans-
formation, we show that we can tokenize a set of trans-
formed features into a feature cross token sequence, thereafter
see LLM as a generator to learn patterns from the text they
process, generate feature transformation tokens, and avoid
searching in a large combination space. To address unsu-
pervised transformation, we found that LLM agents exhibit
a feature space diagnosis ability over tokenized data. We
use such diagnosis ability to derive supervision knowledge
from unsupervised data to guide the feature transformation
process. We propose to unify generator-critic agents, in-
context learning, and duet-play teaming to create “pseudo
model”, “pseudo objective”, and “pseudo optimization” with
only unlabeled data. In particular, the pseudo model is the
generator agent that generates feature transformations given
a dataset. The pseudo objective is the critic agent that di-
agnoses a dataset to generate feature space improvement ad-
vices as “textual gradient”, which is equivalent to deriving
optimization direction (i.e., gradient descent) from unsuper-
vised data. The pseudo optimization is duet-play teaming
between the critic agent and the generator agent, in which
the advices of the critic agent are utilized to augment the in-
context learning prompt of the generator agent in order to
transform better feature space. The two agents team together
and iteratively duet-play the same process.

Summary of proposed approach. We propose a duet-
play generator-critic agent teaming framework to derive su-
pervision from unsupervised data for fast unsupervised fea-
ture transformation. The framework includes three steps:
1) The critic step: the critic agent diagnoses semantic re-
lationships and data distribution properties to generate ad-
vice for improving feature spaces; 2) The generation step:
the generator agent tokenizes features, operators, and trans-
formations and leverages in-context learning to produce a
tokenized transformed feature set based on critic agent-
augmented prompts; 3) Iterative refinement: a feedback loop
between the critic agent and generator agents ensures contin-
uous improvement of the generated features through seman-
tic and structural alignment. In addition, this framework can
be generalized from critic-augmented generation to human-
agent collaborative generation, by replacing the critic agent
with human experts. Finally, extensive experiments demon-
strate our method is extremely efficient while accurate, high-
lighting its practical potential for EUFT.

2 Problem Definition
We utilize LLMs as agents for unsupervised feature gen-
eration. This approach enables the automated generation
of meaningful features and improves performance in down-
stream tasks. Formally, given a dataset D = {X, y} and an
operation set O, where X is the original feature set and y is
the corresponding label. Here, y is only used for the test-
ing process. Our framework employs a two-stage approach
for feature generation using LLMs. First, an critic LLM

analyzes the original data set and then provides generation
feedback to guide how to enhance the feature space, repre-
sented as θ = k(X), where k is the function notation of the
critic. Second, we employ a generator LLM to perform fea-
ture generation. The generating feature space is represented
by X̂ ∼ g(·|X,O, θ), which incorporates the original features
and the critic insights. This two-stage process is repeated it-
eratively, with each step refining the feature space to enhance
its representation for downstream tasks.

3 Generator-critic Feature Transformation
3.1 Framework Overview
Figure 1 shows our generator-critic LLM agents framework
for unsupervised duet-play feature transformation includes:
1) the critic step: develop diagnosis and advice on generating
meaningful features; 2) the generation step: feedback-driven
feature generation; 3) the iterative refinement step.

In Step 1, given a data set, the critic agent aims to diagnose
the dataset from both semantic and structural perspectives.
Our idea is to leverage the general knowledge and reasoning
abilities of LLMs to uncover insights into feature interactions,
data relationships, and potential strategies for data augmenta-
tion. Specifically, the critic agent performs two key analyses:
(i) Semantic Analysis: examining feature descriptions and
task objectives to derive meaningful interactions and trans-
formations. (ii) Structural Analysis: assessing the distribu-
tion and completeness of features to reason how to transform
a feature space that aligns with the downstream task. Step 1 is
to output a textual description of how to transform a dataset to
make it AI ready. The benefit of this step is that the semantic,
structure, and distribution-aware feature space transformation
advices can inspire the generator agent into precise directions
for generating informative and relevant features.

In Step 2, the generator agent regards a feature as a token,
an operator as a token, and a transformed feature as a token
segment (e.g., f1∗f2). Building upon this symbolic represen-
tation, the generator agent tokenizes a set of transformed fea-
tures as a token sequence (f1 ∗ f2), log(f3), (f4/f5). The
task of feature transformation is reformulated into generat-
ing a feature transformation token sequence given a dataset,
which is achieved by the generator agent. This formula-
tion enables straightforward reconstruction of a transformed
dataset from the original dataset. The benefits of design-
ing the generator agent are (i) efficiency: in-context prompt-
ing ensures rapid generation without sacrificing quality; (ii)
adaptability: the generator agent can dynamically adapt to
diverse datasets and leverage both prior knowledge and task-
specific feedback from the critic agent; (iii) traceability: the
idea of using symbolic token sequences to represent action-
able feature transformations and using GenAI to learn and
generate can facilitate the transparency and reproducibility of
feature transformations.

In Step 3, to improve the robustness of the generated fea-
tures, our framework iterates a feedback loop between the
critic LLM agent and generator LLM agent. By comparing
generated features with semantic rules and structural patterns
identified by the critic LLM agent, we iteratively refine the
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Specification

Dataset 
Description

Semantics

Data

Critic Agent Generator Agent

𝑓! 𝑓"	+ 𝑓# 𝑓$/

Feature Sequence

The dataset can be
improved by: ……

Sure, there are the 
generated features.

Extension: conversational generation

According to 
my expertise, 
the feature 
xx is useful.

That’s really 
helpful! Here
are the new
features.

Generator AgentExpert

Overview: duet-play critic-generator perspective

Dataset

You are a data scientist. Given the task description and the dataset, you 
are generating new features by combining original features.

You are a data scientist. Given the task description and the dataset, you 
are advising on how to generate new features by combining original features. 

Task description: <The description of background and task of a given 
dataset> 
Dataset: <The statistics of features in the original dataset>

Let’s think step by step
Step1. Analyze the semantics of features and task. Advise on generating 
semantically informative features
Step 2. Analyze the distribution of features. Advise on how to generate 
features to improve the data distribution. Note that your advice should be 
short, general, and no examples. Everytime give a piece of advice from 
these perspectives.

According to the information you provided, the advice is as follows:
- Advice on semantics: ...
- Advice on data: …

Task description: <The description of background and task of a given 
dataset> 
Dataset: <The statistics of features in the original dataset>
Operator Set: sqrt, square, sin, cos, tanh, stand_scaler, minmax_scaler, 
quan_trans, sigmoid, log, reciprocal, cube, +, -, *, /

Let’s think step by step.    
Step 1. Understand the task and think about how to generate new features 
according to my advice. Note that you can only generate features using the 
given operators and features.     
Step 2. Formatting the generated features as a sequence consisting of 
feature IDs and operators. Please ensure the the feature sequence and 
generated feature are accurate and consistent

According to your advice, the generated features are as follows:
- Feature Sequence: …    
- Generated Features: …

Prompt and response overview of critic agent

Prompt and response overview of generator agentDetails: prompt and response formats

Figure 1: Framework overview. We implement feature generation through a duet-play generator-critic framework. We also extend it to a
conversational generation manner.

feature space by coordinating the critic agent and the gener-
ator agent to converge toward ensuring semantic coherence,
structural integrity, predictive utility, and format compatibil-
ity with downstream tasks, all in an unsupervised setting.

3.2 The Critic Step
Why the critic agent matters? Firstly, a feature space is
complex because features can vary in dimensionality (e.g.,
high dimensionality), correlation (e.g., nonlinear, interdepen-
dent, or context-specific), type (e.g., categorical, numerical,
ordinal, ratio), and information properties (e.g., scale, redun-
dancy, noise, or overfitting). This complexity makes it chal-
lenging to capture meaningful pattern, thus, it highly necessi-
tates an automated tool to optimize meaningful feature repre-
sentations. Secondly, traditional feature transformation relies
on supervised feedback (e.g., task-specific predictive accu-
racy or feature importances) to guide optimization. In unsu-
pervised settings, there are no explicit labels, making super-
vised feedback and optimization direction unavailable. The
critic agent bridges this gap by evaluating datasets compre-
hensively, offering interpretable advice from both semantic
and data distribution perspectives.
Leveraging AGI diagnosis of feature space as “textual
gradient” of in-context feature transformation optimiza-
tion. One strategy is to use a single LLM agent for generative
feature transformation. However, the single agent needs to
implicitly achieve both reasoning (i.e., diagnosing issues of a
feature space and identifying improvement directions of fea-
ture space) and generation (i.e., generating token sequences
of symbolic feature transformation actions). This strategy in-

troduces uncertainty in coupling reasoning and generation to-
ward optimal and requires the agent to precisely self-identify
optimization direction. Our idea is to leverage a critic LLM
agent to generate issue diagnosis and improvement advice of
feature space as textual gradients, in order to provide unique
optimization direction contexts within the prompt to adjust
the generation agent’s behavior.
Step 1: Semantic Diagnosis of Feature Space. The critic
agent, trained on extensive textual corpora, can infer seman-
tic relationships between input variables and target outputs.
In particular, given the true names of predictors (X) and the
response (Y), we prompt the critic agent to capture the seman-
tic connections and contexts between X and Y to inspire the
generator agent to create effective and interpretable features.
Step 2: Distribution Diagnosis of Feature Space. Besides,
we prompt the critic agent to evaluate the underlying data dis-
tributions of feature space, in order to perceive whether the
classification patterns or decision boundaries of data are dis-
criminative and easy to learn. We exploit the perceived dis-
tribution information to inspire the critic agent to think how
features can be transformed to reshape data distributions so
classification patterns are well separated.
Integrating Semantic and Distributional Diagnosis. By in-
tegrating both the semantic diagnosis and the distributional
diagnosis, the critic agent delivers well-rounded and action-
able contexts to augment the prompt of the generator agent for
feature space improvement. In this way, we can ensure that
feature generation aligns with both the structural properties
and semantic relationships of the dataset. Figure 2 presents a
response example of the critic agent.
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- Advice on semantics: Consider generating interaction features that capture 
relationships between different physical characteristics. For instance, the ratio 
of urea concentration to specific gravity might provide insights into the urine's 
concentration profile, which could be relevant to kidney stone formation.

- Advice on data: To address skewness or variability, consider normalizing or 
standardizing the features, especially those with a wide range like urea and 
calcium concentrations. Additionally, log-transformations could be useful for 
features like osmolarity and conductivity if they exhibit right skewness, helping 
to stabilize variance and make the data more suitable for modeling.

Response example of critic agent on dataset playground

Figure 2: We provide a response example of critic agent on the
dataset playground. We obtain advice from semantic and data per-
spectives.

3.3 The Generation Step
Why a generator agent matters? In prior literature, fea-
ture transformation achieved by manual transformations, su-
pervised transformations (e.g., reinforcement, evolutionary),
unsupervised transformations (e.g., PCA). However, manual
methods are not generalizable and incomplete, as they heav-
ily rely on domain and empirical experiences. Supervised
methods require labeled data and need to search a vast space.
Unsupervised methods are based on a strong assumption of
straight linear feature correlation. The success of LLM shows
it is appealing to model language knowledge as token se-
quences and reformulate predictive tasks as generative AI to
regress next token. Following a similar spirit, we propose to
represent mechanism-unknown feature space knowledge into
symbolic sequential tokens. For instance, a transformed fea-
ture set ( f1f2 , f1−f2,

f1+f2
f1

) is seen as a feature operator cross
token sequence “(f1/f2), (f1 − f2), ((f1 + f2)/f1)EOS”. In
other words, feature transformation can be viewed as a to-
ken generation task. Moreover, LLM exhibits in-context and
few-shot learning abilities, thus, we can teach LLM to learn
feature knowledge by demonstrating a list of feature transfor-
mation sequence examples in an instructional prompt.
Integrating feature-operator cross tokenization and in-
context learning for fast and unsupervised feature trans-
formation. Our idea is to see features and operators as to-
kens , and a transformed feature as a token segmentation of
feature-operator crosses. We regard feature transformation as
a generative AI task. LLM is specialized in sequential to-
ken generation. Its in-context learning ability allows us to
incorporate critic LLM to learn complex feature space knowl-
edge and the optimization direction of sequence generation,
by demonstrating relevant background information, specific
instructions, examples of desired outputs, clear task defini-
tion, and structured formatting. Such reformulation can help
to achieve efficient and unsupervised feature transformation,
Step 1: Tokenize Feature Transformations. The generator
agent tokenizes each transformation into a sequence of tokens
(e.g., f1 ∗ f2/f3). This symbolic representation not only en-
ables the LLM token generation of feature transformation, but
also facilitates the transparent tracking of transformations.
Step 2: In-context Prompting for Rapid Generation. The
generator agent leverage the outputs from the critic agent to
construct in-context prompts to dynamically generate high-
quality features. By combining the task-specific guidance
from the critic agent with the generic knowledge knowledge
of the generator agent, the generator agent generates feature

transformations without supervised labels. Figure 3 demon-
strates an example of the generator agent response.

There are two major benefits of using the generator agent:
1) Efficiency: in-context learning ensures rapid feature gen-
eration without compromising on quality. 2) Traceability:
The use of symbolic token sequences enhances transparency
and reproducibility, making the feature transformations easily
interpretable and verifiable.

- Feature Sequence: [ ( f5 / f0 ), ( log f2 ) ]
- Generated Features:

- New feature 1 = urea concentration / specific gravity
- New feature 2 = log(osmolarity)

Response example of generator agent on dataset playground

Figure 3: We present a response example of generator agent on the
dataset playground. The feature sequence represent a dataset and the
generated features interpret the semantic meanings.

3.4 The Iterative Refinement Step
Leveraging critic agent-augmented generation for itera-
tive improvement. In each iteration, the critic agent gener-
ates semantic and distributional diagnosis of feature space,
along with feature transformation advices, as enriched con-
texts. We then leverage the critic agent-generated diagnosis
and advices to augment the in-context learning prompt of the
generator agent. During such iterative refinement, the gener-
ator agent dynamically adapts to diverse datasets by integrat-
ing task-specific diagnosis and advices from the critic agent
and AGI knowledge.

3.5 From Critic-Augmented Generation to
Human-Agent Collaborative Generation

The emergence of Reinforcement Learning from Human
Feedback (RLHF) demonstrates the significance of human
feedback for diverse and insightful generation [Yu et al.,
2024; Wang et al., 2023b]. Traditionally, feature transfor-
mation is effective with domain knowledge and empirical ex-
perience under the guidance of human experts.

We want to highlight that our critic-generator framework
can be converted into human-agent collaborative generation.
Specifically, we can replace the critic agent with a user or a
human expert to implement customized feature transforma-
tion. The human expert can write domain-specific instruc-
tions to help LLM incorporate human thinking and expert
knowledge into the in-context learning. For instance, hu-
man expert can provide a domain-specific and personalized
instruction to the LLM, by inputting an instruction like: ”Fea-
ture f3 is interesting. Please generate new variants of f3.”

4 Experimental Results
4.1 Experimental Setup
Data Descriptions. We utilize 12 public datasets that con-
tain task descriptions and feature names from Kaggle and
OpenML to conduct experiments.
Evluation Metrics. We employ Random Forest as the down-
stream ML model. The accuracy score of the predictions is
used to evaluate the performance of methods.
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Dataset Source Original TTG AutoFeat GRFG OpenFE CAAFE LPFG

balance OpenML 0.750 0.781 0.688 0.813 0.781 0.781 0.906
cmc OpenML 0.507 0.518 0.504 0.542 0.534 0.507 0.561

credit-g OpenML 0.780 0.78 0.772 0.788 0.764 0.772 0.792
diabetes OpenML 0.786 0.797 0.786 0.797 0.797 0.786 0.813

tic-tac-toe OpenML 0.667 0.708 0.625 0.750 0.625 0.792 0.833
pc1 OpenML 0.935 0.939 0.935 0.939 0.935 0.939 0.939

airlines OpenML 0.638 0.640 0.628 0.644 0.614 0.624 0.650
jungle OpenML 0.848 0.852 0.856 0.856 0.850 0.846 0.860
health Kaggle 0.742 0.740 0.740 0.742 0.748 0.736 0.752

pharyngitis Kaggle 0.680 0.711 0.680 0.719 0.695 0.711 0.719
spaceship Kaggle 0.744 0.754 0.746 0.748 0.756 0.754 0.750

playground Kaggle 0.750 0.750 0.721 0.750 0.712 0.712 0.760

Table 1: Overall comparison of different models on across 12 datasets. We bold the best results and underline the second-best results.

Baselines and variants. To demonstrate the effectiveness of
our method, We compare LPFG with 5 widely-used models
in feature transformation: 1) TTG [Khurana et al., 2018] for-
mulates feature transformation as a graph and searches via
reinforcement learning; 2) AutoFeat [Horn et al., 2020] ex-
pands the feature space and performs feature selection to re-
tain the meaningful features; 3) GRFG [Wang et al., 2022]
builds a multi-agent framework to automatically generate
new features and optimize; 4) OpenFE [Zhang et al., 2023]
proposes a feature boosting method and a two-stage pruning
algorithm to implement expand-reduce feature engineering;
5) CAAFE [Hollmann et al., 2024] leverages the in-context
learning ability of LLM to conduct feature transformation.

To comprehensively evaluate the necessity of each com-
ponent of LPFG, we introduce variant models: 1) LPFG-a
adopt the supervised performance of a given feature set on the
downstream ML model as the feedback; 2) LPFG-i leverage
the importance obtained from Random Forest to guide fea-
ture transformation; 3) LPFG-o remove the critic agent and
assign the generator to handle both reasoning and generation.

4.2 Experimental Results
Overall Performance. This experiment aims to answer: Is
the proposed method effective for improving downstream ML
model performance? We compare the proposed method with
the baselines on 12 datasets. Note that the LLM-based meth-
ods (i.e., CAAFE and LPFG) use GPT-3.5-turbo through API.
Table 1 shows that LPFG, as an unsupervised method, outper-
forms all supervised baselines on most datasets. The under-
lying driver is that the critic agent can comprehensively eval-
uate the datasets and give useful advice for feature transfor-
mation. Besides, an intriguing observation from the dataset
playground reveals that LPFG is capable of identifying ef-
fective optimization directions even on challenging datasets,
whereas the baseline methods fail to improve performance.
On the one hand, that is probably because the generator-critic
framework is more noise-resistant and robust. On the other
hand, a potential distribution shift may affect the performance
of supervised methods. However, LPFG demonstrates the ca-
pability to achieve more reliable optimization by conducting
a comprehensive evaluation of the dataset.

The Impact of Different LLMs This experiment aims to an-
swer: Does the choice of LLM model affect the performance
of our method? We adopt different LLMs to build the system
and analyze the influence of the LLM backbone on perfor-
mance. Figure 4(a) presents the results of LPFG with GPT-
3.5-turbo and GPT-4o respectively. The results indicate that
the performance of both models remains comparable. De-
spite substituting with a more advanced LLM, the accuracy
exhibits only marginal variation. The reason is two-fold: For
the critic agent, evaluating the dataset from semantic and dis-
tributional perspectives is a relatively straightforward task, as
the general knowledge embedded in the LLM often enables it
to provide constructive suggestions. For the generator, its role
is merely to follow the critic agent’s guidance and explore po-
tential feature combinations. Consequently, high-level intel-
ligence is not required, making the implementation of LPFG
more cost-effective and practical.

cmc diabetes airlines
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Figure 4: Ablation study. (a) We study the impact of using different
LLMs in LPFG. (b) We investigate the performance of generator
guided by different information.
The Impact of Guidance for Generation This experiment
aims to answer: Is the advice from critic agent better than
supervised signals (e.g., accuracy and feature importance)
for guiding generation? To validate the effectiveness of
the critic agent in facilitating feature transformation, we in-
troduce variant models LPFG-a and LPFG-i, which utilize
downstream model accuracy and feature importance as guid-
ance, respectively, while LPFG-o operates without any feed-
back. As illustrated in Figure 4(b), the first key observation is
the noticeable performance decline of LPFG-o compared to
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LPFG. A underlying driver is that a single LLM struggles
to balance reasoning and generation, making it difficult to
generate meaningful features. Furthermore, models guided
by accuracy and feature importance also experience perfor-
mance degradation, even underperforming compared to mod-
els without any guidance on several datasets. This can be
attributed to the generator agent’s inability to effectively in-
terpret non-traceable information within a few-iteration fea-
ture transformation process, thereby restricting its capacity to
guide the generation of new features. In contrast, the action-
able advice generated by the critic agent effectively aids in
optimizing the feature space without requiring extensive time
for feedback interpretation and potential space exploration.
Robustness Check This experiment aims to answer: Is
our method robust when collaborate with different down-
stream models? We employ various downstream ML mod-
els, i.e., XGBoost (XGB), Support Vector Machine (SVM),
K-Nearest Neighborhood (KNN), Decision Tree (DT), Ad-
aBoost (ADA), to study the robustness of the proposed
method on the dataset diabetes. Figure 5 illustrates that LPFG
achieves the best performance, except when the downstream
task employs XGB. This can be explained by LPFG is task-
agnostic, as it operates in an unsupervised manner. In con-
trast, supervised methods are affected by their performance
on specific models, leading to greater fluctuations. As an un-
supervised plug-in model, LPFG’s robustness highlights its
practical value in real-world machine learning tasks.

KNN

DTLogistic

XGB

ADA RF

0.64
0.68

0.72
0.76

0.80.82

TTG
AutoFeat
GRFG
OpenFE
CAAFE
LPFG

Figure 5: Robustness check. On diabetes, we investigate the robust-
ness of the proposed method when different downstream ML models
are employed.
Time Complexity Study Is our model efficient in feature
transformation? We further investigate the time complexity
of the proposed method on 6 datasets. Since GRFG and TTG
are reinforcement learning-based methods that require time
for search within the solution space, we primarily focus on
comparing the time complexity of lightweight models. Figure
6 presents the feature transformation time for different mod-
els. It can be observed that LPFG demonstrates consistently
short and stable generation time. In contrast, the time cost of
AutoFeat and OpenFE significantly fluctuates with the size of
the dataset. As another LLM-based model, CAAFE requires
slightly more time and exhibits minor fluctuations. This can
be explained by the fact that LPFG avoids repeatedly com-
puting downstream model accuracy, and the inference time

of the LLM through API is fast and consistent.
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Figure 6: Time complexity study. We compare the costing time (s)
for feature tran on 6 datasets.
Case Study: Duet-Play Generator-Critic Framework for
Feature Transformation This experiment aims to answer:
How can the teaming LLMs collaborate on feature transfor-
mation? We illustrate the communication process between
the critic agent and the generator agent in Figure 7. The critic
agent provides actionable suggestions for optimizing the fea-
ture space, while the generator agent considers these sugges-
tions to make the final decision. Through these examples, we
observe two key points: consistency and interpretability. On
one hand, the generated features align with certain parts of
the advice, indicating that the critic agent provides meaning-
ful guidance in feature transformation. On the other hand, our
approach not only enables a concise feature set representation
through feature sequences with minimal tokens but also al-
lows for the interpretation of the generated features, enhanc-
ing transparency and understanding.
Case Study: Conversational Feature Transformation This
experiment aims to answer: How can users achieve cus-
tomized feature transformation in a conversational manner?
We present several cases of conversational feature transfor-
mation in Figure 8 to explore the effectiveness and flexibility
of our framework. Instead of adopting an automatic critic
agent, we proactively input feature transformation require-
ments or suggestions, allowing the generator to operate in a
more customized manner. This interactive and adaptive ap-
proach offers a novel solution for feature transformation, en-
hancing the practicality and engagement of LPFG.

5 Related work
5.1 Feature Transformation
Feature transformation is an essential task in Data-Centric AI
[Ying et al., 2025; Gong et al., 2025a; Gong et al., 2025b;
Ying et al., 2024]. It aims to generate new features to im-
prove the feature space and enhance downstream models. For
example, ExploreKit [Katz et al., 2016] creates an exten-
sive set of candidate features by integrating information from
the original features, and Cognito [Kanter and Veeramacha-
neni, 2015] investigates diverse feature construction options
using a hierarchical and selective approach. Furthermore,
various strategies for discrete decision-making are applied
in this task. EAAFE [Zhu et al., 2022] proposes to lever-
age an evolutionary algorithm to improve feature transforma-
tion. GRFG [Wang et al., 2022] designs three reinforcement
learning agents to collaborate in generating new features. Re-
cently, generative feature transformation has been proposed
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- Advice on semantics: Consider creating composite features that 
capture the interaction between symptoms that are clinically 
related or often occur together in cases of GAS pharyngitis. For 
instance, combine features like 'pain', 'swollenadp', and 
'tonsillarswelling' to form a composite indicator of throat-related 
symptoms. Additionally, consider the role of systemic symptoms 
such as 'temperature', 'headache', and 'nauseavomit' to create a 
feature indicating the overall systemic response, which might be 
more indicative of GAS infection.

- Advice on data: Evaluate the distribution of each feature to 
identify those with significant skewness or limited variability. For 
features with binary outcomes and low variance, consider 
combining them to increase variability, such as aggregating 
symptoms or creating a count of positive symptoms

- Feature Sequence: [ ( f2 + f3 + f5 ), ( f7 * f12 * f17 ) ]
- Generated Features: 
1. New feature 1 = pain + swollenadp + tonsillarswelling
2. New feature 2 = temperature * headache * nauseavomit

Health

Spaceship

- Advice on semantics: Consider generating features that capture 
group-level characteristics by extracting and analyzing the 
group information from PassengerId. For instance, create 
features that reflect the group size or whether members of the 
same group have similar attributes like HomePlanet or 
Destination. Additionally, create features that capture spatial 
information from the Cabin attribute, such as deck level or side 
orientation, which may correlate with transport likelihood.

- Advice on data: To improve the data distribution, create 
aggregated features that summarize passenger expenditures 
across amenities, such as total expenditure or average 
expenditure per amenity. These features could help normalize 
the skewed distributions and reveal underlying patterns related 
to passenger behavior and preferences. Also, consider 
normalizing or standardizing continuous features like Age and 
expenditure columns to reduce the impact of outliers and 
facilitate model training.

- Feature Sequence: [ ( f7 + f8 + f9 + f10 + f11 ) ]
- Generated Features:
1. New feature 1 = RoomService + FoodCourt + ShoppingMall + 

Spa + VRDeck

Figure 7: Case study. We provide some examples of generator-critic
generation process. The critic agent suggests optimization paths,
and the generator agent selects and takes actions on the most promis-
ing one.

and achieves promising performance. MOAT [Wang et al.,
2023a] formulates feature transformation as a sequential gen-
eration task. They embed the feature sets into a continuous
space and perform the gradient-steered search for the optimal
feature set.

5.2 Task-specific LLM
With LLM demonstrating competitive performance across
a wide range of fields, there is an increasing number of
works focusing on the application of LLM for specific tasks
[Wang et al., 2025]. Aug-iModels [Singh et al., 2023] en-
hances linear models with LLM embeddings and decision
trees with LLM-generated features, improving performance
and interpretability in NLP tasks and showing promise in neu-
roscience. The paper [Li et al., 2023] reviews LLM applica-
tions in finance, proposes a decision framework for selecting
solutions based on data, compute, and performance, and dis-
cusses key limitations to guide responsible financial AI use.
LLM is also utilized to mine and understand relationships in

- Feature Sequence: [ ( ( f5 + f6 ) * f5 ), ( f5 / f6 ), ( f5 -
f6 ) ]
- Generated Features: 

- New feature 1 = (Upper_Age + Lower_Age) * 
Upper_Age

- New feature 2 = Upper_Age / Lower_Age
- New feature 3 = Upper_Age - Lower_Age

You can explore interactions between 'Upeer_Age' and 
'Lower_Age', that may be helpful.

'Region_Code' is interesting. It may be useful to generate 
new features based on this feature.

- Feature Sequence: [ ( ( f2 - f6 ) * f2 ), ( cube f2 ) ]
- Generated Features: 

- New feature 1 = (Region_Code - Holding_Policy_Type) 
* Region_Code

- New feature 2 = cube(Region_Code)

Figure 8: Case study. We provide some examples of conversational
feature transformation. LPFG can create new features according to
personal requirements.

graph data and is applied to recommendation tasks [Wang et
al., 2024]. There are also methods utilizing LLM for data sci-
ence. For instance, CAAFE [Hollmann et al., 2024] leverages
an LLM to iteratively generate additional semantically mean-
ingful features for tabular datasets using the dataset’s descrip-
tion. ELLM-FT [Gong et al., 2024] proposes to integrate
evolutionary algorithm and LLM to generate new feature sets
by few-shot prompting. This paper differs from the previ-
ous LLM-based methods in two key aspects: 1) it is under
an unsupervised setting which is very challenging for feature
transformation; 2) we leverage two specialized LLM agents
for dataset diagnosis and feature generation, rather than a
single LLM. 3) we extend the method to conversational fea-
ture transformation, providing a novel interactive way for this
task.

6 Conclusion

We introduce a duet-play generator-critic LLM agents model.
Our approach implements unsupervised feature generation in
three steps: 1) we employ a critic agent for dataset diagno-
sis. Leveraging the general knowledge, it provides feature
set improvement suggestions from both semantic and distri-
butional perspectives in an unsupervised manner; 2) we build
a generator agent to create new features. Based on the ad-
vice from the critic agent, the generator makes the final fea-
ture set optimization decision and generates new features in
a sequential formulation; 3) We iterate the feedback loop be-
tween the critic agent and generator agent, continuously re-
fining the feature space. The proposed framework achieves
unsupervised dataset diagnosis and improvement. By team-
ing two specialized LLM agents, we avoid repeated feature
combination space exploration and implement robust and ef-
ficient feature set optimization in few iterations. Our method
is also extended to a novel conversational feature generation
formulation. Replacing the critic agent with a human expert,
we integrate the expertise into LLM and build a flexible and
interactive system for feature generation. Finally, extensive
experiments demonstrate the effectiveness, robustness, effi-
ciency, and traceability of our method.
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