
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Online Housing Market

Julien Lesca
Université Paris-Dauphine, PSL, CNRS, LAMSADE

julien.lesca@dauphine.fr

Abstract
We study an online variant of the celebrated hous-
ing market problem, where each agent owns a sin-
gle house and seeks to exchange it based on her
preferences. In this online setting, agents may ar-
rive and depart at any time, meaning not all agents
are present in the housing market simultaneously.
We extend the well-known serial dictatorship and
top trading cycle mechanisms to the online sce-
nario, aiming to retain their desirable properties,
such as Pareto efficiency, individual rationality, and
strategy-proofness. These extensions also seek to
prevent agents from strategically delaying their ar-
rivals or advancing their departures. We demon-
strate that achieving all these properties simultane-
ously is impossible and present several variants that
achieve different subsets of these properties.

1 Introduction
Allocating indivisible resources to agents is a fundamental
problem in computational social choice, situated at the inter-
section of economics [Thomson, 2011] and computer science
[Klaus et al., 2016; Manlove, 2013]. The decision-maker in
such problems must account for both the preferences of the
agents over the resources and their strategic behavior. In this
paper, we focus on a specific problem known as the housing
market in the matching theory literature [Shapley and Scarf,
1974], where each agent is endowed with a single resource
they are willing to exchange for another. Additionally, we
assume that no monetary compensation is allowed to offset
any unfavorable exchanges during the process. Despite its
simplicity, this problem has numerous applications, including
the exchange of dormitory rooms among students [Chen and
Sönmez, 2002], the trade of used items [Swapz, 2025], kid-
ney exchanges where incompatible donor/recipient pairs ex-
change organs for transplants [Ferrari et al., 2015], and more
(see, e.g., [Biró, 2017] for additional applications).

In this paper, we assume that preferences over resources
are ordinal. The procedure for reallocating resources among
agents is centralized, with the decision-maker aiming to pro-
duce an allocation that is as efficient as possible. Under or-
dinal preferences, Pareto optimality serves as an appropriate
efficiency measure, seeking allocations where no agent can

be made better off without disadvantaging another. In the
standard offline setting, this requirement can be met using the
serial dictatorship procedure, also known as the picking se-
quence [Bouveret and Lang, 2014]. In this procedure, agents
are arranged in a specific order, and each agent, one by one,
selects their most preferred resource from the pool of remain-
ing resources. However, this process is not individually ra-
tional, as some agents may end up with resources less desir-
able than their initial endowments. This is problematic, as
agents might be discouraged from participating in the trade
to avoid being worse off. The well-known Gale’s top trading
cycle (TTC) procedure [Shapley and Scarf, 1974] addresses
this issue by ensuring individual rationality while producing
a Pareto-optimal allocation.

Since the procedure is centralized, the decision maker must
interact with agents to gather their preferences over resources.
However, during this process, agents may misreport their
preferences in an attempt to manipulate the procedure and
achieve a more favorable outcome. Mechanism design seeks
to create procedures where truthfully revealing preferences
is a dominant strategy for agents[Hurwicz and Reiter, 2006].
Both the serial dictatorship and TTC procedures possess this
property. Moreover, it has been proven that the TTC proce-
dure is the only mechanism that is simultaneously individu-
ally rational, Pareto efficient, and strategy-proof[Ma, 1994].

The standard offline setting assumes that all agents partic-
ipating in the exchange are available at the same time, and
that the exchange procedure is conducted during this period.
However, in many contexts, this requirement is unrealistic or
too demanding. In more realistic scenarios, agents are only
available during restricted time periods, meaning that some
may not be able to participate in the exchange simultane-
ously. This is the case, for example, with online exchange
websites[Swapz, 2025], where agents do not arrive at the
marketplace at the same time and cannot remain indefinitely
before their swaps take place. This type of scenario is re-
ferred to as online[Albers, 2003], or dynamic, in the context
of matching[Baccara and Yariv, 2021].

Outline. Section 2 lists related works connected to the on-
line problem under consideration. Section 3 defines the main
properties we aim to achieve. Section 4 presents online mech-
anisms based on the serial dictatorship procedure, while Sec-
tion 5 introduces multiple online variants of the TTC proce-
dure.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

2 Related Works
Multiple social choice problems have been examined through
the lens of online procedures. In fair division, which aims
to allocate resources fairly, several online variants have been
explored[Aleksandrov and Walsh, 2020; Sankar et al., 2021;
Hosseini et al., 2024]. For instance, strategy-proofness and
Pareto efficiency have been studied in this context[Aleksan-
drov et al., 2015], along with envy-freeness. Various exten-
sions of the serial dictatorship procedure have been proposed
to achieve these properties[Aleksandrov and Walsh, 2019].
The online electric vehicle charging problem[Gerding et al.,
2019], which focuses on scheduling charging for customers
arriving in an online fashion, also shares similarities with our
problem. However, in both cases, the online setting differs
from ours, as resources do not arrive dynamically and are
known to the procedure from the outset. Closer to our setting,
as it addresses a one-to-one matching problem, an online ver-
sion where preferences are elicited incrementally by querying
agents has been considered[Hosseini et al., 2021]. A pro-
cedure that elicits preferences to achieve Pareto-optimality
while minimizing the number of queries has been proposed.

Numerous works have focused on dynamic kidney
exchange[Ünver, 2010; Ashlagi and Roth, 2021], where
donors and recipients arrive in an online fashion. Most of
these studies consider compatibility (0-1 preferences) rather
than ordinal preferences. Additionally, they often assume that
the allocation process can be probabilistic, rely on probabilis-
tic assumptions about arrivals and departures, and aim to re-
duce the expected waiting time before a transplant[Bloch and
Cantala, 2017; Anderson et al., 2017; Baccara et al., 2020].
Other studies focus on maximizing the expected number of
matched pairs[Awasthi and Sandholm, 2009; Dickerson et al.,
2012]. The design of strategy-proof and individually rational
mechanisms has also been considered for transplant centers
participating in national exchange programs[Ashlagi et al.,
2015; Hajaj et al., 2015].

3 Preliminary
Let N = {1, . . . , n} denote the set of agents. Each agent
i owns a single good1 ei, called her initial endowment. Let
T = [t−, t+] denote the timeline during which the market
is open, where t− and t+ represent the opening and closing
times, respectively. For each agent i, ai and di represent her
(earliest) arrival and (latest) departure times in the market,
with ai, di ∈ T such that t− ≤ ai < di ≤ t+. To simplify
the setting, we assume that no two arrival or departure times
occur simultaneously. Let E = {e1, . . . , en} represent the
set of items. Each agent i has a strict ordinal preference ≻i

over the items in E, such that ej ≻i ek means agent i strictly
prefers ej over ek. Furthermore, symbol ⪰i stands for ≻i or
=. An instance of the online exchange problem is represented
by the set of tuples {(i, ei, ai, di,≻i)}i∈N . Without loss of
generality, we assume that the agent indices are ordered by
increasing arrival times, i.e., such that a1 < a2 < . . . < an
hold. Let I denote the entire set of possible instances.

Our goal is to allocate to each agent a single item such that
each item is assigned only once. In other words, we search

1The resources are interchangeably referred to as goods or items

Figure 1: Example instance (left) and allocations (right).

for an allocation M : N → E such that M(i) ̸= M(j) for
each i ̸= j. The timeline constraints are such that each agent
will leave the market with an item which belongs to an agent
that arrived in the market earlier than her departure time. For
any t ∈ T , let N<t = {i ∈ N : ai < t} denote the subset of
agents arriving before t. For a given instance I , an allocation
M is I-compatible if M(i) ∈ E<di holds ∀i ∈ N , where
E<t = {ei : i ∈ N<t} for each t ∈ T . For any instance I ,
the set of I-compatible allocations is denotedM(I).

An exchange algorithm A returns an I-compatible alloca-
tion for each instance I . We assume that Ai(I) denotes the
item allocated to agent i by algorithm A for instance I . In
the online version of the problem, the algorithm should make
a decision on the allocation for an agent when she leaves the
market, without knowing the agents that arrive after her de-
parture. In other words, the mechanism should make a deci-
sion only based on the agents that already visited the market
by the departure time of the agent. For any t ∈ T , let I<t

denote a truncated copy of I restricted to the agents of N<t.

Definition 1. An exchange algorithm A is online if for each
instance I and for each agent i, Ai(I) = Ai(I<di

) holds.

The choice between online exchange algorithms should be
guided by the properties fulfilled by the allocation that they
compute. To compare these algorithms, we consider multi-
ple standard desiderata properties. The first one is a standard
definition of efficiency in multi-agent problems.

Definition 2. Allocation M ′ Pareto-dominates allocation M
if for each agent i, M ′(i) ⪰i M(i), and for at least one agent
j, M ′(j) ≻j M(j). For a given instance I , let S denote a
subset ofM(I). Allocation M is S-Pareto optimal (S-PO),
if there is no allocation M ′ of S that Pareto-dominates it.

The standard notion of Pareto optimality corresponds to
M(I)-PO, as illustrated by the following example.

Example 1. Consider instance I described in Figure 1. The
timeline, containing the arrival and departure times of the
agents, as well as their preferences are in the left part of the
figure. Three different allocations are provided in the right
part of the figure. For example, allocation M is such that
M(1) = e2, M(2) = e3, and M(3) = e1. Note that M is not
I-compatible, as agent 2 receives an item from an agent who
arrives later than d2. Therefore, M does not belong toM(I).
Allocations M ′ and M ′′ are I-compatible andM(I)-PO.

Restricting comparisons to I-compatible allocations allows
for the existence of efficient solutions, even if better ones ex-
ist but are incompatible with the online setting.

Definition 3. Exchange algorithm A is individually rational
(IR), if for each instance I , Ai(I) ⪰i ei for any agent i.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Individual rationality property incentivize agents to par-
ticipate in the exchange algorithm, as no agent receive an
item that is less desirable than her initial endowment. An-
other standard property related to the manipulative power of
agents, through misreporting their preferences, is called in-
centive compatibility. We generalize this notion to take into
account manipulations related to arrival and departure times.

Definition 4. An exchange algorithm is strongly incentive
compatible (SIC), if for each agent i and for each pair of
instances I and I ′ such that I ′ = I \ {i, ei, ai, di,≻i} ∪
{i, ei, a′i, d′i,≻′

i} and ai ≤ a′i < d′i ≤ di, Ai(I) ⪰i Ai(I
′)

holds. It is a-IC (respectively d-IC) if the above inequality
holds only when di = d′i (respectively ai = a′i).

2 Finally, it is
weakly incentive compatible (WIC), if the above inequality
holds only when both ai = a′i and di = d′i.

The notion denoted WIC corresponds to the standard in-
centive compatibility in the offline case. Stronger notions
should incentivize agents to arrive as early as possible (a-IC),
as late as possible (d-IC), or both (SIC). We assume that ai
and di are agent i’s earliest arrival and latest departure times,
so she cannot arrive earlier than ai or depart later than di.
Definition 4 states that agent i cannot benefit by arriving later
than ai or departing earlier than di under an SIC mechanism.

4 Serial Dictatorship Procedure
In this section, we consider an exchange algorithm based on
the serial dictatorship procedure, which is described in Algo-
rithm 1. The standard version of the serial dictatorship pro-
cedure is based on a permutation of the agents defining the
order in which each agent will choose her item among the
remaining ones. We slightly generalize these permutations
by considering permutation functions whose order depends
on the instance. More formally, Π : I → NN denotes this
permutation function, which is such that for any instance I
and for any i ∈ {1, . . . , n}, Πi(I) denotes the agent choosing
at position i. We assume here that this permutation function
only depends on the arrival and departure times of the agents.
An example of such a permutation is the ascending departure
permutation δ which ranks the agents according to their de-
parture times,3 and more specifically by increasing departure
times, i.e., such that dδ(1) < dδ(2) < . . . < dδ(n).

In Algorithm 1, every iteration of the ”for” loop corre-
sponds to the departure of an agent, specifically agent δ(i),
whose departure time is the ith earliest. However, the order
in which the agents choose their items is determined by the
permutation function Π. Therefore, before agent δ(i) chooses
her item, all agents that are ranked before her according to Π
must choose their items. Once an agent has chosen an item,
she is permanently matched to it, even if more desirable items
arrive later. Note that the procedure besti returns the most
preferred item of agent i from a given set of items.

Algorithm 1 is designed to be online, as only the part of the
instance corresponding to agents who have already arrived,
I<dδ(i)

, is used at iteration i, during the departure of agent

2The notion of participation in [Mattei et al., 2017] is close to a-
IC, except that it does not require standard incentive compatibility.

3The input instance is omitted to simplify notations.

Algorithm 1 Online serial dictatorship procedure
Input: Permutation function Π.

1: Initialize M as an empty matching.
2: A← ∅. {Items already assigned.}
3: B ← ∅ {Agents already matched.}
4: j ← 1 {Position of the first remaining agent to choose.}
5: for i = 1 to n do
6: {Iteration occurring at dδ(i).}
7: if δ(i) ̸∈ B then
8: Let π denotes Π(I<dδ(i)

).
9: while π(j) ̸= δ(i) do

10: M(π(j))← bestπ(j)(E<dδ(i)
\A).

11: A← A ∪ {M(π(j))}.
12: B ← B ∪ {π(j)}
13: j ← j + 1.
14: M(δ(i))← bestδ(i)(E<dδ(i)

\A).
15: A← A ∪ {M(δ(i))}.
16: B ← B ∪ {δ(i)}
17: j ← j + 1.
18: return M .

δ(i). However, the permutation must be prefix-consistent
i.e., the order of agents already matched to items must not
change when new agents arrive. Otherwise, an agent might
be matched multiple times or ignored by the algorithm.
Definition 5. Permutation function Π is prefix-stable (PS),
if for each agent i, and for any positions i′ and j′ such that
Πi′(I) = i and j′ ≤ i′, Πj′(I) = Πj′(I<di

) holds.
The following proposition shows that Algorithm 1 is online

and weakly incentive compatible with PS permutation.
Proposition 1. ⋆4 Algorithm 1 is both online and WIC if the
input permutation function is PS.

4.1 The Ascending Departure Permutation
The following proposition shows that the ascending departure
permutation is a good candidate to be used with Algorithm 1.
Proposition 2. ⋆ Ascending departure permutation δ is PS.

Note that when Algorithm 1 is used with the ascending
departure permutation δ, the algorithm allows each agent to
choose the best remaining item upon leaving the market.
Example 2. We run Algorithm 1 with the ascending depar-
ture permutation δ on the instance of Figure 1. At d2 (de-
parture of agent 2), she selects item e1 that she prefers to e2.
Then, at d3, agent 3 selects item e2 that she prefers to e3.
Finally, agent 1 selects e3, which is the only remaining item.
The resulting allocation is M ′ described in Figure 1.

The following proposition shows that the ascending depar-
ture permutation δ leads to a Pareto efficient outcome.
Proposition 3. ⋆ For any I ∈ I, Algo. 1 using the ascending
departure permutation δ, returns aM(I)-PO allocation.

The following proposition shows that no other online ex-
change algorithm always returns a Pareto-efficient outcome.

4Propositions marked with ⋆ indicate that proofs are omitted due
to space limitations, but are included in the supplementary material

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Proposition 4. Algorithm 1 using the ascending departure
permutation δ is the only online exchange algorithm that re-
turns for any instance I anM(I)-PO allocation.

Proof. By contradiction, let A denote an online exchange al-
gorithm that behaves differently than Algorithm 1 with the
ascending departure permutation δ. This means that there is
an instance I and an agent j such that Aj(I) does not corre-
spond to the assignment made by Algorithm 1 with permu-
tation δ. In other words, agent j does not receive her most
favorite item among those in E<dδ(j)

minus the items already
assigned to agents leaving earlier than her. Furthermore, we
assume w.l.o.g. that, among the set of agents in this situation,
agent j is the one who leaves the earliest. Let M denote the
allocation obtained by Algorithm 1 with permutation δ ap-
plied to I . Let i denote the agent who receives M(j) instead
of agent j in A(I), i.e., such that Ai(I) = M(j). By as-
sumption, dj < di holds since, otherwise, an agent arriving
earlier than agent j would not receive the same item as in M .

To show the contradiction, we construct a new instance I ′

by adding dummy agents to I . For any agent k leaving af-
ter dj , let k′ be a dummy agent such that ak′ = dj + kϵ,
with ϵ > 0 small enough for all these agents to arrive ear-
lier than any other arrival or departure, and dk′ large enough
to leave after any other agent of I . The preferences of the
agents in I ′ are as follows. For any agent k that was already
in I and leaving after dj , her favorite item is ek′ , followed by
the items of I ranked in the same order, and finally all other
items of I ′ ranked arbitrarily. Dummy agent i′’s preferences
are Aj(I) ≻i′ M(j) ≻i′ . . ., where all the other items are
ranked arbitrarily. Finally, the favorite item of other dummy
agent k′ is Ak(I), and all other items are ranked arbitrarily.

Note first that since A is online, both Aj(I
′) = Aj(I

′
<dj

)

and Aj(I<dj
) = Aj(I) hold. Furthermore, since all dummy

agents arrive later than dj , I<dj
= I ′<dj

, which implies with
the former equalities that Aj(I

′) = Aj(I). Concerning the
assignment of the other agents, based on their preferences and
sinceA isM(I ′)-PO, we can say that for each dummy agent
k′, we have Ak′(I ′) = Ak(I), and for each regular agent k
leaving after dj , we have Ak(I

′) = ek′ . More precisely for
i′ we have Ai′(I

′) = Ai(I) = M(j). Note that except for
agents i′ and j, any agent receives her favorite item.

But now consider the almost same allocation, say M ′,
as the one constructed by A, except that agent j receives
M(j) and agent i′ receives Aj(I). Note that by construc-
tion, M ′ should belong to M(I ′) since A is an online ex-
change algorithm, and therefore A(I<dj

) = A(I ′<dj
) be-

longs toM(I ′<dj
) (for agent j and the ones leaving after her),

A(I ′) belongs toM(I ′) (for all other agents except agent i′),
and ai′ < di holds (for agent i′). Agent j and dummy agent
i′ receive in M ′ a strictly better item than the one offered by
algorithmA. Therefore, M ′ Pareto dominatesA(I ′), leading
to a contradiction since A isM(I ′)-PO.

Propositions 3 and 4 suggest focusing on Algorithm 1 with
input δ when we want an online algorithm that returns an ef-
ficient outcome. Furthermore, Proposition 1 and 2 attest that
this algorithm is WIC. However, it is easy to check that Al-
gorithm 1 using input δ is neither a-IC, d-IC nor IR.

Corollary 5. There is no online exchange algorithm that both
returns a M(I)-Pareto optimal allocation for any instance
I ∈ I, and is either a-IC, d-IC or IR.

4.2 The Ascending Arrival Permutation
Another candidate is the ascending arrival permutation α,
which ranks the agents by increasing arrival time i.e., such
that aα(1) < aα(2) < . . . < aα(n). The following proposition
shows that this permutation α is consistent with Algorithm 1.

Proposition 6. ⋆ Ascending arrival permutation α is PS.

Example 3. We run Algorithm 1 with the ascending arrival
permutation α on the instance of Figure 1. At d2, agent 1
selects first and picks e2, which she prefers to e1. Then, agent
2 selects the last remaining item at d2, which is e1. Finally,
at d3, agent 3 picks the last remaining item, which is e3. The
resulting allocation is M ′′ described in Figure 1.

Furthermore, choosing the ascending arrival permutation α
incentivizes agents to truthfully report their departure time.

Proposition 7. ⋆ Algorithm 1 is online and d-IC if and only
if it uses the ascending arrival permutation α as input.

Note that this statement is not as strong as Proposition 4
since it does not rule out any other d-IC online exchange
algorithm. The following proposition rules out the existence
of a permutation that achieves a-IC with Algorithm 1.

Proposition 8. ⋆ There is no online permutation function that
makes Algorithm 1 a-IC.

5 Top Trading Cycle Based Algorithms
We now explore the possibility to extend the TTC pro-
cedure to our online problem. This procedure is a natu-
ral candidate to achieve the properties mentioned in Sec-
tion 3, since in the offline context it fulfills all of them,
and even stronger requirements [Roth and Postlewaite, 1977;
Ma, 1994]. Before providing an extension of TTC to the on-
line setting, we provide a description of the standard TTC
procedure in Algorithm 3, which will be used as a subroutine
of our online algorithms. This procedure relies on the TTC-
graph, which is an oriented graph where agents are vertices.
As described in Algorithm 2, each vertex has an out-degree of
one, and the single oriented edge starting at the vertex corre-
sponding to an agent i is oriented to the vertex corresponding
to agent j whose item ej is the most favorite according to ≻i

among the ones detained by the agents in the graph. Such
a graph should contain at least one cycle, and items are as-
signed along these cycles. Each agent contained in the cycle
is assigned the item belonging to the agent that she is pointing
to and leaves the market with this item. The procedure con-
tinues repeatedly with the remaining agents and their initial
endowment until each agent is assigned an item.

It is well known that the TTC procedure is IR in the offline
setting, and any online extension of this algorithm should
keep this property. However, concerning the other properties,
in the online setting not all agents are present at the beginning
of the algorithm, and some of them will not arrive before the
departure of other agents. Therefore, Algorithm 3 should be
customized to fit the online setting. We explore a procedure

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 2 TTC-graph construction
Input: Subset of agents N ′ and their initial endowment.

1: V ← N ′. {Set of vertices.}
2: H ←

⋃
i∈N ′{ei}.{Houses owned by the agents of N ′.}

3: E ← ∅. {Set of edges.}
4: for each i in N ′ do
5: E ← E ∪ (i, besti(H)).
6: return G = (V,E).

Algorithm 3 Top trading cycle algorithm
Input: Subset of agents N ′ and their initial endowments.

1: while N ′ ̸= ∅ do
2: Construct the TTC-graph G(N ′) using Algorithm 2.
3: for each cycle C = (c1, c2, . . . , ck) in G(N ′) do
4: for i = 1 to k − 1 do
5: M ′(ci)← eci+1

.
6: M ′(ck)← ec1 .
7: N ′ ← N ′ \ C.
8: return M ′.

described in Algorithm 4, which applies TTC to subsets of
agents already present in the market, according to an input
partition function. Partition function P applied to I will par-
tition the agents of I into multiple subsets. More formally, a
partition function P : I → 22

N

maps any instance I ∈ I to
a partition P(I) of the agents in I . This means that P(I) is
a collection of subsets of agents such that the union of these
subsets is N , and no two subsets share an agent. We assume
once again that the result of this function is independent of
the preferences of the agents and their initial endowments. To
construct the allocation, Algorithm 3 is applied independently
to the subsets of agents returned by this partition function. To
simplify notations, we assume that Pi(I) denotes the subset
of P(I) that contains agent i.

The TTC procedure described in Algorithm 4 requires that
an agent is not selected multiple times for application of Al-
gorithm 3. This translates into the following property.

Definition 6. A partition function P is online compatible
(OC) if for any instance I and agent i, Pi(I) = Pi(I<di).

It is easy to check that if partition function P is OC, then
for any agent i, Pi(I) contains only agents that are in the
market at time di, i.e., for any j ∈ Pi(I), aj < di < dj must
hold. Furthermore, no agent participates multiple times to
the TTC procedure when the partition function used by Algo-
rithm 4 is OC. The following proposition outlines the prop-
erties of OC partition functions with respect to Algorithm 4.

Proposition 9. ⋆ Algorithm 4 using a OC partition function
as input is both online and WIC.

5.1 The Departing Agent Excluded Partition
We explore now if a stronger notion of incentive compatibil-
ity can be achieved with particular partition functions. Let
us introduce the departing agent excluded partition γ, whose
construction is described in Algorithm 5. Intuitively, every
time that an unpartitioned agent leaves the market, two new

Algorithm 4 Online top trading cycle procedure
Input: Partition function P .

1: B ← ∅ {Agents already matched.}
2: for i = 1 to n do
3: {Iteration occurring at dδ(i).}
4: if δ(i) ̸∈ B then
5: Applies Algorithm 3 to Pi(I<dδ(i)

) to obtain M ′.
6: for all j ∈ Pi(I<dδ(i)

) do
7: M(j)←M ′(j).
8: B ← B ∪ Pi(I<dδ(i)

)
9: return M .

Algorithm 5 Departing agent excluded partition γ

Input: Instance I = {(i, ei, ai, di,≻i)}i∈N .
1: B ← ∅. {Set of agents belonging to the partition.}
2: γ ← ∅ {The partition to construct.}
3: for i = 1 to n do
4: {Iteration occurring at dδ(i).}
5: if δ(i) ̸∈ B then
6: γ ← γ ∪ {{δ(i)}} ∪ {N<dδ(i)

\ (B ∪ {δ(i)})}
7: B ← B ∪N<dδ(i)

8: return γ.

subsets are added to the partition. The first is a singleton con-
taining the agent leaving the market, and the second is the
remaining unpartitioned agents that are present in the market.

Proposition 10. ⋆ The departing agent excluded partition γ
is OC.

Example 4. Consider the instance I and the three alloca-
tions depicted in Figure 2. It is easy to verify that Algorithm 1
using either the ascending departure permutation δ or the as-
cending arrival permutation α returns allocation M ′′, which
is not IR since agent 5 receives item e1.

Let us first run Algorithm 5 to compute the departing agent
excluded partition γ(I). At d1, N<d1 = {1, 2, 3}. Therefore,
{1} and {2, 3} are added to the partition. At d2 and d3, noth-
ing occurs since agents 2 and 3 are already in the partition.
At d4, N<d4 = N , but agents 1, 2, and 3 are already in the
partition. Therefore, {4} and {5} are added to the partition,
and Algorithm 5 returns γ(I) = {{1}, {2, 3}, {4}, {5}}.

Let us now run Algorithm 4 with γ(I) as input to compute
the allocation for this instance. The TTC procedure is applied
only once to a subset of more than one agent, which is {2, 3}.
As depicted in Figure 3a, the TTC-graph for the subset of
agents {2, 3} contains a single cycle covering all agents, and
they swap their goods. The resulting allocation is M .

The idea under this partition function γ is to punish agents,
who force the assignment to take place because they leave
earlier, by leaving them alone in the partition. The conse-
quence for Algorithm 4 is that they keep their initial endow-
ment without exchange. The following proposition shows
more formally that no agent has an incentive to misreport her
departure time when Algorithm 4 uses partition function γ.

Proposition 11. Algorithm 4 using the departing agent ex-
cluded partition γ is d-IC.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 2: Example instance (left) and allocations (right).

(a) For {2, 3}. (b) For {1, 2} (left) and {3, 4} (right).

Figure 3: TTC-graphs for different instances and subsets of agents.

Proof. We know by Propositions 9 and 10 that Algorithm 4
with partition γ is WIC. It remains to show that no agent has
an incentive to misreport her departure time. Let S denote the
subset of agents for which the “if” clause of Algorithm 5 is
true, i.e., agents that are not partitioned until their departure.

Consider first the case of an agent i ∈ S. Note first that
agent i belongs to a singleton in the departing agent excluded
partition γ. Let us show that even if agent i declares an earlier
departure time d′i such that ai < d′i < di, then there is no
other agent j of S such that d′i < dj < di. Indeed, since
dj < di, we know that agent j is considered before agent i
during the “for” loop of Algorithm 5. In the last instruction of
this loop when agent j is considered, N<dj is added to the set
of partitioned agents B. Since agent i is not in B at iteration
di of the loop, it means that she is not in N<dj

, or in other
words ai > dj . This implies with ai < d′i that dj < d′i.

We now know that any agent of S leaving earlier than agent
i will still leave earlier than i even after i declares a new de-
parture time d′i. This implies that agent i will still pass the
“if” test in the loop of Algorithm 5 even if she changes her
departure time because no agent of S leaving earlier will in-
clude i in a partition. Therefore, agent i will be alone in the
departing agent excluded partition γ after misreporting her
departure time and will keep her item during Algorithm 4.
So, she has no incentive to misreport her departure time.

Consider now the case of an agent i not in S. Note first that
i ̸∈ S means that there is an agent j ∈ S such that dj < di
and i ∈ N<dj

. We assume that j is the agent of S with
the lowest rank in the ascending departure permutation δ for
which these inequalities are true. In other words, the subset
of agents containing agent i is selected by Algorithm 5 during
the iteration of the “for” loop corresponding to dj . By apply-
ing the same reasoning as above, it is easy to check that there
is no agent k of S such that dk < dj and d′i < dk. Therefore,
the only misreport d′i of agent i that could change the out-
come of Algorithm 5 is such that dj > d′i. In that case, agent
i will belong to the set of agents for which the “if” condition
of Algorithm 5 is true, and therefore agent i will be alone in
the departing agent excluded partition γ, and will receive her
item in Algorithm 4. Since Algorithm 4 is IR, agent i has no

Algorithm 6 Scheduled departure partition θ.
Input: Instance I , and schedule ξ = {ξ0, ξ1, . . . ξk}.

1: A← {0}. {Set of intervals of ξ already considered.}
2: B ← ∅. {Set of agents belonging to the partition.}
3: for i = 1 to n do
4: {Iteration occurring at dδ(i).}
5: Let ξj denote the interval of ξ containing dδ(i).
6: if j ̸∈ A then
7: Let S be the subset of agents of I<dδ(i)

whose de-
parture times belong to ξj .

8: θ ← θ ∪ {S}.
9: A← A ∪ {j}.

10: B ← B ∪ S.
11: else if δ(i) ̸∈ B then
12: θ ← θ ∪ {{δ(i)}}.
13: B ← B ∪ {δ(i)}.
14: return θ.

incentive to misreport her departure time.

Unfortunately, it is easy to check that Algorithm 4 using
the departing agent excluded partition γ is not a-IC.

5.2 Partition Functions Based on Schedules
Let us now examine if a-IC can be achieved by Algo-
rithm 4 using another partition function. To do so, we
introduce a subset of non-overlapping time intervals ξ =
{ξ0, ξ1, . . . , ξk}, that we call schedule. More formally, we
assume that for any j ∈ {0, 1, . . . , k}, ξj ⊆ T , and for any
j′ ̸= j, ξj ∩ ξj′ = ∅. We assume that each interval is con-
tiguous, potentially with the exception of ξ0, which covers all
time intervals not contained in the other intervals. This sched-
ule will be used to initialize the partition by grouping agents
whose departure times belong to the same time interval of ξ.

The construction of the scheduled departure partition θ is
described in Algorithm 6, and depends on both the arrival and
departure times of the agents, and the input schedule ξ. Intu-
itively, all agents whose departure times belong to the same
time interval and whose arrival times are no later than the
earliest departure time of one of these agents are grouped
together, whereas the other agents are left alone in the par-
tition. Interval ξ0 plays a special role since all the agents
whose departure times belong to this interval are left alone in
the partition. Note that this first interval may be left empty.
To simplify notation, we denote by θ the scheduled depar-
ture partition resulting from Algorithm 6, without specifying
the schedule used. The following proposition shows this the
partition function is online compatible.

Proposition 12. ⋆ Scheduled departure partition θ is OC.

Example 5. Consider once again instance I described in
Figure 2, and schedule ξ represented in Figure 4. Note that ξ1
contains the departure time of agents 1 and 2, and ξ2 contains
the departure time of agents 3, 4, and 5. Let us run Algorithm
6 to compute the scheduled departure partition θ(I). At d1,
both agents 1 and 2 are in N<d1

. Therefore, {1, 2} is added
to the partition. At d2, nothing happens since agent 2 al-
ready belongs to the partition. At d3, both agents 3 and 4 are

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 4: Graphical representation of schedule ξ.

in N<d3
. Therefore, {3, 4} is added to the partition. At d4,

nothing happens since agent 4 is already part of the partition.
At d5, the interval ξ2 that contains d5 has already been con-
sidered. Therefore, agent 5 remains alone, and {5} is added
to the partition. Finally, the algorithm halts and returns the
scheduled departure partition θ(I) = {{1, 2}, {3, 4}, {5}}.

Let us now run Algorithm 4 using θ(I) as input to compute
the allocation. The TTC procedure is applied independently
to {1, 2} and {3, 4}. The TTC-graphs during the first itera-
tion of the TTC procedure are represented in Figure 3b. The
TTC-graph for the subset of agents {1, 2} (left part of Figure
3b) contains a single cycle, which is the self-loop involving
agent 2. Therefore, agent 2 keeps her good, and agent 1,
who remains alone during the second iteration, also keeps
her good. The TTC-graph for {3, 4} (right part of Figure 3b)
contains a single cycle that includes both agents, who swap
their goods. The resulting matching is M ′ of Figure 2.

Note that if agents i and j have their departure times be-
longing to the same time interval and one of them, say i,
leaves before the arrival of the other, then agent j is left alone
in the scheduled departure partition θ. That was the case for
agent 5 in Example 5. The underlying idea is that the set con-
taining agent i in the partition θ must be decided before her
departure, and agent j, who arrives later, cannot be included
in the same set. Additionally, agent j cannot be partitioned
with other agents to avoid incentivizing her to strategically
delay her arrival time. The following proposition shows that
no agent has an incentive to misreport her arrival time with
the partition function returned by Algorithm 6.
Proposition 13. ⋆ Algorithm 4 using the scheduled departure
partition θ is a-IC.

Unfortunately, Algorithm 4 using the scheduled departure
partition θ is not d-IC, with the exception of the schedule
containing only ξ0. In that case, ξ0 = T holds and the result-
ing partition is the one where each agent is alone. Algorithm
4 will therefore assign to each agent her own item. This al-
gorithm is obviously SIC since its outcome does not change
with the preferences and the arrival and departure time of the
agents. However, this algorithm is not really interesting since
no exchanges among agents are performed, and the alloca-
tion is not improved. By combining the properties of Algo-
rithms 5 and 6, we can create a less trivial partition function
that renders Algorithm 4 SIC. To do so, we can use Al-
gorithm 6 as a baseline, and modify line 8 by the assignment
θ ← θ∪{{δ(i)}}∪{S\{δ(i)}}, which is consistent with line
5 of Algorithm 5. Furthermore, we restrict the input sched-
ule to {ξ0, ξ1} such that ξ0 = ∅ and ξ1 = T . The resulting
partition function is called earliest departure partition ζ. In
other words, this partition ζ groups together all the agents of
I<δ(1), with the exception of agent 1, and all the other agents

stay alone. This partition ζ is easily shown to be OC due to
its similarity in construction to Algorithms 5 and 6.
Example 6. Consider one last time instance I described in
Figure 2. Let us compute the earliest departure partition ζ(I)
by running the modified version of Algorithm 6 described in
the previous paragraph. At d1, during the earliest depar-
ture time of an agent, N<d1

contains agents 1, 2, and 3.
Therefore, {1} and {2, 3} are added to the partition. All
the other agents will remain alone in the partition. Thus,
the algorithm halts and returns the earliest departure par-
tition ζ(I) = {{1}, {2, 3}, {4}, {5}}, which is identical to
the departing agent excluded partition γ(I). Therefore, the
matching returned by Algorithm 4 is M depicted in Figure 2.
Proposition 14. ⋆ Algorithm 4 using the earliest departure
partition ζ is SIC.

The main drawback of the earliest departure partition ζ is
that only one coalition contains more than one agent, and the
exchanges performed during the TTC procedure may involve
few agents. Their number depends on the agents present in
the market when the first agent leaves and ranges from 1 (if
a2 > d1) to n− 1 (if an < dδ(1)).

6 Conclusion and Future Works
We extended the serial dictatorship and TTC procedures to an
online setting, aiming to develop mechanisms that are Pareto-
efficient, individually rational, and incentivize agents to truth-
fully reveal their preferences, as well as their actual arrival
and departure times. Several variants of these mechanisms
were proposed and are summarized in Table 1 along with their
respective properties. The paper also presents additional re-
sults not summarized in Table 1. For example, we proved that
Algorithm 1 using the ascending departure permutation δ is
the only mechanism always returning aM(I)-PO allocation.

M-PO IR WIC a-IC d-IC

Alg. 1 with δ Prop. 3 Prop. 1
Alg. 1 with α Prop. 1 Prop. 7
Alg. 4 with γ

√
Prop. 9 Prop. 11

Alg. 4 with θ
√

Prop. 9 Prop. 13
Alg. 4 with ζ

√
Prop. 9 Prop. 14 Prop. 14

Table 1: Summary of the different mechanisms and their properties.

An intriguing extension of this work would be to explore
dynamic versions of these mechanisms, where the allocation
of an agent remaining in the market could evolve even after
an item has been assigned to her. Another promising direc-
tion is the design of a strongly incentive-compatible mech-
anism that enables more exchanges than Algorithm 4 with
the earliest departure partition ζ. Lastly, we could investi-
gate relaxed forms of efficiency and strategy-proofness, po-
tentially incorporating probabilistic assumptions about arrival
patterns. Such probabilistic assumptions are closely related to
the online stochastic matching problem [Feldman et al., 2009;
Huang and Shu, 2021]. A similar approach has also been ex-
plored for the fair assignment of public goods [Banerjee et
al., 2022; Banerjee et al., 2023].

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Albers, 2003] Susanne Albers. Online algorithms: a survey.

Mathematical Programming, 97:3–26, 2003.

[Aleksandrov and Walsh, 2019] Martin Aleksandrov and
Toby Walsh. Strategy-proofness, Envy-freeness and
Pareto Efficiency in Online Fair Division with Addi-
tive Utilities. In Proceedings of the Sixteenth Pacific
Rim International Conference on Artificial Intelligence,
PRICAI’19, pages 527–541, 2019.

[Aleksandrov and Walsh, 2020] Martin Aleksandrov and
Toby Walsh. Online Fair Division: A Survey. In Proceed-
ings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI’20, pages 13557–13562, 2020.

[Aleksandrov et al., 2015] Martin Aleksandrov, Haris Aziz,
Serge Gaspers, and Toby Walsh. Online Fair Division:
Analysing a Food Bank Problem. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI’15, pages 2540–2546, 2015.

[Anderson et al., 2017] Ross Anderson, Itai Ashlagi, David
Gamarnik, and Yash Kanoria. Efficient Dynamic Barter
Exchange. Operations Research, 65(6):1446–1459, 2017.

[Ashlagi and Roth, 2021] Itai Ashlagi and Alvin E. Roth.
Kidney Exchange: An Operations Perspective. Manage-
ment Science, 67(9):5455–5478, 2021.

[Ashlagi et al., 2015] Itai Ashlagi, Felix Fischer, Ian A.
Kash, and Ariel D. Procaccia. Mix and match: A strat-
egyproof mechanism for multi-hospital kidney exchange.
Games and Economic Behavior, 91(C):284–296, 2015.

[Awasthi and Sandholm, 2009] Pranjal Awasthi and Tuomas
Sandholm. Online Stochastic Optimization in the Large:
Application to Kidney Exchange. In Proceedings of the
Twenty-First International Joint Conference on Artificial
Intelligence, IJCAI’09, pages 405–411, 2009.

[Baccara and Yariv, 2021] Mariagiovanna Baccara and Leeat
Yariv. Dynamic matching. In Online and Matching-Based
Market Design, pages 1221–1278. 2021.

[Baccara et al., 2020] Mariagiovanna Baccara, SangMok
Lee, and Leeat Yariv. Optimal dynamic matching. The-
oretical Economics, 15(3):1221–1278, 2020.

[Banerjee et al., 2022] Siddhartha Banerjee, Vasilis
Gkatzelis, Artur Gorokh, and Billy Jin. Online Nash
Social Welfare Maximization with Predictions. In Pro-
ceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA’22, pages 1–19, 2022.

[Banerjee et al., 2023] Siddhartha Banerjee, Vasilis
Gkatzelis, Safwan Hossain, Billy Jin, Evi Micha,
and Nisarg Shah. Proportionally Fair Online Allocation
of Public Goods with Predictions. In Proceedings of the
Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI’23, pages 20–28, 2023.

[Biró, 2017] Péter Biró. Applications of Matching Models
under Preferences. In U. Endriss, editor, Trends in Compu-
tational Social Choice, pages 345–373. AI Access, 2017.

[Bloch and Cantala, 2017] Francis Bloch and David Can-
tala. Dynamic Assignment of Objects to Queuing
Agents. American Economic Journal: Microeconomics,
9(1):88–122, 2017.

[Bouveret and Lang, 2014] Sylvain Bouveret and Jérôme
Lang. Manipulating picking sequences. In Proceedings
of the Twenty-First European Conference on Artificial In-
telligence, ECAI’14, pages 141–146, 2014.

[Chen and Sönmez, 2002] Yan Chen and Tayfun Sönmez.
Improving Efficiency of On-Campus Housing: An Exper-
imental Study. American Economic Review, 92(5):1669–
1686, 2002.

[Dickerson et al., 2012] John P Dickerson, Ariel D Procac-
cia, and Tuomas Sandholm. Dynamic Matching via
Weighted Myopia with Application to Kidney Exchange.
In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, AAAI’12, pages 1340–1346, 2012.

[Feldman et al., 2009] Jon Feldman, Nitish Korula, Vahab S.
Mirrokni, S. Muthukrishnan, and Martin Pál. Online
Ad Assignment with Free Disposal. In Proceedings of
the Fifth International Workshop on Internet and Network
Economics, WINE’09, pages 374–385, 2009.

[Ferrari et al., 2015] Paolo Ferrari, Willem Weimar, Rachel J
Johnson, Wai H Lim, and Kathryn J Tinckam. Kid-
ney paired donation: principles, protocols and programs.
Nephrology Dialysis Transplantation, 30(8):1276–1285,
2015.

[Gerding et al., 2019] Enrico H. Gerding, Alvaro Perez-
Diaz, Haris Aziz, Serge Gaspers, Antonia Marcu, Nicholas
Mattei, and Toby Walsh. Fair Online Allocation of Per-
ishable Goods and its Application to Electric Vehicle
Charging. In Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence, IJ-
CAI’19, pages 5569–5575, 2019.

[Hajaj et al., 2015] Chen Hajaj, John P. Dickerson, Avinatan
Hassidim, Tuomas Sandholm, and David Sarne. Strategy-
Proof and Efficient Kidney Exchange Using a Credit
Mechanism. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI’15, pages
921–928, 2015.

[Hosseini et al., 2021] Hadi Hosseini, Vijay Menon, Nisarg
Shah, and Sujoy Sikdar. Necessarily Optimal One-Sided
Matchings. In Proceedings of the AAAI Conference on
Artificial Intelligence, AAAI’21, pages 5481–5488, 2021.

[Hosseini et al., 2024] Hadi Hosseini, Zhiyi Huang, Ayumi
Igarashi, and Nisarg Shah. Class Fairness in Online
Matching. Artificial Intelligence, 335:104177, 2024.

[Huang and Shu, 2021] Zhiyi Huang and Xinkai Shu. On-
line Stochastic Matching, Poisson Arrivals, and the Natu-
ral Linear Program. In Proceedings of the Fifty-Third An-
nual ACM SIGACT Symposium on Theory of Computing,
STOC’21, page 682–693, 2021.

[Hurwicz and Reiter, 2006] Leonid Hurwicz and Stanley Re-
iter. Designing Economic Mechanisms. Cambridge Uni-
versity Press, 2006.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Klaus et al., 2016] Bettina Klaus, David F. Manlove, and
Francesca Rossi. Matching under Preferences. In Fe-
lix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang,
and Ariel D. Procaccia, editors, Handbook of Computa-
tional Social Choice, page 333–355. Cambridge Univer-
sity Press, 2016.

[Ma, 1994] Jinpeng Ma. Strategy-proofness and the strict
core in a market with indivisibilities. International Journal
of Game Theory, 23:75–83, 1994.

[Manlove, 2013] David F. Manlove. Algorithmics of Match-
ing Under Preferences. World Scientific, 2013.

[Mattei et al., 2017] Nicholas Mattei, Abdallah Saffidine,
and Toby Walsh. Mechanisms for Online Organ Match-
ing. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI’17, pages
345–351, 2017.

[Roth and Postlewaite, 1977] Alvin Roth and Andrew
Postlewaite. Weak versus strong domination in a mar-
ket with indivisible goods. Journal of Mathematical
Economics, 4(2):131–137, 1977.

[Sankar et al., 2021] Govind S. Sankar, Anand Louis,
Meghana Nasre, and Prajakta Nimbhorkar. Matchings
with Group Fairness Constraints: Online and Offline Algo-
rithms. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI’21, pages
377–383, 2021.

[Shapley and Scarf, 1974] Lloyd Shapley and Herbert Scarf.
On cores and indivisibility. Journal of Mathematical Eco-
nomics, 1(1):23–37, 1974.

[Swapz, 2025] Swapz. Swapz: The UK’s Number One
Swapping Marketplace. https://www.swapz.co.uk/, 2025.

[Thomson, 2011] William Thomson. Fair Allocation Rules.
In Kenneth J. Arrow, Amartya Sen, and Kotaro Suzu-
mura, editors, Handbook of Social Choice and Welfare,
volume 2, pages 393–506. Elsevier, 2011.

[Ünver, 2010] M. Utku Ünver. Dynamic Kidney Exchange.
The Review of Economic Studies, 77(1):372–414, 2010.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://www.swapz.co.uk/

