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Abstract
Learning in games is a fundamental problem in ma-
chine learning and artificial intelligence, with nu-
merous applications. This work investigates two-
player zero-sum matrix games with an unknown
payoff matrix and bandit feedback, where each
player observes their actions and the correspond-
ing noisy payoff. Prior studies have proposed algo-
rithms for this setting, with demonstrating the ef-
fectiveness of deterministic optimism (e.g., UCB
for matrix games) in achieving sublinear regret.
However, the potential of randomised optimism in
matrix games remains theoretically unexplored.
We propose Competitive Co-evolutionary Bandit
Learning (COEBL), a novel algorithm that inte-
grates evolutionary algorithms (EAs) into the ban-
dit framework to implement randomised optimism
through EA variation operators. We prove that CO-
EBL achieves sublinear regret, matching the perfor-
mance of deterministic optimism-based methods.
To the best of our knowledge, this is the first the-
oretical regret analysis of an evolutionary bandit
learning algorithm in matrix games.
Empirical evaluations on diverse matrix game
benchmarks demonstrate that COEBL not only
achieves sublinear regret but also consistently out-
performs classical bandit algorithms, including
EXP3, the variant EXP3-IX, and UCB. These re-
sults highlight the potential of evolutionary ban-
dit learning, particularly the efficacy of randomised
optimism via evolutionary algorithms in game-
theoretic settings.

1 Introduction
1.1 Two-Player Zero-Sum Games
Learning in games is a fundamental problem in machine
learning and artificial intelligence, with numerous applica-
tions [Silver et al., 2016; Schrittwieser et al., 2020]. Trig-
gered by von Neumann’s seminal work [Von Neumann, 1928;
Von Neumann et al., 1953], the maximin optimisation prob-
lem (i.e., maxx∈X miny∈Y g(x, y)) has become a major re-
search topic in machine learning and optimisation. In par-

ticular, two-player zero-sum games, represented by a payoff
matrix A ∈ Rm×m, constitute a widely studied problem class
in the machine learning and AI literature [Littman, 1994;
Auger et al., 2015; O’Donoghue et al., 2021; Cai et al., 2023].
The row player selects i ∈ [m], the column player selects
j ∈ [m] and these choices, leading to a payoff Aij (i.e. the
row player receives the payoff Aij and the column player re-
ceives the payoff −Aij). The objective is to find the optimal
mixed strategy, which is a probability distribution over ac-
tions for each player. Formally, we define our problem as
follows: to find x∗, y∗ ∈ ∆m, where ∆m denotes the proba-
bility simplex of dimension m− 1, satisfying

V ∗
A := max

x∈∆m

min
y∈∆m

yTAx. (1)

By von Neumann’s minimax theorem [Von Neumann, 1928],
V ∗
A = miny∈∆m maxx∈∆m yTAx. (x∗, y∗) solving for

Eq.(1) is called a Nash equilibrium. V ∗
A is the shared opti-

mal quantity at the Nash equilibrium. In this paper, we call it
the Nash equilibrium payoff.

Nash’s Theorem, or von Neumann’s minimax theorem,
guarantees the existence of (x∗, y∗) for Eq.(1) [Von Neu-
mann, 1928; Nash, 1950]. If the payoff matrix is given or
known, then Eq.(1) can be reformulated as a linear program-
ming problem, and it can be solved in polynomial time us-
ing algorithms including the ellipsoid method or interior point
method [Bubeck and others, 2015; Maiti et al., 2023]. Now, if
the payoff matrix is unknown, let the row and column player
play an iterative two-player zero-sum game. At each itera-
tion, they select actions and observe the corresponding pay-
off entry from the matrix. Based on the observed rewards,
both players update their strategies. This iterative setting is
referred to as a repeated matrix game (or matrix games, for
short). Our goal is to design algorithms that can perform com-
petitively in such games. A standard measure of algorithmic
performance is regret, which we define formally later. We are
also interested in whether the algorithm can approximate the
Nash equilibrium (x∗, y∗), measured using divergence met-
rics such as KL-divergence or total variation distance.

1.2 Evolutionary Reinforcement Learning
Evolutionary Algorithms (EAs) are randomised heuristics in-
spired by natural selection, designed to solve optimisation
problems [Popovici et al., 2012; Eiben and Smith, 2015].
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EAs aim to find global optima with minimal knowledge about
fitness functions, making them well-suited for some black-
box or oracle settings compared to gradient-based meth-
ods [Eiben and Smith, 2015]. EAs are powerful and useful
tools for discovering effective reinforcement learning poli-
cies because they can identify good representations, man-
age continuous action spaces, and handle partial observabil-
ity [Whiteson, 2012]. Due to these strengths, evolutionary
reinforcement learning (ERL) techniques have shown strong
empirical success, and we refer readers to [Whiteson, 2012;
Bai et al., 2023; Li et al., 2024a] for detailed reviews of ERL.

Coevolution, rooted in evolutionary biology, involves
the simultaneous evolution of multiple interacting popula-
tions [Anderson and May, 1982]. Interactions can be coop-
erative (e.g., humans and gut bacteria) or competitive (e.g.,
predator-prey dynamics). These co-evolutionary dynamics
have been studied and applied in ERL, demonstrating empir-
ical effectiveness in many applications [Whiteson, 2012; Xue
et al., 2024; Li et al., 2024a]. For example, co-evolutionary
algorithms (CoEAs), a subset of EAs, have been applied in
many black-box optimisation problems under various game-
theoretic scenarios [Xue et al., 2024; Gomes et al., 2014;
Hemberg et al., 2021; Flores et al., 2022; Fajardo et al., 2023;
Hevia Fajardo et al., 2024; Benford and Lehre, 2024b].

Despite the practical success of evolutionary reinforcement
learning in domains such as game playing, robotics, and opti-
misation [Moriarty et al., 1999; Khadka and Tumer, 2018;
Pourchot and Sigaud, 2019; HAO et al., 2023; Li et al.,
2024b; Li et al., 2024c], there is a lack of rigorous theoret-
ical analysis [Li et al., 2024a]. In particular, the theoretical
foundations of coevolutionary learning in matrix games re-
main largely unexplored. As a starting point, in this work, we
aim to bridge this gap by combining evolutionary heuristics
with bandit learning and analysing their performance in ma-
trix games from both theoretical and empirical perspectives.

1.3 Contributions
This paper introduces evolutionary algorithms for learning in
matrix games with bandit feedback. To the best of our knowl-
edge, this is the first work to provide a rigorous regret anal-
ysis of evolutionary reinforcement learning (i.e., COEBL) in
matrix games with bandit feedback. Specifically, we show
that randomised optimism implemented via evolutionary al-
gorithms can achieve sublinear regret in this setting. Our em-
pirical results demonstrate that COEBL outperforms existing
bandit learning baselines for matrix games, including EXP3,
UCB, and the EXP3-IX variant. These findings highlight
the significant potential of evolutionary algorithms for bandit
learning in game-theoretic environments and reveal the role
of randomness in effective game-play. This work serves as a
first step towards a rigorous theoretical understanding of evo-
lutionary reinforcement learning in game-theoretic settings.

1.4 Related Works
Regret Analysis of Bandit Learning in Matrix Games
Theoretical analysis of bandit learning algorithms in ma-
trix games has been extensively studied. Recent works,
such as [Auger et al., 2015; O’Donoghue et al., 2021;

Cai et al., 2023], have studied classical bandit algorithms un-
der settings where only rewards or payoffs are observed. In
particular, O’Donoghue et al. [2021] conducted an in-depth
regret analysis of the UCB algorithm, Thompson Sampling,
and K-Learning, showing that these methods achieve sublin-
ear regret in matrix games. Neu [2015] established a sublin-
ear regret bound for EXP3-IX, which was subsequently ex-
tended to matrix games by Cai et al. [2023] through a new
variant. Additionally, Auger et al. [2015] provided conver-
gence analyses of bandit algorithms in sparse binary zero-
sum games, while Cai et al. [2023] extended these results to
uncoupled learning in two-player zero-sum Markov games.
A more recent study by Li et al. [2024d] investigates adver-
sarial regret for Optimistic Thompson Sampling, exploiting
repeated-game structures and partial observability to antici-
pate opponent strategies.

In contrast, our work aligns with [O’Donoghue et al.,
2021] in focusing on Nash regret in two-player zero-sum ma-
trix games with bandit feedback. While their approach high-
lights adversarial dynamics, ours demonstrates the potential
of randomised optimism via evolutionary algorithms. We
provide a novel regret analysis that complements stochastic
optimism-based methods in achieving sublinear Nash regret.
Moreover, the theoretical understanding of evolutionary ban-
dit learning remains largely unexplored. This paper aims to
fill that gap, marking a first step towards the rigorous study
of evolutionary bandit learning in matrix games, an area that
remains both promising and under-explored.

Runtime Analysis of Co-evolutionary Algorithms
Recent studies have conducted runtime analyses of coopera-
tive and competitive co-evolutionary algorithms [Jansen and
Wiegand, 2004; Lehre, 2022]. Here, runtime refers to the
number of function evaluations required for the algorithm to
find the Nash equilibrium. For a comprehensive overview
of these contributions to competitive co-evolutionary algo-
rithms, we refer readers to the recent papers [Lehre, 2022;
Hevia Fajardo and Lehre, 2023; Fajardo et al., 2023; Lehre
and Lin, 2024b; Benford and Lehre, 2024b; Benford and
Lehre, 2024a; Lehre and Lin, 2024a; Lehre and Lin, 2025].
Although we do not analyse the runtime of COEBL in this
paper, an interesting future research direction is to explore
how the runtime of COEBL could be analysed in the context
of matrix games with bandit feedback. The idea of competi-
tive coevolution in game-theoretic settings, as explored in the
aforementioned works, serves as the foundation for our appli-
cation of evolutionary methods to bandit learning algorithms.

2 Preliminaries
2.1 Notations
Given n ∈ N, we write [n] := {1, 2, · · · , n}. Fp denotes the
finite field of p (prime number) elements. For example, F3

denotes the finite field of three elements, {−1, 0, 1}. We de-
note the row player by the x-player and the column player by
the y-player. f(n) ∈ O(h(n)) if there exists some constant
c > 0 such that f(n) ≤ ch(n). f(n) ∈ Õ(h(n)) if there ex-
ists some constant k > 0 such that f ∈ O(h(n) logk (h(n))).
We define the (m − 1)-dimensional probability simplex as
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∆m := {z ∈ Rm |
∑m

i=1 zi = 1, zi ≥ 0}. In each round t ∈
N, the row player chooses it ∈ [m], and the column player
chooses jt ∈ [m]; and then rt is the reward obtained by the
row player. We define the corresponding filtration Ft prior
to round t by Ft := (i1, j1, r1, . . . , it−1, jt−1, rt−1). We de-
noted Et(·) := E(· | Ft). For any real number x, we define
1 ∨ x := max(1, x). Given x ∈ {0, 1}n, |x|1 :=

∑n
i=1 xi.

Definition 1. A random variable X ∈ R is σ2-sub-
Gaussian with variance proxy σ2 if E(X) = 0 and satisfies
E(exp(sX)) ≤ exp

(
σ2s2

2

)
, for all s ∈ R.

2.2 Two-Player Zero-Sum Games and Nash Regret
A two-player game is characterised by the strategy spaces X
and Y , along with payoff functions gi : X × Y → R, where
i ∈ [2]. Here, gi(x, y) denotes the payoff received by player i
when player 1 plays strategy x and player 2 plays strategy y.

Definition 2. Given a two-player game with strategy spaces
X and Y , and a prime number p ∈ N, let the payoff functions
g1, g2 : X × Y → R represent the payoffs for player 1 and
player 2, respectively. The game is said to be zero-sum if
the gain of one player is exactly the loss of the other, i.e.,
g1(x, y) + g2(x, y) = 0 for all x ∈ X and y ∈ Y .

Many classical games where the outcomes are win, lose
and draw, such as Rock-Paper-Scissors, Tic-Tac-Toe and Go,
can be modelled as ternary zero-sum games,where g(x, y) =
1 denotes a win for player 1, g(x, y) = −1 a win for player 2,
and g(x, y) = 0 a draw. In this paper, we mainly focus
on ternary two-player zero-sum games. In matrix games,
we evaluate performance using the Nash regret, defined as
the cumulative difference between the Nash equilibrium pay-
off in Eq. (1) and the actual rewards obtained by the play-
ers [O’Donoghue et al., 2021].

Definition 3 (Nash Regret). Consider any matrix game with
payoff matrix A ∈ Rm×m and the reward for the row player
choosing action it ∈ [m] and the column player choosing
action jt ∈ [m] is given by rt = Aitjt + ηt, where ηt is zero-
mean noise, independent and identically distributed from a
known distribution at iteration t ∈ N. Given an algorithm
ALG that maps the filtration Ft to a distribution over actions
x ∈ ∆m, we define the Nash regret with respect to the Nash
equilibrium payoff V ∗

A ∈ R by

R (A, ALG, T ) := Eη,ALG

(
T∑

t=1

V ∗
A − rt

)
.

Given any class of games A ∈ A, for any T ∈ N, we define

WORSTCASEREGRET (A, ALG, T ) := max
A∈A

R (A, ALG, T ) .

Given a fixed unknown payoff matrix A, the regret
R (A, ALG, T ) represents the expected cumulative difference
between the Nash equilibrium payoff and the actual rewards
obtained by player 1 using algorithm ALG over T iterations.
The worst-case regret WORSTCASEREGRET (A, ALG, T )
denotes the maximum regret of algorithm ALG across all pos-
sible payoff matrices within the class of games A, thus cap-
turing performance in the worst-case scenario.

Nash regret serves as a fundamental measure for evaluat-
ing an agent’s performance against a best-response opponent,
enabling fair comparison with prior work [O’Donoghue et
al., 2021]. It emphasises long-term convergence to equilib-
rium strategies, thereby reflecting robust and generalised be-
haviour in game-theoretic settings. Although it may be less
informative for analysing intermediate behaviours [Li et al.,
2024d], it offers critical guarantees regarding the agent’s ca-
pacity to adapt towards optimal and resilient strategies against
adversarial best-response opponents.

3 Co-evolutionary Bandit Learning
3.1 Learning in Games and COEBL
The study of learning dynamics in games seeks to understand
how players can adapt their strategies to approach the equi-
librium when interacting with rational opponents [Fudenberg
and Levine, 1998]. A commonly used metric for evaluating
algorithmic performance in such settings is regret, as formally
defined in Definition 3. Alternative evaluation criteria include
convergence to Nash equilibrium, which may be measured
using KL-divergence or total variation distance.

In this section, we only present the algorithm for the x-
player, noting that the counterpart for the y-player is symmet-
ric. The proposed method, COEBL (Co-Evolutionary Bandit
Learning), leverages co-evolutionary approach in bandit feed-
back settings. We denote the empirical mean of the rewards
sampled from entry Aij by Āt

ij , and the number of times up
to round t that the row player has selected action i while the
column player has selected action j, by nt

ij ∈ [t] ∪ {0}.

Algorithm 1 COEBL for matrix games

Require: Fitness(x,B) := miny∈∆m yTBx where B ∈
Rm×m and x ∈ ∆m.

1: Initialisation: x0, y0 = (1/m, . . . , 1/m) and n0
ij = 0

for all i, j ∈ [m]
2: for round t = 1, 2, . . . , T do
3: for all i, j ∈ [m] do
4: Compute Ãt

ij = Mutate(Āt
ij , 1/1 ∨ nt

ij)
5: end for
6: Obtain x′ ∈ argmaxx∈∆m

miny∈∆m
yT Ãtx

7: if Fitness(x′, Ãt) > Fitness (xt−1, Ã
t) then

8: Update policy xt := x′

9: else
10: Update policy xt := xt−1

11: end if
12: Update the query number of each entry in the payoff

matrix nt
ij for all i, j ∈ [m]

13: end for

The following mutation variant is considered in this paper.

Mutate(Āt
ij ,

1

1 ∨ nt
ij

) = Āt
ij

+N

(√
c log(2T 2m2)

1 ∨ nt
ij + 1

,
1

(1 ∨ nt
ij)

2

)
,
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where N
(
µ, σ2

)
denotes a Gaussian random variable with

mean µ and variance σ2, and c is some constant with respect
to T and m.

Evolutionary algorithms typically consist of two main
components: variation operators and selection mechanisms.
Variation operators generate new candidate policies from
the current population, while the selection mechanism re-
tains the most promising policies based on a predefined fit-
ness function. In COEBL, we define the fitness function as
Fitness(x,B) := miny∈∆m yTBx, which evaluates the per-
formance of a policy x against the best response of the op-
ponent, given the payoff matrix B. Initially, COEBL applies
a Gaussian mutation operator to perturb the estimated pay-
off matrix Ãt, and generates a mutated policy x′ for the row
player. As the estimated matrix Ã is fully observable by the
x-player, the optimal response x′ in line 6 is computed by
solving a linear programming problem [Bubeck and others,
2015; Maiti et al., 2023]. Between lines 7 and 10, the new
policy x′ is evaluated using the fitness function and com-
pared against the previous policy xt−1. If x′ strictly outper-
forms xt−1, the policy is updated; otherwise, we retain xt−1

to avoid potential instability in the maximin solution.
The central idea behind COEBL is to adopt the principle of

optimism in the face of uncertainty (OFU) to explore the ac-
tion space and exploit the opponent’s best response [Bubeck
et al., 2012; Lattimore and Szepesvári, 2020]. However, un-
like traditional bandit algorithms such as those in the UCB
family, COEBL implements randomised optimism via evolu-
tionary algorithms. Through the variation operator, COEBL
generates diverse estimated payoff matrices, which in turn
lead to a broader range of diverse candidate policies. The
selection mechanisms then guide the evolutionary process to-
wards higher fitness.

Although COEBL shares similar priors as Thompson Sam-
pling using Gaussian priors by [Agrawal and Goyal, 2017]
and Optimism-then-NoRegret (OTN) framework [Li et al.,
2024d], it differs in two key ways. First, our Gaussian prior
is defined via upper confidence bounds rather than empirical
means alone, with a higher variance term 1/

(
1 + nt

ij

)
com-

pared with one by [Agrawal and Goyal, 2017] and a different
scaling constant than used in OTN [Li et al., 2024d]. Sec-
ond, COEBL incorporates a selection mechanism, which im-
plicitly adjusts the sampling distribution and is uncommon
in Thompson Sampling. These two key changes are proven
to be beneficial for adversarial matrix game settings in later
sections.

While O’Donoghue et al. [2021] has demonstrated that de-
terministic optimism enables UCB to achieve sublinear re-
gret and outperform classic EXP3, and other bandit baselines,
we will show that randomised optimism (via evolution) also
exhibits sublinear Nash regret. More importantly, we will
demonstrate that randomised optimism in matrix games can
be more effective and adaptive in preventing exploitation by
the opponent than deterministic optimism, and thus outper-
forms existing bandit baselines. Specifically, it outperforms
the current bandit baseline algorithms for matrix games, in-
cluding EXP3, UCB and the EXP3-IX variant on the matrix
game benchmarks considered in this paper.

3.2 Regret Analysis of COEBL

In this section, we conduct the regret analysis of COEBL in
matrix games. Before our analysis, we need some technical
lemmas. We defer these lemmas to the appendix1.

We follow the setting in [O’Donoghue et al., 2021] and
consider the case where there is 1-sub-Gaussian noise when
querying the payoff matrix. Assume that given t ∈ N:

(A): The noise process ηt is 1-sub-Gaussian and the
payoff matrix satisfies A ∈ [0, 1]m×m.

Lemma 1. Suppose Assumption (A) holds with T ≥ 2m2 ≥
2 and δ :=

(
1/2T 2m2

)c/8
where c > 0 is the mutation rate

in COEBL. For each iteration t ∈ N, given Ãt in Algorithm 1,
we have:

Pr
(
Aij − (Ãt)ij ≤ 0

)
≥ 1− δ, for all i, j ∈ [m]. (2)

Theorem 2 (Main Result). Consider any two-player zero-
sum matrix game. Under Assumption (A) with T ≥ 2m2 ≥ 2

and δ =
(
1/2T 2m2

)c/8
, where c > 0 is the mutation rate in

COEBL, the worst-case Nash regret of COEBL for c ≥ 8 is
bounded by 2

√
2cTm2 log(2T 2m2), i.e., Õ(

√
m2T ).

Sketch of Proof. Due to page limit, we defer the full proofs
of Lemma 1 and Theorem 2 to the appendix and provide a
simple proof sketch here. First, we bound the regret under the
case where all the entries of the estimated payoff matrix are
greater than those of the real, unknown payoff matrix (this
event is denoted by Ec

t at iteration t ∈ N). Secondly, we
use the law of total probability to consider both cases: when
all the entries of the estimated payoff matrix are greater than
the real payoff matrix, and the converse (i.e., event Et). We
already have the upper bound for the first part; the second
part can be trivially bounded by 1 in each iteration. Using
Lemma 1, we can obtain the upper bound of probability of
event Et. Combining these bounds provides us with the upper
bound for the regret of COEBL.

Theorem 2 demonstrates that, under the worst-case sce-
nario (assuming the best response of the opponent across all
possible matrix game instances under Assumption (A)), CO-
EBL achieves sublinear regret. Specifically, the regret of CO-
EBL is bounded by Õ(

√
m2T ), matching the regret bound

of UCB. This result suggests that deterministic optimism in
the face of uncertainty, as highlighted in [O’Donoghue et al.,
2021], is not the sole determinant for achieving sublinear re-
gret. In fact, it indicates that the mechanism of optimism:
whether deterministic or stochastic is not necessarily critical
to the asymptotic regret guarantees in adversarial settings.

However, a key distinction lies in the practical robust-
ness of randomised (stochastic) optimism via evolution com-
pared to deterministic optimism. As we demonstrate in
later sections, randomised optimism offers greater adapt-
ability and robustness in game-playing scenarios, enabling
COEBL to outperform other algorithms in benchmark tasks.

1A full version of this paper can be found in https://arxiv.org/abs/
2505.13562.
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Intuitively, stochastic optimism facilitates a more balanced
exploration-exploitation trade-off by incorporating upper-
confidence-bound randomness, which helps prevent prema-
ture convergence to sub-optimal strategies and allows the al-
gorithm to respond more flexibly to dynamic and adversarial
environments.

This analysis highlights the potential advantages of
stochastic methods in algorithm design for complex environ-
ments. Notably, the current analysis of COEBL assumes c ≥ 8
due to technical constraints. We conjecture that the regret
bound can be improved by considering smaller values of c,
which may further enhance the practical performance of CO-
EBL. Therefore, we recommend hyper-parameter tuning to
optimise performance across various problem settings.

4 Empirical Results
In this section, we present empirical results comparing the
discussed algorithms. We are interested in empirical regret in
specific game instances, measured by cumulative (absolute)
regret, i.e.,

T∑
t=1

|V ∗
A − rt| and

T∑
t=1

V ∗
A − rt (3)

where rt is the obtained reward at round t. We focus on two
scenarios, including self-play and ALG 1-vs-ALG 2. In the
self-play scenario, both row and column players use the same
algorithm with the same information. We use the absolute re-
gret (the first metric) to measure the performance of the algo-
rithms in this case. The ALG 1-vs-ALG 2 is a generalisation
of the self-play scenario. We use the second metric in Eq. 3
to measure the performance of the algorithms. The ALG 1-
vs-ALG 2 means the row player uses ALG 1, and the col-
umn player uses ALG 2 with the same information. As in the
setting of [O’Donoghue et al., 2021], the plots below show
the regret (not absolute regret) from the maximiser’s (ALG 1)
perspective. A positive regret value means that the minimiser
(ALG 2) is, on average winning and vice versa. This allows
us to compare our algorithms directly.

Moreover, to measure how far the players are from the
Nash equilibrium, we use the KL-divergence between the
policies of both players and the Nash equilibrium or the to-
tal variation distance (for the case where the KL-divergence
is not well-defined), i.e., KL(xt, x

∗) + KL(yt, y∗) and
TV(xt, x

∗) + TV(yt, y
∗), where

KL(a, b) :=
∑
i

a(i) ln

(
a(i)

b(i)

)
TV(a, b) :=

1

2

∑
i

|a(i)− b(i)|

for any a, b ∈ ∆m and (x∗, y∗) is the Nash equilibrium of A.

Parameter Settings
Given K is the number of actions for each player and T is
the time horizon, for EXP3, we use the exploration rate γt =

min{
√
K logK/t, 1} and learning rate ηt =

√
2 logK/tK

as suggested in [O’Donoghue et al., 2021]. For the variant of

EXP3-IX, we use the same settings ηt = t−kη , βt = t−kβ ,
εt = t−kε where kη = 5/8, kβ = 3/8, kε = 1/8 as sug-
gested in [Cai et al., 2023]. For COEBL, we set the mutation
rate c = 2 for the RPS game and c = 8 for the rest of the
games. There is no hyper-parameter needed for UCB. For the
observed reward, we consider standard Gaussian noise with
zero mean and unit variance, i.e. rt = Ait,jt + ηt where
ηt ∼ N (0, 1). We compute the empirical mean of the re-
grets and the KL-divergence (or total variation distance), and
present the 95% confidence intervals in the plots. We run 50
independent simulations (up to 3000 iterations) for each con-
figuration (over 50 seeds).

4.1 Rock-Paper-Scissors Game
We consider the classic matrix game benchmark: Rock-
Paper-Scissors games [Littman, 1994; O’Donoghue et al.,
2021], and its payoff matrix is defined as follows.

R P S
R 0 1 -1
P -1 0 1
S 1 -1 0

Table 1: The payoff matrix of RPS game. R denotes rock, P denotes
paper, and S denotes scissors.

It is well known that x∗, y∗ = (1/3, 1/3, 1/3) is the unique
mixed Nash equilibrium of the RPS game for both players.
We conduct experiments using EXP3, EXP3-IX, UCB and
compare them with our proposed Algorithm 1 (i.e. COEBL)
on the classic matrix game benchmark: the RPS game.
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Figure 1: Regret and KL-divergence for Self-Plays on RPS games
(Orange: Theoretical Bound

√
K2T , Red: COEBL, Green: UCB,

Purple: EXP3-IX and Blue: EXP3)

In Figure 1, we present the self-play results of each algo-
rithm. We can observe that COEBL also exhibits sublinear
regret in the RPS game, similar to other bandit baselines,
and matches our theoretical bound. In terms of the KL-
divergence, EXP3, as reported in [O’Donoghue et al., 2021;
Cai et al., 2023], diverges from the Nash equilibrium. By
zooming in on the KL-divergence plot, we can observe that
COEBL and UCB converges to the Nash equilibrium faster
than the other algorithms; especially, EXP3-IX has a much
slower convergence rate.

Next, we compare the performance of the algorithms by
examining their regret bounds and KL-divergence from the
Nash equilibrium when algorithms compete with each other
using the same information. In Figure 2, we can clearly ob-
serve that COEBL outperforms the EXP3 family, including
EXP3 and EXP3-IX, in terms of regret. On average, COEBL
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has a smaller advantage over UCB in terms of regret, since
the empirical mean of regret is above 5 but below 10 after
iteration 2000.
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Figure 2: Regret for ALG 1-vs-ALG 2 on RPS games

The RPS game with a small number of actions is relative
simple for these algorithms to play. Moreover, although CO-
EBL completely outperforms the EXP3 family, it does not
have an overwhelming advantage over the UCB. How do
these algorithms behave on more complex games with expo-
nentially many actions? Can COEBL still take over the game?
Next, we answer these questions by considering DIAGONAL
and BIGGERNUMBER games.

4.2 DIAGONAL Game
DIAGONAL is a pseudo-Boolean maximin-benchmark on
which Lehre and Lin [2024b] conducted runtime analysis of
coevolutionary algorithms. Both players have an exponen-
tial number (i.e. 2n) of pure strategies. To distinguish be-
tween pure strategies that consist of the same number of 1,
we modify the original DIAGONAL by introducing a ‘draw’
outcome. For U = {0, 1}n and V = {0, 1}n, the payoff func-
tion DIAGONAL : U × V → {0, 1} is defined by

DIAGONAL(u, v) :=


1 |v|1 < |u|1
0 |v|1 = |u|1
−1 otherwise

.

As shown by [Lehre and Lin, 2024b], this game (we pro-
vide a simple example in the appendix) exhibits a unique pure
Nash equilibrium where both players choose 1n. This corre-
sponds to the mixed Nash equilibrium where x∗ = (0, · · · , 1)
and y∗ = (0, · · · , 1). We conduct experiments using EXP3
to and compare them with our proposed Algorithm 1 (i.e.
COEBL) on another matrix game benchmark: the DIAGONAL
game. We set the mutation constant c = 8 for COEBL and
consider n = 2, 3, 4, 5, 6, 7 in the experiments.

In Figures 3 and 72, we present the self-play results of
each algorithm on DIAGONAL game for various values of
n. Our results show that COEBL consistently exhibits sub-
linear regret in the DIAGONAL game, aligning with our the-
oretical bounds and similar to other bandit algorithms. As n

2Figure 7 is in the appendix.
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Figure 3: Regret and TV Distance for Self-Plays on DIAGONAL

(Orange: Theoretical Bound 0.2
√
K2T , Black: Theoretical Bound:

0.1
√
K2T , Red: COEBL, Green: UCB, Purple: EXP3-IX and Blue:

EXP3)

increases, the regret of the baseline algorithms grows as ex-
pected. COEBL remains more adaptive and robust in more
challenging games, maintaining sublinear regret beneath the
theoretical bound (0.1

√
K2T ), as indicated by the black dot-

ted line. We also observe that the regrets of all algorithms in-
creases as n grows, which is expected due to the exponential
increase in the number of pure strategies and the correspond-
ing complexity of the game. In terms of convergence mea-
sured by TV-distance, COEBL converges to the Nash equi-
librium for n = 2, 3, while the baseline algorithms do not
converge. However, for n ≥ 4, as the number of strategies
grows exponentially, COEBL also struggles to converge to
the Nash equilibrium. In Figures 4 and 83, we present the
regrets for ALG 1-vs-ALG 2 on DIAGONAL. The empirical
regrets across all algorithms exceed 16.2, with a maximum of
389.8 for n = 6, indicating that the minimiser is dominant. In
other words, COEBL outperforms the other bandit algorithms
across all values of n, from 2 to 7.
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Figure 4: Regret for ALG 1-vs-ALG 2 on DIAGONAL (Blue: EXP3-
vs -COEBL, Orange: EXP3-IX-vs-COEBL, Green: UCB-vs-COEBL)

4.3 BIGGERNUMBER Game
BIGGERNUMBER is another challenging two-player zero-
sum game proposed and analysed by [Zhang and Sandholm,
2024]. In this game, each player aims to select a number that
is larger than their opponent’s. The players’ action space is

3Figure 8 is in the appendix.
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X = {0, 1}n, representing binary bitstrings of length n cor-
responding to natural numbers in the range [0, 2n − 1]. A
formal definition and the complete results can be found in the
appendix. We present part of the results here.
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Figure 5: Regret and TV Distance for Self-Plays on BIGGERNUM-
BER (Orange: Theoretical Bound 0.25

√
K2T , Red: COEBL, Green:

UCB, Purple: EXP3-IX and Blue: EXP3)
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Figure 6: Regret for ALG 1-vs-ALG 2 on BIGGERNUMBER (Blue:
EXP3-vs -COEBL, Orange: EXP3-IX-vs-COEBL, Green: UCB-vs-
COEBL)

In summary, we conducted extensive experiments on three
matrix games: the RPS game, the DIAGONAL game, and the
BIGGERNUMBER game. In terms of regret performance, CO-
EBL in self-play aligns with our theoretical bounds. More-
over, COEBL consistently outperforms other bandit baselines
when competing across various matrix game benchmarks,
as shown in Figures 4 and 6. COEBL matches the perfor-
mance of UCB and converges more quickly than EXP3-IX
in the RPS game. COEBL converges to the Nash equilib-
rium for n = 2, 3 and for n = 2, 3, 4, respectively, while
the other baselines do not converge, as shown in Figures 3
and 5. Therefore, we conclude that COEBL is a promising
algorithm for matrix games, demonstrating sublinear regret,
outperforming other bandit baselines, and achieving conver-
gence to the Nash equilibrium in several matrix game in-
stances. However, as the number of strategies grows expo-
nentially, COEBL, like other algorithms, fails to converge to
the Nash equilibrium. This observation points out the current
limitation of existing algorithms in exponentially large matrix
games, and it will be an exciting path for future research.

5 Conclusion and Discussion
This paper addresses the unsolved problem of learning in un-
known two-player zero-sum matrix games with bandit feed-
back, proposing a novel algorithm, COEBL, which integrates
evolutionary algorithms with bandit learning. To the best of
our knowledge, this is the first work that combines evolution-
ary algorithms and bandit learning for matrix games and pro-
vides the first regret analysis of evolutionary bandit learning
(EBL) algorithms in this context. This paper demonstrates
that randomised or stochastic optimism, particularly through
evolutionary algorithms, can also enjoy a sublinear regret in
matrix games, offering a more robust and adaptive solution
compared to traditional methods in practice.

Theoretically, we prove that COEBL exhibits sublinear re-
gret in matrix games, extending the rigorous understanding
of evolutionary approaches in bandit learning. Practically,
we show through extensive experiments on various matrix
games, including RPS, DIAGONAL, and BIGGERNUMBER
that COEBL outperforms existing bandit baselines, offering
practitioners a new tool (randomised optimism via evolution)
for handling matrix games playing with bandit feedback.

Despite these promising results, our work has some lim-
itations. Theoretically, we only consider two-player zero-
sum games, which is consistent with prior studies such as
[O’Donoghue et al., 2021; Cai et al., 2023]. Extending CO-
EBL to general-sum games with more players or to Markov
games represents an exciting and challenging avenue for fu-
ture research. More technically, we conjecture whether Theo-
rem 2 could also hold for smaller value of c < 8 with certain
threshold. Additionally, our analysis assumes sub-Gaussian
noise. Investigating the algorithm’s performance under differ-
ent noise distributions, such as sub-exponential noise, could
yield further insights. From an experimental perspective, test-
ing on more diverse problem instances would strengthen the
current empirical analysis.

Future work could focus on both theoretical and practical
extensions of evolutionary bandit learning. From a theoretical
perspective, it would be worthwhile to explore how COEBL or
other evolutionary bandit learning algorithms can be adapted
to more complex game structures, such as multi-player or
general-sum games. On the practical side, improving COEBL
by incorporating more sophisticated mutation operators, ad-
ditional crossover operator, non-elitist selection mechanisms,
or population-based evolutionary algorithms could enhance
its performance in more complex settings. EBL could be a
suitable class of algorithms, serving as a starting point for
more general evolutionary reinforcement learning algorithms.
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