
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Synthesising Minimum Cost Dynamic Norms

Natasha Alechina,1,3 Brian Logan,2,3 Giuseppe Perelli 4

1Open University Netherlands
2University of Aberdeen

3University of Utrecht
4 Sapienza University of Rome

Abstract
A key problem in the design of normative multi-
agent systems is the cost of enforcing a norm (for
the system operator) or complying with the norm
(for the system users). If the cost is too high,
ensuring compliant behavior may be uneconomic,
or users may be deterred from participating in the
MAS. In this paper, we consider the problem of
synthesizing minimum cost dynamic norms to sat-
isfy a system-level objective specified in Alternat-
ing Time Temporal Logic with Strategy Contexts
(ATL∗

sc). We show that synthesizing a dynamic
norm under a bound on the cost of any prohibited
set of actions has the same complexity as synthe-
sizing arbitrary norms. We also show that synthe-
sizing norms that minimize the average cost of the
prohibited set of actions is unsolvable; however,
synthesizing ϵ-optimal norms is possible.

1 Introduction
In normative multi-agent systems, system-level objectives
are realized through norms [Chopra et al., 2018]. A norm
expresses a pattern of desired or undesired behaviour that
achieves or violates a system objective. For example, a norm
may specify that it is not permitted to travel on public trans-
port without valid ticket (to ensure the financial viability of
the transport authority), or to smoke in a public place (to re-
duce the health risks to others), etc.

A key problem in the design of normative multi-agent sys-
tems is the cost of enforcing or complying with the norm.
Enforcing norms typically has a cost to the system (norma-
tive organisation), e.g., the cost of installing ticket barriers to
control access to a public transport system. Different actions
may be more or less costly to control, e.g., it may be more
costly to control access to an open-air concert than to a metro
station. Complying with a norm also has a cost (loss of util-
ity) for agents which may be different for different agents; for
example, a norm prohibiting smoking in public places may
result in no loss of utility for an agent who does not smoke,
but a significant loss of utility for an agent who does smoke.
If the costs are too high, ensuring compliant behavior may be
uneconomic, or users may be deterred from participating in
the MAS.

While the implementation of norms in a MAS has been
extensively studied, e.g., [Meyer and Wieringa, 1993; Grossi
et al., 2006; Ågotnes et al., 2007; Astefanoaei et al., 2009;
Dennis et al., 2010; Dastani et al., 2013; Ågotnes et al., 2010;
Bulling et al., 2013; Dignum et al., 2004; Boella and van der
Torre, 2004; Boella et al., 2008; Tinnemeier et al., 2009;
Alechina et al., 2013], there has been less work on how
norms can be automatically synthesized to meet an objec-
tive. Synthesis of norms was first introduced in [Shoham
and Tennenholtz, 1995], and also studied in [Fitoussi and
Tennenholtz, 2000; Christelis and Rovatsos, 2009; Corapi et
al., 2011; Morales et al., 2015a; Morales et al., 2018]. In
the context of logical objectives, norm synthesis has been
studied in, for example, in [van der Hoek et al., 2007;
Bulling and Dastani, 2016; Huang et al., 2016; Perelli, 2019;
Alechina et al., 2022]. However, with the exception of
[Perelli, 2019] where a related problem of norm optimization
was introduced, this work has not considered the cost of the
synthesized norm(s).

In this paper, we consider the problem of synthesizing min-
imum cost dynamic norms to satisfy a system-level objective
specified in Alternating Time Temporal Logic with Strategy
Contexts (ATL∗

sc). We focus on dynamic norms [Huang et al.,
2016], as these are more flexible than ‘static’ (state based)
norms in allowing constraints to be enforced on the actions
of agents based on their history of interaction with the MAS.
For example, in the interests of fairness, a norm may specify
that if an agent was previously prohibited from performing
an action, it should be allowed to perform the action in the
current state. Our notion of the cost of prohibiting an action
is quite general, in the sense that it admits any assignment of
costs to prohibiting sets of actions, and can express both the
loss of utility to the agents and/or the cost of enforcing the
norm to the normative organisation. For example, if all ac-
tions have the same cost, a minimum cost norm can be seen as
“maximally permissive”, i.e., it prohibits the minimum num-
ber of actions necessary to achieve the system objective. On
the other hand, if agents place greater value on being able
to perform some actions than others, a minimum cost norm
may be one that maximizes social welfare while achieving
the objective. We use ATL∗

sc to express system objectives as
this allows us to specify the strategic abilities of (groups of)
agents in the MAS, both to state that a particular group of
agents should (or should not) be able to achieve a particu-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

lar goal, as well as stating that given the individual goals of
agents, there is a Nash equilibrium. We consider norm syn-
thesis for two natural notions of norm cost, maximum single
step cost and average step cost. The maximum single step
cost is the maximum cost of any prohibited set of actions and
is relevant when the system designer wishes to minimise the
maximum loss of utility/cost of enforcement incurred due to
a norm. The average step cost is the average cost of the pro-
hibited set of actions over an infinite run and and is relevant
when the aim is to minimise the average loss of utility/cost of
enforcement resulting from the norm. Both notions are use-
ful depending on the context: for example, a short lockdown
during a pandemic may have a high maximum single step
cost (impacting individual liberties), but low average step cost
(impacting economic activity). We show that synthesizing a
dynamic norm under a bound on the maximum single step
cost has the same complexity as synthesizing arbitrary norms
in [Alechina et al., 2022] (i.e., (h + 1)-EXPTIME for an ex-
istential ATL∗

sc formula with quantifier alternation number h,
and in (h+2)-EXPTIME for a universal ATL∗

sc formula). We
also show that synthesizing a dynamic norm that minimizes
the average step cost does not always have a solution as it
requires infinite memory. However, synthesizing ϵ-optimal
norms is possible for a restricted class of ATL∗

sc objectives.

2 Framework
In this section we introduce the definitions needed to for-
malise reasoning about dynamic norms in multi-agent sys-
tems, largely following [Alechina et al., 2022].

2.1 System Models
We assume a multi-agent system coordinated by zero or more
dynamic norms, which we formalize as a particular kind of
game.
Definition 1 (k-normed Multi-Agent System). A k-
normed Multi-Agent System (k-MAS) G is a tuple
⟨Ag,Ac,AP,Cap, tr, (Nrmi)i≤k, q⃗0, (ηi)i≤k, (illegali)i≤k⟩
where:

• Ag = {1, . . . , N} is a finite set of N agents, denoted by
natural numbers;

• Ac is a finite set of actions that agents can perform (in
some state of the environment);

• AP is a finite set of atomic propositions; an assignment
of truth values to AP determines environment states of
the system;

• Cap : Ag × 2AP → 2Ac is a capability function that
assigns to each agent in each environment state the set
of actions it is capable of performing in that state

• tr : 2AP ×AcAg → 2AP is a transition function that de-
termines the next state of the environment given the cur-
rent state of the environment and the actions performed
by the agents;

• Nrmi is a finite set of normative states, one for each
i ≤ k; ⃗Nrm = Nrm1 × . . . × Nrmk, is the normative
vector state space (the set of tuples containing the state
of each norm);

• q⃗0 ∈ ⃗Nrm is a designated initial normative state;
• ηi : Nrmi × 2AP → Nrmi is a normative function that

determines the next state of a norm given the current
state of the norm and the environment;

• illegali : Nrmi× 2AP → 2Ac−×Ag is the illegality func-
tion that returns a set pairs of actions and agents that
are illegal given the current state of a norm and the en-
vironment.

Unlike [Alechina et al., 2022], we assume that there is a
distinguished action noop ∈ Ac which is always available to
every agent and is never illegal, i.e., intuitively it is always
possible for an agent to do nothing. We denote by Ac− the
set Ac \ {noop}. This change does not affect the results in
[Alechina et al., 2022].

We illustrate a k-MAS with a simple example of a norma-
tive multi-agent system.
Example 1 (k-MAS). Consider a traffic intersection with two
agents. Agent 1 moves North-South and agent 2 moves East-
West. Each agent has two actions, go and noop. AP =
{east , west , north , south , crash}. Intuitively, east holds
when agent 2 is in the East, etc. The action noop does not
change an agent’s position; go moves agent 1 from North to
South or back, and agent 2 from East to West or back (if the
other agent does noop); go, go results in a crash. The ini-
tial state is when agent 1 is in the North and 2 is in the East.
There is one norm (k = 1) with two states, q1 and q2, which
alternate (on any input). For any state of the environment, in
q1 there is a single illegal action (go, 2) and in q2 there is a
single illegal action (go, 1). The initial norm state is q1. The
norm acts as a traffic light, allowing only one agent to move
at every step. The states of the norm can be seen as encoding
the history in the game so far and hence whose turn it is to go
at the current step.
Evolution Starting from some initial state of the environ-
ment (a set of atomic propositions) π0 and the initial vector of
normative states q⃗0, a game moves forward according to the
transition function, which given the current state of the envi-
ronment and an action tuple a⃗ ∈ AcAg, determines the next
state of the environment (assignment to the propositions in
AP). Simultaneously, each normative component is updated
by the corresponding normative function, which, given the
current state of the norm and the current environment state,
determines the next state of the norm.
Configuration, Illegal Actions, Available Actions A con-
figuration of G is a tuple c = (π, q⃗) ∈ 2AP × ⃗Nrm (a tu-
ple consisting of the state of the environment and the states
of the norms). The set of actions that are made illegal
for agent j by the i-th normative component is denoted by
illegali(qi, π, j)

.
= {a ∈ Ac : (a, j) ∈ illegali(qi, π)}. The

set of actions available to agent j in configuration c, where
q⃗i is the i-th component of q⃗, is denoted by AvlG(c, j)

.
=

Cap(j, π) \ (∪i≤killegali(qi, π, j)). The set AvlG(c)
.
=

AvlG(c, 1)× . . .×AvlG(c,N) denotes the action vectors that
are available in a configuration c.

In Example 1, the initial configuration is ({north, east},
q1), and agent 1 has actions go,noop available, while agent
2 only has available action noop, since (go, 2) is illegal.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

At each configuration c = (π, q⃗), each agent j can select
only an action aj ∈ AvlG(c, j). Once each agent j has chosen
an available action aj and the corresponding action vector
a⃗ = (a1, . . . , ak) is formed, the system moves its components
forward to the configuration (π′, q⃗′), with π′ = tr(π, a⃗) and
q⃗′ = (η1(q

1, π), . . . , ηk(q
k, π)).

Runs of the system A legal run, or simply run is an infinite
sequence r ∈ (2AP× ⃗Nrm)ω such that, for each n ∈ N, there
exists an action vector a⃗n ∈ AvlG(rn), such that

rn+1 = (tr(πn, a⃗n), η1(q
1
n, πn), . . . , ηk(q

k
n, πn))

with rn = (πn, q⃗n). We use the notation r≤n to denote the
prefix of r up to and including rn. Similarly, r≥n is the suf-

fix of r starting from rn. c a⃗−→ c′ is used to denote that the
action vector a⃗ determines a transition from configuration c
to configuration c′. A run is initial if it starts from the initial
configuration, that is, r0 = (π0, q⃗0).

A possible run of the system in Example 1 is
({north, east}, q1), ({south, east}, q2), ({south, east},
q1), ({north, east}, q2), . . . where agent 1 executes go
whenever it can, and agent 2 always executes noop even when
go is available.
Strategy A strategy for agent j in the game G is a Mealy
machine of the form

σj = (Sj , s
0
j , 2

AP × ⃗Nrm,Ac, δj , τj).
For each internal state s ∈ Sj and a configuration c =
(π, q⃗) of G, a strategy selects an action in Ac deter-
mined by τj(s, (π, q⃗)) ∈ Ac and updates its internal state
δj(s, (π, q⃗)) ∈ Sj accordingly. Only the strategies that com-
ply with the normative requirements specified by the game
are available to the agents. A strategy σj is legal with re-
spect to G if, and only if, τj(s, (π, q⃗)) ∈ Avl(⃗q, π, j). From
now on, we restrict our attention to legal strategies, and, un-
less otherwise stated, we refer to them simply as strategies.
Moreover, for simplicity, for a given strategy σj and a finite
sequence r̂ ∈ (2AP × ⃗Nrm)∗, by σj(r̂) ∈ Ac we denote the
action determined by the function τj in σj after the sequence
r̂ has been fed to the internal transition function δj .

A simple strategy for agent 2 would be to always execute
noop. This requires a Mealy machine with a single state, that
on any input returns noop and loops back to the same state. A
strategy for agent 1 would be executing go on input of q1 (re-
gardless of the state of the world, that is, of the propositional
assignment), and noop on input of q2.

Note that the restriction to regular strategies representable
by Mealy machines is without loss of generality, as when
the specification language is ω-regular, synthesizing a strat-
egy satisfying the specification is equivalent to synthesizing a
regular strategy [Pnueli and Rosner, 1989].
Runs compatible with strategies A run r is compatible
with σA (where A is a set of agents) if, for every n ∈ N,
it holds that there exists an action vector a⃗n, with ajn =
σj(r≤n) for each j ∈ A and σj ∈ σA, such that rn+1 is
obtained from rn by applying a⃗n. In other words, a run r is
compatible with σA if it can be generated when the agents in
A play according to their respective strategies. The set of runs
starting from a given configuration c and compatible with σA

is denoted by outG(c, σA). Observe that the set of runs of a
given k-MAS G starting from a configuration c, sometimes
denoted PathsG(c), can also be written as outG(c, ∅). When
it is clear from the context we use Paths(c) or out(c, σA).

2.2 ATL∗
sc– Alternating-Time Temporal Logic with

Strategy Contexts
We use an extension of Alternating-Time Temporal Logic
(ATL∗) [Alur et al., 2002], Alternating-Time Temporal Logic
with Strategy Contexts (ATL∗

sc) introduced in [Da Costa
Lopes et al., 2010] to express system objectives. We refer
the reader to [Laroussinie and Markey, 2015] for a detailed
discussion of ATL∗

sc.
ATL∗

sc formulas are built inductively from the set of atomic
propositions AP and agents Ag. There are two types of ATL∗

sc
formulas, state formulas and path formulas. State formulas
are built by using the following grammar, where p ∈ AP,
A ⊆ Ag and ψ is ATL∗

sc path formula:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ⟨·A·⟩ψ | ⟩·A·⟨ψ
Path formulas are built using the following grammar,

where ϕ is a state formula of ATL∗
sc:

ψ := ϕ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

We also use the following syntactic sugar notation: φ1 ∨
φ2

.
= ¬(¬φ1 ∧ ¬φ2), φ1 → φ2

.
= ¬φ1 ∨ φ2, [·A·]φ .

=
¬⟨·A·⟩¬φ, Fφ .

= true Uφ, and Gφ
.
= ¬F¬φ.

Formulas of ATL∗
sc are evaluated relatively to a strategy

context: a fixed strategy σB for a group of agents B. The
formula ⟨·A·⟩ψ means that the agents in A have a collective
strategy such that whatever the agents Ag \ A do (provided
the strategies in σB are fixed), the resulting outcomes satisfy
ψ. Conversely, the formula ⟩·A·⟨ψ means that whenever the
strategies for agents in coalition A are removed from σB , the
resulting outcomes satisfy ψ. (Note that the strategy quan-
tifier of ATL∗ can be defined as ⟨⟨A⟩⟩ .

= ⟩·Ag·⟨ ⟨·A·⟩.) In
addition, the formula [·A·]ψ means that the agents in A do
not have a strategy to prevent ψ given σB is fixed for agents
in B.

For a given k-MAS G, a run r over it, and a strategy con-
text σB , the semantics of an ATL∗

sc path formula ψ, denoted
G, r |=σB

ψ, is given recursively as follows:

• G, r |=σB
ϕ iff G, r0 |=σB

ϕ, where ϕ is a state formula;

• G, r |=σB
¬ψ iff G, r ̸|=σB

ψ;

• G, r |=σB
ψ1 ∧ ψ2 iff G, r |=σB

ψ1 and G, r |=σB
ψ2;

• G, r |=σB
Xψ iff G, r≥1 |=σB

ψ;

• G, r |=σB
ψ1Uψ2 iff there exists j ∈ N such that

G, r≥i |=σB
ψ1, for all i < j, and G, r≥j |=σB

ψ2.

The semantics of an ATL∗
sc state formula ϕ is defined rela-

tive to a state ri on a run r as follows (we omit the cases for
¬ and ∧ as they are obvious):

• G, ri |=σB
p iff p ∈ πi, with ri = (πi, q⃗i) for some

q⃗i ∈ ⃗Nrm;

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

• G, ri |=σB
⟨·A·⟩ψ iff there is a strategy σA such that

G, r′ |=σB◦σA
ψ for all r′ ∈ out(r0, σB ◦ σA), where

σB ◦ σA
.
= σB ∪ σA\B denotes the set of strategies ob-

tained from σB by adding strategies of σA that are for
agents in A but not in B.

• G, ri |=σB
⟩·A·⟨ψ iff G, ri |=σB\A

ψ.

In Example 1, a simple objective is

⟨·1·⟩(G¬crash∧G(north → Fsouth)∧G(south → Fnorth)).

It states that agent 1 has a strategy to avoid a crash and to be
always able to cross from North to South and back again. In
the system in Example 1, such a strategy exists because of the
presence of the norm that stops agent 2 from executing go at
every other step (so agent 1 can execute go without causing
a crash). Without the norm, however, agent 1 alone cannot
ensure both the absence of crashing and being able to cross.

The objective above can be expressed in ATL∗. However,
ATL∗

sc is more expressive, and can specify useful objectives
that are not expressible in ATL∗, for example, the existence of
Nash equilibrium. If each agent j ∈ Ag has a goal expressed
by a temporal formula ψj , the existence of Nash equilibrium
can be expressed as ⟨·Ag·⟩(

∧
j∈Ag(¬ψj → ¬⟨·j·⟩ψj)) (see

[Laroussinie and Markey, 2015]; the formula says that there
exists a joint strategy such that if j’s goal is not satisfied, then
no deviation from this strategy satisfies it).

The model-checking problem for ATL∗
sc is: given a struc-

ture G, a run r, a strategy context σB and an ATL∗
sc formula

φ, does it hold that G, r |=σB
φ? The complexity of ATL∗

sc
model-checking depends on the nesting of quantifiers in a for-
mula, and in particular on how many times existential quanti-
fiers alternate with universal quantifiers. The quantifier alter-
nation number of a ATL∗

sc formula φ is the number of times
an existential quantification ⟨· · ·⟩ is followed by a universal
one [· · ·], and vice-versa.

Theorem 1. [Laroussinie and Markey, 2015, Corollary 14]
The model-checking problem for ATL∗

sc is (h+1)EXPTIME-
complete for a formula with quantifier alternation number h.

Although this result was established for concurrent game
structures (essentially, 0-MAS without normative compo-
nents), it also holds for k-MAS because every k-MAS cor-
responds to a concurrent game structure of size polynomial
in the size of the k-MAS, however exponential in k, that is
the number of normative components.

2.3 Norms
As in [Alechina et al., 2022], we define a Norm over
a k-MAS G as a Mealy machine of the form: N =
⟨Nrm, q0, 2

AP, 2Ac×Ag, η, illegal⟩. A norm takes an environ-
ment state as input and returns a set pairs of actions and agents
that are illegal given the current state of a norm and the en-
vironment. N is well-defined on every k-MAS G having the
same set Ag of agents, Ac of actions and AP of propositions.

Consider a norm Nk+1 whose components are all
indexed with k + 1. Nk+1 can be implemented
on a k-MAS G to obtain a (k + 1)-MAS G ⊕
Nk+1 = ⟨Ag,Ac,AP,Cap, tr, (Nrmi)i≤k+1, q⃗0, (ηi)i≤k+1,

(illegali)i≤k+1⟩ containing an extra normative state compo-
nent, which are the states of Nk+1, and whose evolution is
determined by the normative function ηk+1.

For every configuration c in the original game and
its extension c′ with the state of Nk+1, it holds that
AvlG⊕Nk+1

(c′, j) ⊆ AvlG(c, j) for every agent j ∈ Ag. Intu-
itively, Nk+1 introduces more restrictions on the actions for
the agents when implemented in a given k-MAS G. Note that
all norms allow the agents to perform at least noop, so there
will always be an action available to each agent regardless of
how many norms we combine.

Observe also that every normative state component i
of a k-MAS G can be regarded as a norm Ni =
⟨Nrmi, e

i
0, 2

AP, 2Ac×Ag, ηi, illegali⟩ and so G can be ob-
tained from a 0-MAS where the norms N1 . . . ,Nk have been
applied one by one. The norm synthesis problem is as follows
(where |=∅ means true in an empty context).

Definition 2 (Norm Synthesis). For a given k-MAS G and
an ATL∗

sc formula φ, determine whether there exists a norm
Nk+1 such that G ⊕Nk+1 |=∅ φ.

In [Alechina et al., 2022], it was shown that the norm syn-
thesis problem for ATL∗ objectives is decidable in (h + 2)-
EXPTIME where h is defined before Theorem 1.

3 Cost of Prohibiting Actions
Alechina et al. do not consider the cost of the synthesized
norm. In this section, we define the cost of prohibiting ac-
tions to agents which we use below to define minimum cost
norms. Our approach is general, in the sense that it admits any
assignment of costs to prohibiting sets of actions, and can ex-
press both the loss of welfare or utility to the agents and/or
the cost of enforcing the norm to the normative organisation.
However we only consider static costs, and defer considera-
tion of dynamic costs to future work.

First we introduce the notion of a cost of prohibiting an
agent to execute a particular action:

cost : Ac×Ag −→ N
The simplest cost function would be to assign the same cost

of 1 to each pair of an action and an agent. However, some
actions may be more ‘expensive’ to prohibit or some agents
may suffer greater loss of utility from prohibiting the action.
For example, a cost of (a, j) may depend on whether j ∈ A
for some group of agents A.

Example 2. In the Example 1 scenario, assume that it is sig-
nificantly more costly to prevent agent 1 from moving; e.g., if
agent 1 is an ambulance. Then we could set cost(go, 1) =
100 and cost(go, 2) = 1.

A cost function over pairs (a, j) of actions and agents can
be lifted to a cost function over sets of action, agent pairs as:

cost : 2Ac×Ag −→ N
Depending on the application, for X ∈ 2Ac×Ag, different
lifted cost functions may be appropriate.

Example 3. If cost(a, j) is 1 for all actions a and agents j,
a natural measure of cost is to sum up the costs of prohibited
actions across all agents: cost(X) =

∑
(a,j)∈X cost(a, j)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Example 4. If we aim to avoid all costs falling on only
a small number of agents, a more natural measure of cost
may be to sum the cost of prohibited actions for each agent:
cost(X) = maxa∈Ac

(∑
(a,j)∈X cost(a, j)

)
.

Example 5. Prohibitions such as quarantine restrictions that
apply to large numbers of agents may be compared based on
the most costly prohibited action, regardless of the identity or
number of agents: cost(X) = max(a,j)∈X({cost(a, j)}).

So far, we have considered the costs of prohibiting actions
and sets of actions. However, in a run of the system, a norm
specifies a sequence of prohibited sets of of actions for each
agent. In what follows, we consider two natural interpreta-
tions of the cost of a norm, the maximum cost incurred on a
run, and the average cost incurred on a run.

4 Maximum Single Step Cost Optimization
The maximum cost of any step along a run is a good measure
of the prohibitiveness of a norm; for example, it represents
the maximum loss of utility or cost of enforcement incurred
due the norm.

Definition 3 (Maximum Single Step Cost). Let cost :
2Ac×Ag −→ N be given. The per step cost of a norm
N =⟨Nrm, q0, 2

AP, 2Ac×Ag, η, illegal⟩ is

max({cost(illegal(n, π)) | n ∈ Nrm, π ∈ 2AP})
i.e., the cost of the most expensive set of prohibited actions
for this norm.

A maximum single step cost least prohibitive norm for a
given k-MAS and objective φ is a norm that makes the ob-
jective true when added to k-MAS and there is no norm with
strictly lower single step cost which makes the objective true.
This leads to the following decision problem:

Definition 4 (Maximum Single Step Cost Optimization).
Given cost : 2Ac×Ag −→ N, k-MAS and objective φ, is
there a norm N of maximum step cost at most m such that
N makes φ true when added to the k-MAS.

Example 6. If cost(go, i) = 1 for i ∈ {1, 2} in the Example
1 scenario, the norm in that example is a maximum single
step cost least prohibitive norm which ensures the objective

⟨·1·⟩(G¬crash ∧G(north → Fsouth)∧G(south → Fnorth))

To solve the Maximum Single Step Cost Optimization
problem, we reduce it to ATL∗

sc model-checking. First we re-
call the construction of the accessory game given in [Alechina
et al., 2022]. The intuition behind this construction is that,
given a game G, an extra “normative agent” 0 is introduced
who plays a role of a norm (its actions correspond to sets of
actions of other agents made illegal by the norm). The result-
ing game is denoted G′.

Construction 1 (Accessory game). For a
given game G, the accessory game G′ =
⟨Ag′,Ac′,AP′,Cap′,Nrm1, q

1
0, tr

′, illegal′1, η
′
1⟩ [Alechina et

al., 2022] is defined as:

• Ag′ = {0} ∪ Ag includes a 0-agent, sometimes called
the normative agent;

• Ac′ = Ac∪ (2Ac×Ag) includes all possible sets of pairs
of actions and agents as possible actions;

• AP′ = AP ∪ (Ac × Ag) includes the set of pairs of
actions and agents in the atomic propositions;

• Cap′(j, π′) =

{
2Ac×Ag, if j = 0

Cap(j, π′
↾AP) \ ({j} ∩ π′), o/w

• tr′(π′, a⃗) = tr(π′
↾AP, a⃗−0) ∪ a⃗0;

• illegal′(q1, π
′) = illegal(q1, π

′
↾AP);

• η′(q1, π′) = η(q1, π
′
↾AP).

Formally, the accessory game connects norms in G and
strategies for the normative agent 0 in G′ as follows.
Lemma 1. [Alechina et al., 2022, Lemma 1] For a given
1-MAS G, its accessory game G′, and a state π ∈ 2AP, the
following two statements hold:

• For every strategy σ0 of agent 0 in G′, it holds that
outG′(σ0, (π, q

1
0))↾AP = PathsG⊕Nσ0

(π, q⃗0)↾AP;

• For every norm N on G, it holds that
PathsG⊕N (π, q⃗0)↾AP = outG′(σN , (π, q

1
0))↾AP.

The lemma turns the problem of synthesizing a norm for
G to satisfy an objective φ into checking for an existence
of a strategy for agent 0. The latter can be done by model-
checking G′ against an ATL∗

sc formula ⟨·0·⟩φ. Checking for
the existence of a strategy can be done in (h+ 1)-EXPTIME
for ATL∗

sc formulas φ starting with an existential quantifier
and (h + 2)-EXPTIME for ATL∗

sc formulas starting with a
universal quantifier (because ⟨·0·⟩ adds an extra alternation
for those formulas).

Using a variant of this construction, we can solve the max-
imum single step norm optimization problem as follows.
Theorem 2. The Maximum Single Step Norm Optimisation
problem can be solved in time (h + 1)-EXPTIME for an ex-
istential ATL∗

sc formula with quantifier alternation number h,
and in (h+ 2)-EXPTIME for a universal ATL∗

sc formula with
quantifier alternation number h.

Proof. Consider the accessory game G′ defined above and
the variant G′

m that differs from G′ on the capacity function,
which is defined for the normative agent 0 as follows:

Cap′m(0, π′) = {X ∈ 2Ac×Ag : cost(X) ≤ m}

Clearly, the normative agent in G′
m is allowed to prevent

actions only up to cost m at every single iteration.
Therefore, every solution to the normative synthesis in G′

m
corresponds to a solution of the single step norm optimization
in G, and vice versa.

Another interesting problem related to maximum single
step norm optimization consists in finding the optimal cost,
that is, the minimum valuem∗ for which it is possible to solve
the maximum single step norm optimization problem.
Definition 5 (Function Form of Maximum Single Step Op-
timization). For a given k-MAS G and an ATL∗

sc formula φ,
find the minimum integer m∗ for which the maximum single
step cost optimization problem admits a solution.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

If the cost function cost : 2Ac×Ag −→ N is monotone, i.e.,
A ⊆ B implies that cost(A) ≤ cost(B), by exploiting the
solution provided in Theorem 2, we can compute m∗ and the
following theorem holds.
Theorem 3 (Optimal Cost Computation). For a given k-MAS
G and an ATL∗

sc formula φ of quantifier alternation h, com-
puting the optimal cost of the single step norm optimization
problem can be solved in time log2(M) · (h+1)-EXPTIME if
φ is an existential formula and log2(M) · (h+ 2)-EXPTIME
if φ is a universal formula, where M = cost(2Ac×Ag).

Proof. If the cost function is monotone, the maximum cost
in G is given when the norm makes all actions for each
agent illegal (except noop), which is computed as M =
cost(2Ac×Ag).

We can therefore employ binary search in the range [0,M]
where, at each recursive step, with current interval [a, b], we
check for the solution of a single step norm optimization with
m = a+b

2 . If such a solution exists, we call the binary search
over the range [a,m], otherwise, we search over the range
[m+ 1, b], and return the value m∗ obtained at the end of the
search procedure.

Clearly, the valuem∗ is optimal. Regarding the complexity
analysis, notice that at each step of the binary search we run
a maximum single step norm optimization procedure, which
is of complexity (h + 1)-EXPTIME for existential formulas
and (h+2)-EXPTIME for universal formulas. As the number
of iterations is at most log2(M), the overall complexity is as
stated in the theorem.

For non-monotone cost functions, m∗ can be computed by
first enumerating costs for all X ⊆ 2Ac×Ag and then solv-
ing a single step norm optimization for each of those costs in
increasing order.

5 Average Step Cost Optimisation
The maximal single step cost focuses on the greatest restric-
tion imposed by a norm. In many applications, the average
degree of restriction is also of interest. In this section, we
consider the synthesis of norms that minimize the average
cost of the prohibited set of actions over an infinite run.
Example 7. Consider a slightly different scenario to Exam-
ple 1 where simultaneously executing go only leads to a crash
in the initial state of the environment. A norm that makes
(go, 2) illegal in the initial state and returns an empty illegal
set subsequently ensures the objective in this scenario. Con-
sidering the maximal single step cost, this norm is no less
prohibitive than the norm from Example 1. However, in the
long run (apart from the initial state) the cost of the second
norm tends to 0.

We can model such a notion of cost using mean-payoff
games. For a sequence r ∈ Rω , the mean-payoff value of
r, denoted mp(r) is defined as

mp(r) = lim infn→∞
1
n

∑n−1
j=0 rj .

We can use the mean-payoff value to define the average
step cost of a norm. For a given game G a norm Nk+1, a legal
run r = (π0, q⃗0), (π1, q⃗1), . . . in G⊕Nk+1 defines a sequence
of costs for Nk+1 defined as

cost(r) =

cost(illegalk+1(q
k+1
0 , π0)), cost(illegalk+1(q

k+1
1 , π1)), . . .,

which is a sequence of real numbers on which we can con-
sider the mean-payoff value mp(cost(r)).

Consider a game G, a norm Nk+1, and an ATL∗
sc formula

of the form ⟨·A·⟩ψ with ψ being a purely temporal formula 1.
Let σA be a strategy profile for the set A of agents such
that r |=σA

ψ for each r ∈ outG⊕Nk+1
(c0, σA), with c0

being the initial configuration of G ⊕ Nk+1. Note that σA
exists if, and only if, G ⊕ Nk+1, c0 |= ⟨⟨A⟩⟩ψ. Denote by
Win(G ⊕ Nk+1, ⟨·A·⟩ψ) the set of strategy profiles for A
that are a solution (winning) to the model-checking of ⟨·A·⟩ψ
against G ⊕Nk+1. Assuming that the set of solution strategy
profiles is nonempty, we can define the average step cost of
Nk+1 for G and ⟨·A·⟩ψ as follows:

costmp(Nk+1, ⟨·A·⟩ψ) =
infσA∈Win(G⊕Nk+1) supr∈outG⊕Nk+1

(σA,c0) mp(r)

Intuitively, the average step cost of Nk+1 on the formula
⟨·A·⟩ψ depends both on the best behavior of agents in A and
the worst behavior of the antagonist agents, i.e., Ag \A.

Definition 6 (Average Step Cost Optimization). The Average
Step Cost Optimization problem amounts to finding a norm
Nk+1 such that

costmp(Nk+1, ⟨·A·⟩ψ) ≤ costmp(N ′
k+1, ⟨·A·⟩ψ)

for every other norm N ′
k+1, if such a norm exists.

Theorem 4. There exists a game G and an ATL∗
sc formula φ

for which the Average Step Cost Optimization problem cannot
be solved.

¬p p

ab;bb

∗∗
aa;ba

Figure 1: A game with unsolvable Average Step Cost Optimization.

Proof sketch. The proof proceeds by considering the game
G depicted in Figure 1 and showing two things. The first is
that, for every natural number n, there exists a norm Nn with
exactly n internal states such that G ◦ N n |=∅ ⟨·0·⟩GFp with
an average step cost of 1

n . The second is that there not exist a
finite norm N such that G◦N |= ⟨·0·⟩GFpwhose average step
cost is 0. Therefore, it shows an example where the average
step cost cannot be optimized.

Theorem ?? states that, in certain cases, we cannot solve
the Average Step Cost Optimization problem optimally. By
closely analyzing the counterexample in the proof, this is be-
cause we can always increase the memory of a given norm
and so decrease its mean-payoff cost by, essentially, arbitrar-
ily enlarging the loop on which the periodic costs are applied.

1Notice that this can also be seen as a ATL∗ formula

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

However, we can stop adding memory to the norm, as
soon as the cost is within ε of the optimal value. We say
that a norm Nk+1 is ε-optimal if costmp(Nk+1, ⟨⟨A⟩⟩ψ) ≤
costmp(N ′

k+1, ⟨⟨A⟩⟩ψ) + ε, for every norm N ′
k+1 such that

G ⊕N ′
k+1 |=∅ ⟨·A·⟩ψ.

In the remainder of this section we show that for each
ATL∗

sc formula of the form ⟨·A·⟩ψ with ψ being a purely tem-
poral formula, we can find an ε-optimal norm that solves the
Average Step Cost Optimization problem. In order to do so,
we first recall the notion of mean-payoff parity games, intro-
duced in [Chatterjee et al., 2005].
Definition 7 (Mean-Payoff Parity Games). A game graph
G = ((V,E), (V0, V1)) consists of a directed graph (V,E)
and a partition (V0, V1) of the set V of vertices. All game
graphs have the property that every vertex has at least one
out-going edge.

A mean-payoff parity game MP = (G, p, c) consists of a
game graph G, a priority function p : V → [d] for some
d ∈ N and a cost function c : V → R.

In [Chatterjee et al., 2005], it is shown that an optimal
strategy for solving a mean-payoff parity game may require
infinite memory. However, for each ε > 0 there always ex-
ists a finite memory ε-optimal strategy for the maximizing
agent [Chatterjee et al., 2005, Lemma 3].

We can use this result to prove the following.
Theorem 5. For every game G, ATL∗

sc formula ⟨·A·⟩ψ with
ψ being a purely temporal formula, and ε > 0, there exists a
ε-optimal norm Nk+1 such that G ⊕Nk+1 |=∅ ⟨·A·⟩ψ.

Proof sketch. The proof constructs the accessory game as de-
fined in Construction 1 and considers the structural product
with the Deterministic Parity Automaton Aψ recognizing all
and only the executions that satisfy the LTL formula ψ. This
defines a mean-payoff parity game, whose optimal strategy
for the maximizer corresponds to the combination of strate-
gies for the normative agent 0 together with those for the
agents in coalitionA, that is, those that are existentially quan-
tified. Therefore, as shown in [Chatterjee et al., 2005, Lemma
3], we can always find a finite memory ε-optimal strategy for
the maximizing agent, which then corresponds to a ε-optimal
norm for G over ⟨·A·⟩ψ.

6 Related Work
Although there has been a significant amount of work on
synthesis with quantitative objectives, e.g. [Gutierrez et al.,
2017], there has been much less work on quantitative ap-
proaches to norm synthesis.

Previous work on the synthesis of dynamic norms has con-
sidered either less expressive objectives, or does not consider
costs. [Huang et al., 2016] considers the synthesis of dynamic
norms to satisfy Computation Tree Logic (CTL) objectives,
and [Perelli, 2019] considers the synthesis of dynamic norms
for LTL objectives and Nash equilibria. [Perelli, 2019] ad-
dressed LTL objectives and a somewhat different notion of
minimality of norms in energy games, where some resource
(‘energy’) required for norm enforcement is periodically re-
plenished. The work closest to our approach is [Alechina et
al., 2022] who consider the synthesis of dynamic norms for

ATL∗ objectives. Given an ATL∗ objective and a concurrent
game structure, a norm is synthesised so that the joint system
(with some actions prohibited by the norm) satisfies the ob-
jective. However, [Alechina et al., 2022] do not consider the
cost of the synthesized norm, and use a less expressive logic
as the specification language.

There also exists previous work on generating norms that
are not overly restrictive or complex, e.g., [Morales et al.,
2015a; Christelis and Rovatsos, 2009]. For example, in
[Morales et al., 2015b], a synthesis procedure for state based
norms that do not impose unneccessary restrictions on the
agents (liberal norms) has been proposed. Issues related to
costs have also been addressed in the literature. For example,
[Alechina et al., 2013] investigated the problem of whether
a given desirable agent behaviour can still take place after a
norm is imposed while incurring at most r sanctions (punish-
ments for violating the norm). This can be seen as a cost of
the norm. [Cao and Naumov, 2022] considered a logic where
‘doing the right thing’ (which can be interpreted as comply-
ing with a norm) was assigned a cost to the agent (e.g. diving
in to save a drowning person clearly has a higher cost than
throwing them a lifebuoy).

There exist logics of strategic ability where it is possi-
ble to express bounds on costs of agent strategies: RB-ATL
[Nguyen et al., 2018] and RB-ATL∗ [Alechina et al., 2018].
However these logics cannot be used to express the bound on
the cost of the normative agent’s strategy, as, to date, no ex-
tensions of these logics with strategy contexts have been pro-
posed. Moreover, RB-ATL and RB-ATL∗ consider the cost
of achieving an ATL objective on all infinite runs of the sys-
tem generated by a strategy. Hence without production of re-
sources by the normative organisation they can express only
reachability objectives, and invariant objectives that have a
0 cost on an infinite suffix. In contrast, we make no assump-
tions about the normative organisation’s ability to produce re-
sources, and only consider the cost of the most expensive step
on a run and the average cost over an infinite run, which we
believe are more appropriate in the context of norm synthesis.

The dynamic norms we consider are effectively imple-
mented in a MAS through regimentation [Grossi et al., 2006].
A regimented norm is impossible to violate due to the design
of the MAS. For example, only authorised users can login to
the system. An interesting direction for future work is con-
sidering the enforcement approach to implementing norms,
which imposes a sanction on an agent when a norm is vio-
lated, e.g., a fine or social disapproval [Grossi et al., 2006].

7 Conclusions
We presented a formal approach to synthesis of minimal cost
dynamic norms to ATL∗

sc objectives. We showed that synthe-
sis of minimum cost dynamic norms satisfying ATL∗

sc objec-
tives is possible when considering the maximum single step
cost, and does not result in increased complexity compared to
synthesis of arbitrary norms. We also showed that for non-
nested ATL∗

sc objectives, it is possible to synthesize ϵ-optimal
norms w.r.t. to the average step cost. In future work, we plan
to explore tradeoffs between the system-level objective and
the cost of the norm.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
Giuseppe Perelli received funding support from the
PNRR MUR project PE0000013-FAIR, the PRIN 2020
projects PINPOINT and Sapienza University of Rome un-
der the “Progetti Grandi di Ateneo” programme, grant
RG123188B3F7414A (ASGARD - Autonomous and Self-
Governing Agent-Based Rule Design).

References
[Ågotnes et al., 2007] Thomas Ågotnes, Wiebe van der

Hoek, Juan A. Rodrı́guez-Aguilar, Carles Sierra, and
Michael J. Wooldridge. On the logic of normative systems.
In Manuela M. Veloso, editor, IJCAI 2007, Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence, pages 1175–1180, 2007.

[Ågotnes et al., 2010] Thomas Ågotnes, Wiebe van der
Hoek, and Michael Wooldridge. Robust normative sys-
tems and a logic of norm compliance. Logic Journal of the
IGPL, 18(1):4–30, 2010.

[Alechina et al., 2013] Natasha Alechina, Mehdi Dastani,
and Brian Logan. Reasoning about normative update. In
Proceedings of the Twenty Third International Joint Con-
ference on Artificial Intelligence (IJCAI 2013), pages 20–
26. AAAI Press, 2013.

[Alechina et al., 2018] Natasha Alechina, Nils Bulling,
Stéphane Demri, and Brian Logan. On the complexity of
resource-bounded logics. Theor. Comput. Sci., 750:69–
100, 2018.

[Alechina et al., 2022] Natasha Alechina, Giuseppe De Gi-
acomo, Brian Logan, and Giuseppe Perelli. Automatic
synthesis of dynamic norms for multi-agent systems. In
Gabriele Kern-Isberner, Gerhard Lakemeyer, and Thomas
Meyer, editors, Proceedings of the 19th International Con-
ference on Principles of Knowledge Representation and
Reasoning, KR 2022, 2022.

[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and
Orna Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672–713, 2002.

[Astefanoaei et al., 2009] L. Astefanoaei, M. Dastani, J.J.
Meyer, and F. de Boer. On the semantics and verification
of normative multi-agent systems. International Journal
of Universal Computer Science, 15(13):2629–2652, 2009.

[Boella and van der Torre, 2004] Guido Boella and Leendert
van der Torre. Regulative and constitutive norms in nor-
mative multiagent systems. In Proceedings of the Ninth In-
ternational Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’04), pages 255–266, 2004.

[Boella et al., 2008] G. Boella, J. Broersen, and L. van der
Torre. Reasoning about constitutive norms, counts-as con-
ditionals, institutions, deadlines and violations. In Pro-
ceedings of the International Conference on Principles
and Practice of Multi-Agent Systems (PRIMA), pages 86–
97, 2008.

[Bulling and Dastani, 2016] Nils Bulling and Mehdi Das-
tani. Norm-based mechanism design. Artif. Intell.,
239:97–142, 2016.

[Bulling et al., 2013] Nils Bulling, Mehdi Dastani, and Max
Knobbout. Monitoring norm violations in multi-agent sys-
tems. In Twelfth International conference on Autonomous
Agents and Multi-Agent Systems (AAMAS’13), pages 491–
498, 2013.

[Cao and Naumov, 2022] Rui Cao and Pavel Naumov. The
limits of morality in strategic games. In Luc De Raedt,
editor, Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, pages
2561–2567. ijcai.org, 2022.

[Chatterjee et al., 2005] Krishnendu Chatterjee, Thomas A.
Henzinger, and Marcin Jurdzinski. Mean-payoff parity
games. In 20th IEEE Symposium on Logic in Computer
Science (LICS 2005), pages 178–187. IEEE Computer So-
ciety, 2005.

[Chopra et al., 2018] Amit Chopra, Leendert van der Torre,
Harko Verhagen, and Serena Villata, editors. Handbook
of Normative Multiagent Systems. College Publications,
2018.

[Christelis and Rovatsos, 2009] George Christelis and
Michael Rovatsos. Automated norm synthesis in an
agent-based planning environment. In Proceedings of The
8th International Conference on Autonomous Agents and
Multiagent Systems, pages 161–168, 2009.

[Corapi et al., 2011] Domenico Corapi, Alessandra Russo,
Marina De Vos, Julian A. Padget, and Ken Satoh. Norma-
tive design using inductive learning. Theory Pract. Log.
Program., 11(4-5):783–799, 2011.

[Da Costa Lopes et al., 2010] Arnaud Da Costa Lopes,
François Laroussinie, and Nicolas Markey. ATL with
strategy contexts: Expressiveness and model checking.
In Kamal Lodaya and Meena Mahajan, editors, FSTTCS
2010, volume 8 of LIPIcs, pages 120–132. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2010.

[Dastani et al., 2013] Mehdi Dastani, Davide Grossi, and
John-Jules Meyer. A logic for normative multi-agent pro-
grams. Journal of Logic and Computation, special issue
on Normative Multiagent Systems, 23(2):335–354, 2013.

[Dennis et al., 2010] Louise A. Dennis, Nick A. M. Tin-
nemeier, and John-Jules Ch. Meyer. Model checking nor-
mative agent organisations. In Jürgen Dix, Michael Fisher,
and Peter Novák, editors, Computational Logic in Multi-
Agent Systems - 10th International Workshop, CLIMA X,
Revised Selected and Invited Papers, volume 6214 of Lec-
ture Notes in Computer Science, pages 64–82. Springer,
2010.

[Dignum et al., 2004] F. Dignum, J. Broersen, V. Dignum,
and J.-J. C. Meyer. Meeting the deadline: Why, when and
how. In Proceedings of the International Workshop on For-
mal Approaches to Agent-Based Systems (FAABS), pages
30–40, 2004.

[Fitoussi and Tennenholtz, 2000] David Fitoussi and Moshe
Tennenholtz. Choosing social laws for multi-agent sys-
tems: Minimality and simplicity. Artificial Intelligence,
119(1):61–101, 2000.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Grossi et al., 2006] Davide Grossi, Huib Aldewereld, and
Frank Dignum. Ubi Lex, Ibi Poena : Designing norm
enforcement in e-institutions. In Pablo Noriega, Javier
Vázquez-Salceda, Guido Boella, Olivier Boissier, Vir-
ginia Dignum, Nicoletta Fornara, and Eric Matson, edi-
tors, Coordination, Organizations, Institutions, and Norms
in Agent Systems II - AAMAS 2006 and ECAI 2006 Inter-
national Workshops, COIN 2006, Revised Selected Papers,
volume 4386 of Lecture Notes in Computer Science, pages
101–114. Springer, 2006.

[Gutierrez et al., 2017] Julian Gutierrez, Aniello Mu-
rano, Giuseppe Perelli, Sasha Rubin, and Michael J.
Wooldridge. Nash equilibria in concurrent games with
lexicographic preferences. In Carles Sierra, editor,
Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, pages
1067–1073. ijcai.org, 2017.

[Huang et al., 2016] X. Huang, J. Ruan, Q. Chen, and K. Su.
Normative Multiagent Systems: The Dynamic Generaliza-
tion. pages 1123–1129, 2016.

[Laroussinie and Markey, 2015] François Laroussinie and
Nicolas Markey. Augmenting ATL with strategy contexts.
Inf. Comput., 245:98–123, 2015.

[Meyer and Wieringa, 1993] J.-J. Ch. Meyer and R. J.
Wieringa. Deontic logic: A concise overview. In J.-J. Ch.
Meyer and R.J. Wieringa, editors, Deontic Logic in Com-
puter Science: Normative System Specification, pages 3–
16. John Wiley & Sons, 1993.

[Morales et al., 2015a] Javier Morales, Maite López-
Sánchez, Juan Antonio Rodrı́guez-Aguilar, Wamberto We-
ber Vasconcelos, and Michael J. Wooldridge. Online
automated synthesis of compact normative systems. ACM
Trans. Auton. Adapt. Syst., 10(1):2:1–2:33, 2015.

[Morales et al., 2015b] Javier Morales, Maite López-
Sánchez, Juan Antonio Rodrı́guez-Aguilar, Michael J.
Wooldridge, and Wamberto Weber Vasconcelos. Syn-
thesising liberal normative systems. In Gerhard Weiss,
Pinar Yolum, Rafael H. Bordini, and Edith Elkind, editors,
Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, AAMAS
2015, pages 433–441. ACM, 2015.

[Morales et al., 2018] Javier Morales, Michael J.
Wooldridge, Juan A. Rodrı́guez-Aguilar, and Maite
López-Sánchez. Off-line synthesis of evolutionarily stable
normative systems. Auton. Agents Multi Agent Syst.,
32(5):635–671, 2018.

[Nguyen et al., 2018] Hoang Nga Nguyen, Natasha
Alechina, Brian Logan, and Abdur Rakib. Alternating-
time temporal logic with resource bounds. J. Log.
Comput., 28(4):631–663, 2018.

[Perelli, 2019] Giuseppe Perelli. Enforcing Equilibria in
Multi-Agent Systems. pages 188–196, 2019.

[Pnueli and Rosner, 1989] Amir Pnueli and Roni Rosner. On
the synthesis of a reactive module. In Conference Record
of the Sixteenth Annual ACM Symposium on Principles

of Programming Languages, Austin, Texas, USA, January
11-13, 1989, pages 179–190. ACM Press, 1989.

[Shoham and Tennenholtz, 1995] Yoav Shoham and Moshe
Tennenholtz. On social laws for artificial agent societies:
off-line design. Artificial Intelligence, 73(1-2):231–252,
1995.

[Tinnemeier et al., 2009] Nick Tinnemeier, Mehdi Dastani,
J-J. Ch. Meyer, and Leon van der Torre. Programming
normative artifacts with declarative obligations and prohi-
bitions. In Proceedings of the IEEE/WIC/ACM Interna-
tional Joint Conferences on Web Intelligence and Intelli-
gent Agent Technologies, WI-IAT’09, volume 2, pages 145
–152, September 2009.

[van der Hoek et al., 2007] Wiebe van der Hoek, Mark
Roberts, and Michael J. Wooldridge. Social laws in alter-
nating time: effectiveness, feasibility, and synthesis. Syn-
these, 156(1):1–19, 2007.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

