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Abstract

Many important scientific problems involve mul-
tivariate optimization coupled with slow and la-
borious experimental measurements. These high-
dimensional searches can be defined by complex,
non-convex optimization landscapes that resemble
needle-in-a-haystack surfaces, leading to entrap-
ment in local minima. Contextualizing optimiz-
ers with human domain knowledge is a powerful
approach to guide searches to localized fruitful re-
gions. However, this approach is susceptible to hu-
man confirmation bias. It is also challenging for
domain experts to keep track of the rapidly expand-
ing scientific literature. Here, we propose the use
of Large Language Models (LLMs) for contextu-
alizing Bayesian optimization (BO) via a hybrid
optimization framework that intelligently and eco-
nomically blends stochastic inference with domain
knowledge-based insights from the LLM, which is
used to suggest new, better-performing areas of the
search space for exploration. Our method fosters
user engagement by offering real-time commentary
on the optimization progress, explaining the rea-
soning behind the search strategies. We validate the
effectiveness of our approach on synthetic bench-
marks with up to 15 variables and demonstrate the
ability of LLMs to reason in four real-world ex-
perimental tasks where context-aware suggestions
boost optimization performance substantially.

1 Introduction

Exploring large experimental design spaces requires intelli-
gent navigation strategies because of the costly and time-
consuming function evaluations involved. Bayesian opti-
mization has been established as an optimal experimen-
tal design methodology across disciplines spanning chem-
istry [Hise et al., 20211, solar energy production [Andrés-
Thi6 et al., 2024] and agronomy [Zhang et al., 2024]. BO
can be used to efficiently navigate combinatorially large land-
scapes, and to identify promising solutions in an active-
learning setting. Typically, BO uses a probabilistic surrogate

*Supplementary Material (SM) for this work can be found in the
extended version of the paper at https://arxiv.org/abs/2501.16224.
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Figure 1: The BORA framework. Icons from [Flaticon, 2025].

to approximate an expensive or unknown objective function
f while iteratively searching for a maximizer,
x* = argmax f(z), (1)
zeX
with f : X — R defined on the search domain X C R?,
This surrogate — often a Gaussian Process (GP) [Garnett,
2023] — subsequently undergoes Bayesian updates as new
data about the design space are acquired, according to a pre-
defined acquisition policy or function «(+), allowing for the
refinement of predictions of the objective f(z). In turn, this
acquisition function suggests the next set of parameters for
experiments with the highest expected utility, balancing ex-
ploration in new regions and exploitation in promising ones.
Despite its successful application to a plethora of scien-
tific tasks, BO is frequently characterized by slow initial opti-
mization phases due to random or Latin Hypercube [Poloczek
et al., 2016] selection of initial samples. This can slow the
search for combinatorially large spaces substantially. This
highlights a fundamental challenge for standard BO; that is,
the lack of inherent domain knowledge and contextual un-
derstanding of the problem at hand. Recently, BO variants
have been proposed that are capable of injecting domain-
specific knowledge into the search, either through structural
problem characteristics [Xie er al., 2023] or by using human
expert knowledge [Cissé er al., 2024]. The latter approach,
sometimes known as ‘Human-in-the-Loop (HIL)’, has drawn
considerable recent attention, and it aims to infuse domain
knowledge and human reasoning into BO workflows [Adachi
et al., 2024; Huang et al., 2022]. By leveraging expert in-
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sights in the form of hypotheses [Cissé et al., 20241, prefer-
ences [Kristiadi ef al., 2024] or specified priors over possible
optima [Hvarfner er al., 2022; Li et al., 2020], it is possible
to enrich the optimization process and to direct searches to
fruitful regions much faster. Thus, HIL. methods have shown
increased effectiveness and efficiency compared with data-
only approaches. In particular, hypothesis-based methods
have shown gains in both performance and cost. Nonethe-
less, these HIL approaches can be human-capital resource-
intensive because they require regular human interventions.
Moreover, it is easy, even for domain experts, to lose track
of the state of the art in fast-moving research areas and to ig-
nore certain promising regions of the search space [Ou er al.,
2022].

To address these challenges, we propose the use of Large
Language Models (LLMs) [Guo ef al., 2024] as a facilitating
framework in black-box optimization to enrich searches with
domain knowledge. Specifically, we have coupled an LLM
with standard BO in a hybrid optimization framework that
automatically monitors and regulates the amount of domain
knowledge needed when the search becomes ‘trapped’ in lo-
cal minima. The algorithm capitalizes on the LLM’s inher-
ent in-context learning (ICL) capacity and reasoning mech-
anism to suggest, in the form of hypotheses, promising ar-
eas in the search space from which to sample. LLMs have
been employed recently to address limitations in core BO
methodologies, as well as HIL variants [Liu er al., 2024;
Yin et al., 2024]. LLMs have the capacity to encode vast
amounts of domain-specific and general knowledge and have
demonstrated the ability to reason about relatively com-
plex tasks through in-context learning [Kroeger er al., 2024;
Xie et al., 2022] as well as in multidisciplinary domains such
as chemistry [Ramos er al., 2024]. However, due to their nu-
merically agnostic design, LLMs lag behind traditional BO
methods in systematically balancing exploration versus ex-
ploitation, and have proved unreliable in many practical sce-
narios [Huang et al., 2024]. Recent attempts have been made
to integrate LLMs with BO frameworks [Mahammadli, 2024;
Yin et al., 2024] but thus far, these have been limited to small
problem sizes, such as hyper-parameter optimization, or sit-
uations where the optimal solution is proximal to a special
value [Huang et al., 2024]. Also, LLM/BO hybrids could be
prohibitively costly for more complex queries, particularly if
the LLM is deployed for every iteration in the optimization.

Here, we propose a language-based Bayesian Optimiza-
tion Research Assistant, BORA, that enriches BO with do-
main knowledge and contextual understanding across a range
of scientific tasks. We frame BORA as a hybrid framework
that augments surrogate-based optimizers with uncertainty
estimates by localizing areas of interest in the search space,
guided by a knowledge-enriched LLM (Figure 1). A heuris-
tic policy regulates the LLM involvement in the optimiza-
tion process, adaptively balancing rigorous stochastic infer-
ence with LLM-generated insights within a feasible budget
of LLM computation and API usage limits. During the inter-
vention stage, the LLM uses its domain knowledge and rea-
soning capabilities to comment on the optimization progress
thus far, highlighting patterns observed and forming hypothe-
ses that may yield more rewarding solutions. It then tests

these hypotheses by proposing new samples that maximize
the target objective. BORA is also designed to provide an ef-
fective user-optimizer interaction through its dynamic com-
mentary on the optimization process. This promotes deeper
insights from the user and, in the future, the option to inter-
vene; for example, by either reinforcing or overriding cer-
tain insights from the LLM. To our knowledge, this is the
first time that a rigorous, dynamic synergy of black-box BO
with LLMs has been proposed in this context. We evaluated
BORA on various synthetic functions and a pétanque gaming
model, as well as real scientific tasks in chemical materials
design, solar energy production, and crop production. BORA
demonstrated significant improvements in search exploration,
convergence speed, and optimization awareness. Compared
to earlier techniques, our method shows significant efficiency
gains and generalization beyond hyper-parameter optimiza-
tion, emphasizing its potential for tackling real-world tasks.

The remainder of this paper is organized as follows. Sec-
tion 2 presents recent works about domain knowledge and
LLM integration in BO and Section 3 details our proposed
methodology. Section 4 analyzes and compares the per-
formance of our algorithm against state-of-the-art methods
across diverse datasets, with Section 5 concluding our work
and discussing future directions.

2 Related Works

To cope with non-convex optimization landscapes in sci-
ence tasks, intelligent approaches have been proposed that
focus on promising regions through adaptive exploration-
exploitation strategies [Shoyeb Raihan er al, 2024], or
‘smooth out’ the optimization landscape by enriching it with
domain knowledge [Ramachandran er al., 2020]. Notable
examples include local BO methods that restrict the search
space, such as ZoMBI [Siemenn et al., 2023], which aims
to improve efficiency by focusing on local regions assumed
to contain the optimum. Similarly, TuRBO [Eriksson et
al., 2019] uses multiple independent GP surrogate models
within identified trust regions and a multi-armed bandit strat-
egy [Vermorel and Mohri, 2005] to decide which local op-
timizations to continue. These approaches are well-suited
to handling high-dimensional problems, but their potential is
perhaps more limited in small budgets and highly multimodal
spaces due to a lack of built-in domain knowledge.

Incorporating domain knowledge into BO can improve
both its efficiency and its performance [Adachi er al., 2024;
Hise et al., 2021]. DKIBO [Xie et al., 2023] enhances BO’s
acquisition function with structural knowledge from an addi-
tional deterministic surrogate model to enrich the GP’s ap-
proximation power. Others, such as ColaBO [Hvarfner et
al., 2024] and HypBO [Cissé et al., 2024], allow users to
inject their beliefs at the start to guide the optimization pro-
cess. However, those methods keep the users’ beliefs static
and cannot refine them as the optimization progresses, even
if they are wrong. Meanwhile, other HIL methods rely on
frequent user inputs [Savage and del Rio Chanona, 2023] and
for robotic experiments [Burger er al., 2020], for example,
that run 24/7 in a closed-loop way, waiting for this human
user input might become the rate-limiting step.
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Recently, some studies have explored LLMs as standalone
replacements for traditional optimizers due to their excep-
tional ability to solve complex problems in various do-
mains [M. Bran et al, 2024; Nguyen and Grover, 2024].
Methods like LLAMBO [Liu et al., 2024] and OPRO [Yang
et al., 2024] use the generative and ICL capabilities of
LLMs to propose solutions to optimization problems directly.
LLAMBO mimics BO’s structure and replaces its key compo-
nents with LLMs. In OPRO, the LLM is iteratively prompted
with the gathered optimization data as input and tasked to
generate new solutions as output that are then evaluated.
These methods are innovative but have focused so far on
low-dimensional hyperparameter tuning and are not yet obvi-
ously suitable as a general framework for optimization tasks.
Querying LLMs at all iterations also incurs a larger computa-
tional and financial footprint than traditional BO algorithms,
particularly if reasoning models are used. Standalone LLM
optimizers also lack the mathematical guarantees offered by
traditional optimizers such as BO.

In response to the limitations of using LLMs as stan-
dalone optimizers, hybrid approaches such as BoChemian
[Rankovi¢ and Schwaller, 2023] have emerged that com-
bine the strengths of LLMs to featurize traditional optimiza-
tion methods. SLLMBO [Mahammadli, 2024] integrates
the strengths of LLMs in warm-starting optimization, and it
loops between LLM-based parameter exploitation and Tree-
structured Parzen Estimator (TPE)’s exploration capabilities
to achieve a balanced exploration-exploitation trade-off. This
reduces API costs and mitigates premature early stoppings
for more effective parameter searches. However, SLLMBO,
like LLaMEA-HPO [van Stein et al., 2024], is limited to hy-
perparameter tuning. Moreover, its LLM exploration / TPE
exploitation cycle lacks dynamic adjustment because it is an
alternating process fixed at a 50:50 balance. Another limita-
tion is the risk of premature optimization termination in com-
plex search spaces due to a strict early stopping mechanism.

Our approach, BORA, shares similarities with the above
studies by incorporating domain knowledge and adapting
search mechanisms. However, BORA is distinguished by
leveraging LLMs when they are most required, for online hy-
pothesis generation and for real-time commentary on opti-
mization progress. Unlike static methods such as HypBO,
which assume fixed human-injected soft constraints, our
method refines the optimization trajectory based on the con-
textual insights given by the LLM. Moreover, BORA extends
beyond previous hybrid approaches such as SLLMBO by in-
troducing adaptive heuristics that intelligently modulate LLM
involvement with BO to maximize optimization performance.

3 Methodology

The BORA optimization framework is illustrated in Figure 1.
It is an automated hybrid BO-LLM synergy operating under
a common GP whose parameters are updated as new points
are sampled, either from BO or the LLM. A user-provided
experiment description is used to initially contextualize the
LLM which then warm-starts the optimization with proposed
samples through its ICL capabilities. The optimization pro-
gresses by alternating BO and LLM runs that are accordingly
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Figure 2: The LLM agent commenting and refining its hypotheses
on the Sugar Beet Production experiment (complete comment in the
SM). This experiment is detailed in Section 4.1.

triggered by performance plateaus. Our proposed framework
employs an adaptive heuristic policy to (a) assess the need to
invoke the LLM, (b) determine the type of LLM intervention
needed, and (c) update the frequency of those interventions as
the optimization progresses. We use Reinforcement Learning
(RL) terminology in the manuscript to describe our approach,
but we use hand-crafted policy update rules because learning
generalized rules in the traditional sense [Liu er al., 2022;
Volpp et al., 2020] would be impractical in Bayesian scien-
tific optimization settings [Lee et al., 2020], which is the fo-
cus of this work. In its interventions, the LLM provides user
interpretability via real-time commentary of the optimization
progress and generates hypotheses to maximize the objective.

3.1 LLM Comments and Hypotheses

The LLM is prompt-engineered to return structured JSON re-
sponses that we call Comments (for formatting details we re-
fer the reader to the SM). The Comment object, illustrated
in Figure 2, contains insights into the optimization progress
and potential reasons for stagnation, as well as a list of hy-
potheses to remedy that stagnation. Each hypothesis includes
a meaningful name, a rationale, a confidence level, and the
corresponding input point to test it. Unlike in HypBO [Cissé
et al., 2024] where hypotheses are defined as rather static re-
gions of interest, BORA dynamically builds hypotheses dur-
ing the optimization process typically in the form of single
search points through the LLM’s ICL model. As demon-
strated in LLAMBO [Liu et al., 2024], LLMs tasked with
regression inherently perform an implicit ICL modeling of
the objective function, estimating the conditional distribution
p(y|x; D), where y is the target value at x. BORA extends
this modeling by integrating all previously gathered data D
and all the LLM’s comments C, enhancing the LLM surrogate
to model p(y|z; D; C). From this augmented model, the LLM
proposes hypotheses, exploring regions likely to improve on
the current best observation ym,x and derived from the condi-
tional probability "™ ~ p(z|y > ymax; D; C).

3.2 LLM Initialization

User-Provided Experiment Card

To inform the LLM initially, the user prepares a compre-
hensive problem description following a standardized tem-
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plate that we refer to as the Experiment Card. This card in-
cludes any details or context about the black-box function f
to be optimized, descriptions of its input variables, and the
target variable to be maximized, along with any constraints
that must be satisfied within the search space. From the ex-
periment card, the LLM is prompted to generate nj,; initial
hypotheses for maximizing the target. This translates into
Nini¢ 1Nitial points that are evaluated to form the initial dataset

Do = { (@i, yi = f(a:z))}j:“;
3.3 Actions

BORA leverages an adaptive heuristic policy detailed in Sec-
tion 3.4 to choose one action from a set of three possible ac-
tions defined in the following paragraphs. The chosen action
suggests at least one next point for evaluation, which is evalu-
ated and added to the dataset. While the Vanilla BO action a;
appends one sample (z,y) to D;_; at each step or iteration
t, the LLM actions a9 and a3 add nypm and npgo > 1 sam-
ples, respectively. Hereon, we distinguish between ¢, the step
number, and ¢, the sample index at step ¢, and denote with

S = {xii)}le the set of k points suggested by an action a
at step ¢.

a; Continue with Vanilla BO
The acquisition function is maximized to get the next promis-

ing point S; = {x§1) }, which is then evaluated and added to
the dataset to form D; = D1 U {(z, f(x)) | x € S¢}.

as LLM Comments and Suggests nyy Points

A prompt containing the gathered data up to D;_; and any
previous comments C is given to the LLM. The LLM is then
tasked to comment on the optimization progress in light of
the new data and to update any previous hypotheses. The re-

turned Comment contains the next points S; = {xﬁ” FrM

p(2|y > Ymax; Di—1;C) chosen by the LLM, which are then
evaluated and added to the dataset to form D;.

a3z LLM Comments and Selects n;go BO Points
as is a non-myopic, ICL step that focuses the LLM’s atten-

tion on a high-quality set of ngo candidate points {x](;g sy

which are generated by maximizing the acquisition function.

A prompt containing D;_1, C, and {1‘1(3]3 75’1 are given to

the LLM, which is then tasked to comment on the optimiza-
tion progress in light of the new data and constrained to se-
lect the npgo most promising BO candidates that best align
with its hypotheses for maximizing the target objective. Set-
ting ngo = 5 and nigo = 2 empirically showed to offer
enough diversity of hypothesized optima locations and en-
sure competitive performance overall. The returned Com-

ment holds the nygo selected points S; = {zg“}"“*o

i=1
p(r € {Igg 7291y > Ymax; Di—1;C) that are then evaluated

and added to the dataset.

3.4 Adaptive Heuristic Policy

Action Selection

BORA’s policy helps it to make informed choices about en-
gaging the LLM without relying on data-hungry RL algo-
rithms, thus maintaining BORA’s practicality and effective-
ness in real-life scenarios. The optimization starts with the

Vanilla BO action a;, and the subsequent action selection
depends on (a) the average uncertainty oSt of the com-
mon GP over the search space A’ to determine the neces-
sity and type of LLM intervention, and (b) the BO perfor-
mance plateau detection, as well as the performance success
(or trust in) of the previous LLM interventions. When the
GP’s uncertainty is high and above a pre-defined threshold
(ogim > 0 upper)» BO needs significant guidance from the
LLM, triggering a complete ‘take-over’ by the LLM in the
search, suggesting new points informed by its own internal
reasoning mechanism. As the GP’s uncertainty decreases

(Ot 1ower < ag‘jﬁm < O¢upper)s the LLM becomes less in-

volved by relying only on BO suggested points, but still us-
ing its ICL capacity based on both D and C to select the most
promising ones. When the GP’s uncertainty is low enough
(08P can < Ttlower), BO has a better approximation of objec-
tive function’s landscape and no longer needs guidance from
the LLM. The rationale behind remark (b) is that the LLM
should gain more trust as the LLM suggestions exhibit bet-
ter performance, which in turn triggers the plateau duration
to be re-defined as shorter, allowing the LLM to intervene
more frequently. Conversely, if the LLM’s so-far observed
performance declines, its trust in itself diminishes and, conse-
quently, its interventions are reduced, which results in longer
plateau duration adjustments before invoking its assistance.
In short, the action selection at each step ¢ follows the pol-
icy m described below, where the GP parameters are updated
after every action accordingly:

¢ If of} con < Ot.lower OF ‘N0 plateau’ — action a;,
* Elseif 0% ., > 0t upper — action ay,
¢ Else — action as.

Selection Mechanism

Uncertainties The above action selection is realized by cal-

culating and updating in every step the uncertainties from a
set of fixed ¢ monitoring points xfﬁgn that are randomly sam-

pled before the optimization starts. Specifically,

1< ,
Utcjgean = 6 Z Ot (xr(li())n)v 2

=1
GP GP (i)
Ut,max N maX(Ut—l,maxv max O't(xmon))v (3)
1<i<gq
GP GP
Ttupper = 0.5 X 0 1 and o jower = 0.3 X O ¢ max> 4)

where o, () represents the uncertainty of the GP at a given
point in iteration ¢. Here, the 50% and 30% fractions serve
as empirically tuned bounds that consistently balance BO ex-
ploitation with LLM exploration across diverse tasks.

Plateau Detection Another important part of the action se-
lection mechanism in the proposed framework is the detection
of performance plateauing in BO. A performance plateau is
detected at step ¢ when

max max

Y <yt x (1+sign(y}“ﬁ"1) x7),forall j € [t—m-+1,],

(&)
where y™* = max({y|(z,y) € D;}). That is, if for the
past m consecutive BO steps, there is not enough perfor-
mance improvement (w.r.t a set percentage ), then the LLM
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involvement is triggered. The plateau duration m is initial-
ized at My = [2\/&1, set to vary between mpy;, = 0 and
Mmax = 9Minit, and is automatically adjusted at every LLM
intervention step ! (here [ counts the number of times actions
as or ag are invoked). The adjustment depends on the current
‘trust’ 7; € [0, 1] BORA has on the LLM, which in turn relies
on the LLM performance observed so far. Specifically

Madjustment = I_(rfl - Tl—l) X ArnaxJ 5 (6)
m < clip (m — Madjustments "min; mmax) > (7

where A .y is the maximum allowed adjustment per step,
here set to 15, and clip(z, a, b) is a function that restricts x to
be within the bounds [a, b].

Trust Mechanism As noted above, the plateau adjustment
relies on an adaptive trust mechanism that regulates the trust
in the LLM as defined by a ‘trust score’ calculated on pre-
vious performances. That is, at each step ¢ where the LLM

() k .
suggests (or selects) Sy = {x;"”} _ . the trust score is up-
dated based on the following reward function

r = max({f(x)\x € St}) — Y ®)

First, an intervention score, ranging in [0, 1], reflects the util-
ity of those LLM suggestions in finding a new optimum with
respect to the reward function in Eq. (8) as

1
o _)7
scoreinterv - —

1+€7 [y T+e

if r; >0,
ifr; <0, ©

where ¢ = 107% is a small constant to handle cases where
y = 0. By normalizing r; with |y™®}|, the trust score
becomes more sensitive to relative changes rather than abso-
lute changes. This is particularly useful in domains where
the magnitude of y varies widely, making it robust across

scales. Then, this intervention score is added to H <+

HU{ scorei(il)erv}, keeping track of the previous intervention

scores. Note that to reflect an initially optimistic view of the
LLM, H is initialized as {0.9}, i.e., score'” —0.9. Finally,

nterv
an average rolling trust score 7; is subsequently calculated
as the average of the intervention scores in H over a sliding

window W of the three most recent intervention scores as

1 i .
T, = W ,_%:_W scorei(m)ew where W = min(|#|,3). (10)

The complete BORA framework is described in Algorithm 1.
Details about the LLM prompt engineering, reflection strate-
gies, and fallback mechanisms can be found in the SM.

4 Experiments

We validated BORA’s performance against current state-of-
the-art methods on both synthetic functions and various real-
world tasks, with dimensionality ranging from 4 to 15 inde-
pendent variables. Section 4.1 outlines the experimental setup
while Section 4.2 highlights the results. Details on the bench-
marks, the method implementations, and the reproducibility
details can be found in the SM. The source code is available
at https://github.com/Ablatif6¢/bora-the-explorer.

Algorithm 1 BORA

Input: Experiment card, Number of initial samples nipi,
Maximum number of samples ¢,,x Output: ym.x, LLM com-
ments C and final report

1: LLM generates initial samples Dy < { (x4, f(x;)) i

2: Initialize the GP surrogate model with Dy;

3: Initialize policy parameters oS . . U&fnax’ 00,uppers

00 lowers M, 1 = {0.9}, v = 0.05, ngo = 5, nLgo = 2;

4: Initialize sample index ¢ = nny, stept = 1, C = {};
5: while i < 1y + Imax do

6:  if ofh .0 < Otlower OF ‘N0 plateau’ then

7: a=ai, S = {zgl)};

8: elseif ofF ., > 0¢ upper then

9: a = ao, St — {I,Ek)}Zl;r;(nLLMﬂmax"Fniml_l);

10:  else i ) )

11: a=az S; = {xg ) Zl;rll(nLBo,zmaan.mﬁz);

12:  end if

13:  Update dataset D; < Dy—1 U {(z, f(2))|z € St};
14:  Update ymax as the maximum y value in Dy;

15:  Update GP, policy parameters and trust mechanism;
16: t<+t+1land? <+ 1+ k;

17: end while

18: LLM generates a final report.

4.1 Experimental Setup

Synthetic Function Benchmarks
* Branin (2D): A function with a global maximum occur-
ring in three distinct locations as shown in Figure 3. The
input space bounds are zy € [—5,10] and z; € [0, 15].

* Levy (10D): A function with a highly rugged landscape.
All inputs are bounded in [—10, 10] with the maximum
at[1,...,1].

* Ackley (15D): A challenging high dimensional function
with several local maxima. Input bounds are [—30, 20]
with the maximum at [0, .. ., 0].

Note that the names of these functions in the experiment card
were anonymized to ‘mathematical function’ to prevent the
LLM from recognizing them by name.

Real-World Application Benchmarks
* Solar Energy Production (4D): Maximizing the daily
energy output of a solar panel by optimizing panel tilt,
azimuth, and system parameters [Anderson et al., 2023].

» Pétanque Game (7D): A ball is thrown to hit a target.
The goal is to maximize the score, which is inversely
proportional to the target distance miss, by tuning the
throw position, angles, velocity, and spins.

* Sugar Beet Production (8D): Maximizing the monthly
sugar beet Total Above Ground Production (TAGP) in a
greenhouse by tuning the irradiance, and other weather
and soil conditions [de Wit and contributors, 2024].

* Hydrogen Production (10D) Maximizing the hydro-
gen evolution rate (HER) for a multi-component cata-
lyst mixture by tuning discrete chemical inputs under the
constraint that the total volume of the chemicals must
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Figure 3: Visualization of BORA maximizing Branin 2D (which
contains three global maxima) under a budget of 22 optimization
steps (numbered points). Black samples were suggested by the BO
action a1, while pink ones came from the LLLM actions a2 and as.

not exceed 5 mL. Note that due to the discrete and con-
strained nature of the problem, we adapted all compared
methods accordingly to account for this, by employing
the bespoke implementation of [Burger et al., 2020].
Dataset acquired from [Cissé et al., 2024].

BORA
We implemented BORA using OpenAI’s most cost-effective
model at the time, GPT-40-mini [OpenAl, 2025], which was
not fine-tuned in our effort to make BORA more accessible
to users with limited resources. For the BO action imple-
mentation, the GP uses a Matérn kernel, and the acquisition
function is EI. We set ¢ = 5,000 for o9

t,mean*

Baselines
* Random Search: Unbiased exploration baseline.

* BayesOpt [Nogueira, 2014]: Example of vanilla BO.
e TuRBO [Eriksson et al., 2019] with a single trust region.

e ColaBO [Hvarfner er al., 2024] that uses a single static
expert given-prior over the optimum to guide the opti-
mization process.

* HypBO [Cissé et al., 2024] that uses multiple static
expert-given-promising regions to guide the optimiza-
tion.

* LAEA [Hao et al., 2024], a hybrid LLM-Evolutionary
Algorithm method.

For ColaBO and HypBO, to avoid the impracticality of re-
lying on humans to provide inputs for multiple trials across
all experiments, we used the LLM GPT-40-mini to generate
the ‘human’ inputs. Likewise, we used the same task de-
scription prompts as used for BORA, to ensure consistency.
For HypBO on the Hydrogen Production experiment, we em-
ployed the most realistic hypothesis used in [Cissé et al.,
20241, namely ‘What They Knew’, which encapsulates any
human knowledge available prior to the execution of the ex-
periment.

Experimental Protocol
The optimization performance was measured using the maxi-
mum objective value found so far, the cumulative regret, and

Levy Hydrogen Production

— 11.00

0 20 40 60 8o 100 "% 020 40 60 80 100

Number of Samples Number of Samples

0.00

GP

mean

BORA ¥4 LLM Intervention o —— Trust Score

Figure 4: LLM intervention monitoring during a BORA run on 10D
Levy (left) and Hydrogen Production (right). Mean uncertainty and
Trust scores are also overlayed to highlight their interrelationships.

statistical tests to measure significance. The maximum num-
ber of samples was set to 105 to account for realistic budgets
with expensive functions. Average results of 10 repeated tri-
als with distinct random seeds are reported. All methods were
initialized with niy; = 5 initial samples apart from LAEA, for
which we used 15 initial samples to keep the same number of
evaluations to population size ratio as in [Hao et al., 2024].

4.2 Results

Synthetic Functions

Figure 3 illustrates the exploration strategy of BORA on
the Branin (2D) function. The LLM interventions helped
to uncover two out of the three possible locations of the
global maximum of Branin. This is further illustrated in
Figure 5, which shows that BORA outperforms the base-
line comparisons for the higher-dimension functions Levy
(10D) and Ackley (15D). A key advantage of BORA is its
LLM-informed initial sampling. For mathematical functions,
BORA systematically suggests initializing at critical points
such as the edges, central points, or other remarkable points
like [0,...,0]. This strategy is particularly well-suited for
the Levy function, whose search space bounds are symmet-
ric, and its optimum s at [1, . . ., 1], almost always converging
in its initialization stage. However, that strategy is less ben-
eficial on the Ackley function because its bounds are asym-
metric. Despite that, the LLM’s ability to reflect and learn
from the previous samples appears to help mitigate any unfa-
vorable initializations. While HypBO demonstrates a similar
benefit through its initial sampling in hypothesized regions,
its performance is comparatively weaker because it relies on
random initial sampling within these regions, resulting in less
effective exploration of the search space. For ColaBO, which
only works with a single input prior, the prior tended to be
around one of the edges, which overall limits its convergence
speed. Additionally, the left panel of Figure 4 shows how
BORA’s iterative hypothesis generation, informed by previ-
ous data, helps mitigate stagnant optimization, and discards
the LLM when it is no longer needed. Notably, a sharp drop
in the GP uncertainty is evident when vanilla BO is used due
to is proved exploration-exploitation guarantees, as opposed
to the less rigorous LLM where the uncertainty is bound to its
inherent sampling strategy. Nevertheless, the dynamic syner-
gistic effect of BO coupled with updated LLM hypotheses
allows for faster convergence overall, in comparison to other
baselines as illustrated in the last two bar plots of Figure 6.
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Figure 5: BORA vs Baselines on six experiments. Solid lines show average values while shaded areas indicate £0.25 standard error. For
visual clarity, some plots are zoomed in to show results up to 60 iterations, as the trends mostly stabilize beyond this point. Full results in SM.
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Figure 6: Comparison of BORA vs. Baselines’ cumulative regrets
in the six experiments.

Real-World Applications

BORA also exhibits superior performance across diverse real-
world optimization problems, following the trends observed
in the synthetic benchmarks. As shown in Figure 5, while
BORA’s initial sampling is on par with other input-based
baselines for the Solar Energy and Sugar Beet Production
experiments, its overall performance on all experiments sur-
passes the baselines significantly. This is particularly evident
in the 7D Pétanque experiment, where BORA’s diverse initial
hypotheses based on trajectory dynamics led to a remarkable
gain in score of 35 in the early stages compared to the base-
lines. This knowledge and context-based input bridges the
knowledge gap typically encountered in early-stage optimiza-
tion, providing BORA with a critical advantage, as shown in
Figure 6. A similar effect is also observed in the Hydrogen
Production experiment as illustrated in the right panel of Fig-
ure 4. In addition, in the later stage of the optimization the
LLM further pushes the optimization to uncover new optima
after the progress had stalled, thus gaining more trust. The
increasing trend in the GP uncertainty here is a side-effect of
the continual interventions of the LLM, which translates to a
rather explorative and less exploitative strategy based on its
inherent domain reasoning around cumulatively accrued sci-
entific data. This goes beyond some of the near-instant con-
vergence noted in the optimization of the synthetic functions
because they are proximal to a special value. Figure 2 illus-
trates this by showing how the LLM reflects on the progress
and generates hypotheses on the Sugar Beet Production ex-
periment. While other baselines, particularly knowledge-
based methods such as HypBO and local BO approaches such
as TuRBO, demonstrate improved performance as the opti-
mization progresses and more data is gathered, they often
struggle to match BORA’s sustained performance as the 105-
sample budget mark is approached. In the Hydrogen Produc-

tion experiment, this adaptive strategy ultimately achieved
a 47% reduction in cumulative regret compared to ColaBO,
demonstrating BORA’s faster convergence and robustness in
navigating complex, high-dimensional search spaces. To as-
sess the significance of the performance difference w.r.t mean
cumulative regret between BORA and its best two competi-
tors, we performed a sign test which revealed that BORA per-
forms consistently better than HypBO with a p-value of 0.02
at a 95% confidence level with a Bonferroni correction [Bon-
ferroni, 1936], but not against ColaBO with a p-value of 0.20,
yet still outscoring it in 5 out of 6 tasks. The superior per-
formance of the hybrid approach in BORA was further val-
idated by ablation studies that used only the LLM (action
as) for optimizing Hydrogen Production (10D) and the Ack-
ley function (15D) (see SM). While performing quite well in
the initial stages for these two problems, the use of the LLM
alone was ultimately less effective than the dynamic hybrid
BO/LLM approach in BORA. We emphasize that these re-
sults do not mean that LLMs are ‘smarter’ than domain ex-
perts. Rather, they highlight BORA’s ability to update and
refine its hypotheses based on new data, which is not possi-
ble in the HypBO implementation [Cissé er al., 2024], while
also fostering user engagement by generating real-time op-
timization progress commentary and a final summary report
(see SM). One potential limitation of BORA, however, is the
stochastic nature of the LLM reasoning, which can diverge
considerably even with identical prompts.

5 Conclusions

This work introduces BORA, the first optimization frame-
work to integrate BO with LLMs in a cost-effective dynamic
way for scientific applications. BORA leverages the reason-
ing capabilities of LLMs to inject domain knowledge into
the optimization process, warm-starting the optimization and
enabling hypothesis-driven exploration and adaptive strate-
gies to navigate complex, non-convex search spaces. It ad-
dresses key limitations in traditional BO methods, including
slow initialization, local minimum entrapment, and the lack
of contextual understanding. Notably, BORA outperformed
BO with the addition of static expert-knowledge-derived hy-
potheses in a challenging 10D chemistry experiment, Hydro-
gen Production, highlighting its potential as a collaborative
Al tool to support and enhance expert decision making. Fu-
ture directions will include refining BORA’s meta-learning
strategies using multi-agent LLMs and exploring its effective-
ness in multi-objective, multi-fidelity optimization scenarios.
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