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Abstract
Abstraction is a critical technique in general
problem-solving, allowing complex tasks to be
decomposed into smaller, manageable sub-tasks.
While traditional symbolic planning relies on pre-
defined primitive symbols to construct structured
abstractions, its reliance on formal representations
limits applicability to real-world tasks. On the other
hand, reinforcement learning excels at learning
end-to-end policies directly from sensory inputs in
unstructured environments but struggles with com-
positional generalization in complex tasks with de-
layed rewards. In this paper, we propose Abductive
Abstract Reinforcement Learning (A2RL), a novel
neuro-symbolic RL framework bridging the two
paradigms based on Abductive Learning (ABL),
enabling RL agents to learn abstractions directly
from raw sensory inputs without predefined sym-
bols. A2RL induces a finite state machine to rep-
resent high-level, step-by-step procedures, where
each abstract state corresponds to a sub-algebra
of the original Markov Decision Process (MDP).
This approach not only bridges the gap between
symbolic abstraction and sub-symbolic learning but
also provides a natural mechanism for the emer-
gence of new symbols. Experiments show that
A2RL can mitigate the delayed reward problem and
improve the generalization capability compared to
traditional end-to-end RL methods.

1 Introduction
Abstraction is a powerful skill in problem-solving, which
is able to reduce exponential problems to linear complex-
ity [Korf, 1987]. It divides a difficult task into a set of sub-
goals, which are organized and solved step-by-step according
to their dependencies. In traditional planning, a task abstrac-
tion is usually represented as a procedure and defined with

Figure 1: A Minigrid task. The target for is to reach . The
top row is an inventory that displays the obtained items (such as ).

formal languages [Unruh and Rosenbloom, 1989], while rely-
ing on predefined symbolic predicates and operators to model
the abstract structures, which strongly limits their application
in many real tasks having only sub-symbolic inputs.

In contrast, reinforcement learning (RL), especially Deep
Reinforcement Learning (DRL), learns end-to-end policies
and value functions directly from sensory inputs [Sutton and
Barto, 2018; Mnih et al., 2015], allowing it to adapt to di-
verse and unstructured environments without relying on pre-
defined symbols or abstractions. This flexibility has led to
(D)RL’s success in a wide range of domains where abstrac-
tions might not be immediately available or easily defined.
However, when the task is too complicated and the reward is
delayed, this end-to-end feature of modern RL methods lim-
its their compositional and sequential generalization capabil-
ities [Arjona-Medina et al., 2019; Ladosz et al., 2022].

For instance, Figure 1 illustrates a task that presents chal-
lenges for many standard DRL methods. The environment is
a grid world generated by Minigrid [Chevalier-Boisvert et
al., 2023], where an agent must navigate towards the goal

while avoiding lava blocks . Additionally, the environ-
ment may feature a locked door , obstructing the path to the
goal. To proceed, the agent might need to acquire a key
to unlock the door. Since the positive reward is only granted
when the agent reaches the goal , actions such as obtain-
ing or unlocking do not offer immediate feedback to
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the RL algorithm. As a result, without incorporating any in-
ductive bias, learning a successful end-to-end policy in this
environment becomes challenging.

This paper aims to bridge the gap between sub-symbolic
RL and symbolic abstraction. We introduce the Abductive
Abstract Reinforcement Learning (A2RL) framework, which
employs an impasse-driven abstraction strategy [Unruh and
Rosenbloom, 1989] to decompose a complex Markov Deci-
sion Process (MDP) into a series of sub-tasks, where each
of them is modelled as a sub-MDP of the original problem.
A2RL then constructs an Abstract State Machine (ASM) to
formally represent the abstract procedure for solving these
sub-tasks step-by-step. Finally, using the induced ASM struc-
ture, it trains end-to-end policies for each sub-MDP within
the Abductive Learning (ABL) framework [Dai et al., 2019;
Zhou, 2019].

Another motivation of this paper is to explore the possi-
bility of defining an “open-universe language that can in-
fer the existence of objects from raw data (such as pixels,
strings, etc.) that contain no explicit object references” [Rus-
sell, 2015]. We demonstrate that by transforming an end-to-
end MDP into a step-by-step ASM, the transitions between
abstract states naturally reveal new symbols from raw data, as
shown in Figure 2. We conducted experiments on two sets
of benchmark tasks, and the results showed that A2RL effec-
tively learned the abstract structure, improving performance
and easing the challenge of learning from delayed feedback.
Additionally, a series of random map tests show that the poli-
cies learned by A2RL exhibit better generalization ability, as
they can be easily reused and adapted to unseen tasks.

The rest of the paper is organized as follows. Sec-
tion 2 covers the preliminaries, while Sections 3 and 4 for-
mally define the Abductive Abstract Reinforcement Learning
(A2RL) framework and explain its implementation. Section 5
presents the experiments and discussion, Section 6 reviews
related work that inspired this study, and Section 7 concludes.

2 Preliminaries
Markov Decision Process. A Markov Decision Process
(MDP)M is a tuple ⟨S,A, P,R, γ⟩, where S is state space;
A is the action space; P : S × A × S → [0, 1] is the tran-
sition probability function. P (s′|s, a) is the probability of
transitioning to state s′ from state s after taking action a;
R : S × A → R is the reward function. R(s, a, s′) is the
immediate reward received after taking action a in state s and
reach s′; and γ ∈ [0, 1] is the discount factor, which rep-
resents the difference in importance between future rewards
and present rewards. The objective in an MDP is to find a
policy π : S → A, which maximizes the expected sum of
discounted rewards over time, defined as the value function
V π(s) = Eπ [

∑∞
t=0 γ

tR(st, at) | s0 = s], where at = π(st).

State Abstraction. State abstraction is a process that
groups a large amount of low-level ground states into a
smaller set of high-level abstract states [Kersting et al.,
2004]. Formally, given a MDP with a raw state space S ,
an abstract state σ ⊆ S is a set of ground states. All
abstract states form a countable set Σ = {σ0, σ1, σ2, . . .}.

An abstraction function ϕ is an indicator function, where
ϕ(s) = j iff s ∈ σj .
Abductive Learning. Abductive Learning (ABL) [Zhou,
2019; Zhou and Huang, 2021] is a hybrid neuro-symbolic
(NeSy) framework that combines machine learning and logi-
cal reasoning through a defined interface. The machine learn-
ing model processes raw environmental data and translates it
into logical facts, which the reasoning model uses for infer-
ence. If inconsistencies arise—when the perceived facts fail
to deduce correct outputs—a hybrid optimization process ad-
justs the flawed perceptions and uses these corrections to re-
train the machine learning model [Dai et al., 2019]. When
the logical knowledge base is incomplete (e.g., missing rules
to reason about the facts), the framework can also induce the
missing rules while jointly training the perception model [Dai
and Muggleton, 2021].

Previous work in ABL has focused primarily on classi-
fication problems, where machine learning models classify
raw inputs and produce probabilistic monadic logical facts
like “0.9 :: one( )” [Dai et al., 2019; Dai and Muggle-
ton, 2021]. This paper extends this paradigm by modelling
machine learning models as dyadic predicates, representing
atomic procedures for constructing complex strategies for
RL. Additionally, the reasoning model provides an open-
universe language (i.e., the primitive symbols are unknown),
allowing the agent to build a rule-based, step-by-step proce-
dure from scratch. For example, a two-step policy could be
expressed as:

π∗(a, b)← π0→1(a, c) ∧ π1→2(c, b)

where π∗/2 and πi→j/2 in bold font are dyadic predicates
representing the state-transition procedures derived from pol-
icy functions π∗ and πi→j ; their arguments a, b, c are states
in the raw state space S . The above rule can be translated
to natural language as “Applying policy π∗ to transition from
state a to state b can be divided into two steps: execute π0→1

from a to c, and then apply π1→2 from c to b”.

3 Framework
In this section, we introduce the Abductive Abstract Rein-
forcement Learning (A2RL) framework, which is formalized
based on the Abstract State Machine (ASM).
Definition 1 (Abstract State Machine). For a ground MDP
M = ⟨S,A, P,R, γ⟩, a step-by-step abstraction for M
is an Abstract State Machine ∆ = ⟨Σ, T , P,R′, γ⟩, where
Σ = {σ | σ ⊆ S} is a countable set of abstract states;
T = {τi→j | τi→j = t(σi) ∩ s(σj)} is a countable set
of abstract state transitions; s(σ) and t(σ) are the sub-
sets of initial states and terminate states of σ, respectively;
R′ = {R}∪{Rσ

0 , R
σ
1 , . . .} is a set of augmented reward func-

tions, and each Rσ
i is associated with abstract state σi.1

Figure 3a illustrates an example of MDP abstraction. The
key idea is to segment an RL agent’s trajectory into sequen-
tial steps. This divide-and-conquer strategy reflects human

1This paper uses Latin letters to denote ground states and ac-
tions, while abstract states and transitions are denoted by Greek let-
ters.
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s0 (Start) s1 (Get ) s2 (Unlock ) s3 (End)

Figure 2: The key ground states in a typical Minigrid task. They segment all successful traces into 3 abstract steps, from which symbols
such as “key” and “door” emerge naturally; their semantics, e.g., the visual representation of the symbols (key 7→ and door 7→ ),
and the roles they play in the abstract state transitions could be automatically induced during learning.

σ1

σ2

τ1→2

s0

s1
s2

s3

s4

s5
s6

s7

s8

a0
a1

a2
a3

a4

a5
a6 a7

S

(a)

σ0

σ1 σ2

S

F

τ0→1:
τ1→2: τ2→s:

τF :

τF :

τ
F :

Success(a, b)← π0→1(a, c) ∧ c ∈ τ0→1

∧ π1→2(c, d) ∧ d ∈ τ1→2

∧ π2→s(d, b) ∧ b ∈ S

F (a, b)← πF (a, b) ∧ b ∈ F

(b)

Figure 3: (a) A ground trace in S segmented into two abstract steps,
illustrated as solid and dotted paths; •/× in each colour denote the
initial/terminate ground states in each step. (b) The induced ASM
from the example in Figure 1 with its logic form.

decision-making. We employ automatic, intuitive processing
(System 1) for simple tasks, relying on learned responses like
“muscle memory”. For complex tasks, we engage deliberate,
analytical processing (System 2’), decomposing the task into
sub-tasks. If a sub-task is sufficiently simple, we revert to
System 1; otherwise, we further decompose it [Kahneman,
2011]. A2RL adopts this approach and models abstracted
steps as sub-MDPs solved by atomic policy functions.

Definition 2 (Sub-MDP and Atomic Policy). Given an ASM
∆ = ⟨Σ, T, P,R′, γ⟩, the sub-MDP for an abstract state σi

is a MDP Mσ
i = ⟨σi,A, P,Rσ

i , γ⟩, whose objective is to
learn Atomic Policy functions π : σi → A that navigates the
agent from s(σi) to t(σi) while maximising the accumulated
reward, which is calculated with the augmented reward func-
tion Rσ

i : σi ×A → R.

To ensure proper execution of the abstract plan, the tran-
sition τi→j enforces the nose-to-tail constraint betweenMσ

i
andMσ

j , represented by logic rules or a graph model such as
Figure 3b. If an abstract state σj serves as a terminal state,
then τ∗→i = s(σi) = t(σi), where “∗” represents “any num-
ber in N”. Since sub-MDP goals usually offer no rewards in
the original MDP, a mental reward θi is introduced to define

the augmented reward function Rσ
i . Formally,

Rσ
i (s, a, s

′) =

{
θi if s′ ∈ t(σi),

R(s, a, s′) otherwise

Note that there might be multiple j satisfying τi→j ⊆ t(σi),
i.e., σi has more than one outgoing edge, soMσ

i could have
multiple atomic policies as its options [Bai et al., 2016].

Next, we formally define the Abductive Abstract Reinforce-
ment Learning (A2RL) task.
Definition 3 (Abductive Abstract Reinforcement Learning).
Given a ground MDP M = ⟨S,A, P,R, γ⟩, the target for
Abductive Abstract Reinforcement Learning is to:

I. Discover a set of abstract states Σ = {σ0, . . .} to con-
struct the ASM ∆ = ⟨Σ, T , P,R′, γ⟩;

II. Learn a set of state abstraction functions Φ, where each
ϕi : S → {T, F} such that ϕi(s) = T iff s ∈ σi;

III. Induce the abstract transition model T ;

IV. Solve the sub-MDPs derived from ∆ by training atomic
policy πi→j for each state transition option τi→j .

As we can see, target I and II correspond to the logic rea-
soning model in the ABL framework, while target III and IV
belong to the machine learning part. Specifically, target I re-
quires the agent to infer the existence of logic symbols from
raw data; target II learns a perception model mapping raw in-
put to the logic symbols; target III induces a set of first-order
logic rules to establish the relations between the discovered
symbols; target IV learns a set of dyadic neural predicates to
interface the logic rules with the sub-symbolic environment.

Note that A2RL only provides a language—first-order
logic—to construct the ASM. Most of the symbols, includ-
ing the abstract states and the primitive predicates for con-
structing the transition rules, are undefined and have to be
discovered from raw data.
Object Discovery. Let’s rethink the question in [Russell,
2015]: can machine learning infer the existence of objects
from raw data that contain no explicit object references?
A2RL tries to answer it positively by defining object as an
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Exploitation

Exploration

Success

s0 pexploit pimpasse

1− pimpasse

1− pexploit

Figure 4: The impasse-driven exploration-exploitation of A2RL.

abstract state transition function that generalises across do-
mains. For example, a key is an object that unlocks another
object blocking the agent’s way. In other words, the function
of key is the most important thing for this concept, since it
helps the agent change from a blocked state to unblocked, no
matter it is a in Minigrid, a bomb in The Legend of
Zelda, or a rune stone in Tomb Raider. As shown in Figure 2
and 3b, one can easily learn the visual representation of an
object and define the concept with logic rules from the state
transitions of an ASM, which is induced from raw data.

Recursion. From an algebraic perspective, a sub-MDP
forms a subalgebra of the original MDP, as its state space is a
subset of the original and preserves the original MDP’s alge-
braic structure. This definition enables the recursive division
of sub-MDPs until it is trivial to solve. It not only simplifies
the problem space but also maintains expressive complete-
ness (with the aid of first-order logic language). Moreover,
this recursive framework potentially offers a robust mathe-
matical structure for further analysis and exploration.

4 Implementation
This section introduces a preliminary implementation for
A2RL. Firstly, it tries to discover the novel abstract state σi

using an impasse-driven strategy [Unruh and Rosenbloom,
1989]. Then it samples trajectories of σi by exploring the
environment. Finally, abductive learning is applied to update
the state abstraction function ϕ, the transition model T , and
learns the associated atomic policies πi→j .

4.1 Abstract State Discovery
As illustrated in Figure 2, a sample of ground MDP trajecto-
ries is required to discover the abstract state from raw inputs.
In this paper, the data is collected through an impasse-driven
exploitation-exploration procedure, as illustrated in Figure 4.

Exploitation. The exploitation is straightforward. Given an
ASM ∆ = ⟨Σ, T , P,R′, γ⟩ and an input ground state st, the
state abstraction function ϕ is called to identify its abstract
state σ. A2RL then uses the abstract state transition T to
calculate the optimal abstract plan Π∗—a path from σi to the

target abstract state. Finally, the plan Π∗ is executed step-by-
step in the sub-symbolic environment by calling the atomic
policies πi→j in this path. The abstract plan Π∗ always exists,
since each πi→j is the best policy that maximises the reward
in sub-MDPMσ

i , and the transition rules τi→j are correct.

Impasse. Nevertheless, when the current ASM ∆ =
⟨Σ, T , P,R′, γ⟩ represents an incomplete abstraction, the ex-
isting atomic policies may fail to construct an abstract plan
capable of reaching the goal state from the initial state s0.
For example, in the Minigrid task illustrated in Figure 1,
if the ASM contains only a single abstract state σ0 = {s |
door is open in s}, the state abstraction function ϕ, imple-
mented by a computer vision model, will classify any state
s ∈ S as σ0 since it is the sole option. Under the state transi-
tion rule Success(a, b)← π0→goal(a, b)∧ (b = agent at ),
the optimal plan Π∗ includes only one end-to-end atomic pol-
icy, π0→goal. This policy, however, is unlikely to successfully
navigate the agent to the goal in environments where the door
is closed. In such cases, we say that ∆ encounters an impasse.

In this paper, we employ the Drift Diffusion Model (DDM)
to determine whether an agent is trapped in an impasse.
The DDM is a widely used framework for simulating binary
choice tasks—such as right or wrong judgments and left or
right selections—in cognitive science and computational neu-
roscience [Ratcliff and McKoon, 2008; Gold and Shadlen,
2007]. It posits that decisions are made by progressively ac-
cumulating evidence until a certain threshold is reached. The
DDM is typically formalized as a stochastic differential equa-
tion: dx = v·dt+σ·dWt, where x represents the accumulated
evidence, v is the drift rate, σ denotes the noise intensity, and
Wt signifies standard Brownian motion.

We simply apply the DDM to identify impasses during
agent-environment interactions. As the agent keeps operating
without obtaining any reward or fails, the evidence x will ac-
cumulate and will trigger the agent to change from exploita-
tion to exploration with the impasse probability pimpasse ∝ x.

Exploration. The exploration strategy for A2RL is a ran-
dom policy that randomly chooses a valid action in A, and
restarts if the agent fails (e.g., walks into in Minigrid
environment). During the rollout process, the state abstrac-
tion model ϕ is called to determine whether the sampled
ground state s belongs to a known abstract state. We use
DDM to make the choice, here the accumulating evidence
x = maxi P (ϕ(s) = i), and the strategy change from explo-
ration to exploitation is triggered with probability pexploit ∝ x.

4.2 Abductive Learning
This section describes how to update the ASM ∆ via abduc-
tive learning. In logic, abduction is the process of inferring
the best explanation for a set of observations.

The impasse-driven exploration and exploitation rollout
generates numerous ground trajectories as observations. Each
trajectory can be explained as a step-by-step procedure, seg-
mented into exploration and exploitation phases. The ex-
ploitation phases are further divided based on their corre-
sponding abstract states. For the exploration segments, a
clustering model is applied to the ground states, using raw
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Figure 5: Training reward curve across three distinct maps. For each environment, the total training steps are set to 300k, 600k, and 900k,
respectively. Note that both A2RL and RL curves are segmented into three distinct phases, reflecting the curriculum change. Each phase
encompasses one-third of the total training steps.

images and neighbouring abstract states to group them and
define a new abstract state, σnew.

Then, the trajectory segments of σnew are used for con-
structing s(σnew), t(σnew) and τnew→old, where σold is a known
abstract state in Σ. After adding a mental reward θnew, a sub-
MDP Mσ

new is created, from which the new atomic policies
are trained. Meanwhile, the new state abstraction function
ϕnew is trained using the visited ground states. Finally, The
elements ∆ is updated as follows:

Σ ← Σ ∪ {σnew}
T ← T ∪ {τnew→old}
Φ ← Φ ∪ {ϕnew}
R′ ← R′ ∪ {Rσ

new}

5 Experiment
Experiments2 are designed to answer the following questions:
1: Is A2RL able to infer the existence of abstract states from
raw data? 2: Does ASM improve the performance of RL in
challenging environments(e.g., those with delayed rewards or
sparse reward signals)? 3: Does A2RL learn abstraction and
atomic policies that generalize in unseen tasks?

5.1 Experimental Setup
Environments. Experiments are conducted in two types
of benchmark environments having delayed reward feed-
back: (1) Minigrid [Chevalier-Boisvert et al., 2023]: Min-
igrid, implemented in Gymnasium [Towers et al., 2024],
is a suite of easily configurable grid world environments

2The code is available at https://github.com/sporeking/A2RL.

specifically designed for RL research. In Minigrid, we
generated maps with different sizes: Minigrid-small
and Minigrid-large. We further introduced two dif-
ficulty levels within the Minigrid-small environment:
Easy-small and Difficult-small. (2) Taxi [Diet-
terich, 2000]: In Taxi, the taxi must pick up the passenger,
drive to the destination, and drop them off to end the episode.

The input states contain solely raw pixels. This design
choice demonstrates our method’s capability to extract sym-
bolic representations directly from raw inputs, aligning more
closely with the requirements of real-world tasks.

Policy Learning. We employed two end-to-end DRL al-
gorithms as base models for learning policy functions: (1)
PPO2 [Schulman et al., 2017]: PPO2 is a model-free pol-
icy gradient method, the crux of which lies in Proximal Pol-
icy Optimization. Utilizing importance sampling, PPO2 ef-
fectively constrains the divergence between the old and new
policies. (2) D3QN [Wang et al., 2016; Hasselt et al., 2016]:
D3QN is a RL algorithm that amalgamates the strengths of
the Dueling Network Architecture and Double Q-Learning,
aiming to learn and evaluate Q-values more accurately.

Baselines. We compare A2RL with the following base-
lines: (1) GT (Ground Truth): utilizes a handcrafted ASM
with predefined symbols to set a performance upper-bound
for A2RL. Its precise subtask decomposition means GT
can be regarded as a Hierarchical Reinforcement Learning
(HRL) approach [Levy et al., 2019]. (2) RUDDER: A typ-
ical RL approach designed for tackling the delayed reward
issue[Arjona-Medina et al., 2019]. RUDDER was imple-
mented on top of the TRPO-based policy gradient method
PPO; therefore, it was only compared with the PPO baselines;
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Figure 6: Training reward curves on Taxi environment.

(3) RL: Vanilla end-to-end DRL methods, without the assis-
tance of symbolic reasoning.

Tasks. In Minigrid, three levels of progressively increas-
ing difficulty were designed. On the one hand, the tasks in
Minigrid are relatively complex, making it difficult for
pure RL methods to converge; on the other hand, we can
evaluate the effectiveness of our method in dynamic environ-
ments and its ability to learn new symbols by setting up this
curriculum. We trained the agent sequentially on three lev-
els. For GT, since it has already defined all prior knowledge
needed in the environment, we directly used GT to train the
final level to evaluate its performance. In Taxi, instead of
curriculum learning, we trained the agent to learn abstraction
directly from complete tasks.

Metrics. We recorded the average reward per episode for
each batch. Mean results are shown as learning curves,
smoothed with a 10-window moving average applied to the
batch average rewards. Shaded areas indicate the 95% confi-
dence interval of these average rewards.

5.2 Experimental Results
The experimental results for MiniGrid are shown in Fig-
ure 5. It can be observed that the performance of pure RL
and RUDDER is not satisfactory, as they fail to converge di-
rectly in the final levels. For RUDDER, due to the high input
dimensionality of the environment, it negatively impacts the
training of the LSTM, resulting in poor performance in such

a complex environment. GT starts training directly from the
most challenging final level, and with a clear symbolic struc-
ture, it converges quickly and stably.

For A2RL, when the difficulty level begins/changes, the
prior ASM initially struggles, reflected in very low rewards.
A2RL then discovers new states and updates the ASM with
new symbols, causing its performance to rapidly improve. It
converges stably across maps of varying difficulty, demon-
strating its ability to discover new states and effectively adapt
to new environments. Additionally, the abstracted symbolic
structures allow A2RL to outperform vanilla RL, which an-
swers the questions 1 and 2 at the beginning of this section.

The experimental results for Taxi are shown in Figure 6.
Vanilla RL matches GT-level performance but is significantly
slower than A2RL, which rapidly abstracts passenger sym-
bols and achieves similar results in fewer training steps. Ad-
dressing question 2, vanilla RL’s single network struggles
with prioritizing multiple objectives (e.g., passenger pick-up
vs. destination) due to its limited capacity. In contrast, A2RL
decomposes complex tasks into sub-tasks, allowing its indi-
vidual atomic policies to master simpler objectives, thereby
improving performance on more complex tasks.

5.3 Out-of-distribution Generalization
To address question 3, we conducted a series of ablation ex-
periments: We replicated the setup in Section 5.2 but trained
agents on procedurally generated random maps throughout
the entire curriculum, and subsequently evaluated and fine-
tuned on 50 unseen maps of comparable difficulty after train-
ing. We generated two distinct sets of Minigrid test maps:
Minigrid-small and Minigrid-large.

Figure 7 shows that despite a slight decline in reward con-
vergence speed and policy performance when training on test
maps, the agent still achieves high performance. The general-
ization success rate on these test maps is below 10% (Gener-
alization remains a significant challenge in DRL), yet learned
atomic policies can complete some sub-tasks on many maps,
as shown in Figure 7 (b). Furthermore, Figure 7 (c) and (d)
illustrate that fine-tuning on test maps enables the agent to
converge rapidly, typically within 50,000 steps, demonstrat-
ing strong generalization capabilities. These findings directly
address question 3: A2RL enhances RL generalization by
leveraging learned task structures and symbolic representa-
tions to generalize to similarly structured tasks. In compari-
son, vanilla DRL methods failed to converge on unseen maps.

6 Related Work
State Abstraction in RL. Early methods relied on expert-
defined mappings to discrete state spaces [Dietterich, 2000;
Andre and Russell, 2002], yet these struggle in continuous
environments. End-to-end deep RL avoids explicit abstrac-
tion at the cost of reduced interpretability and limited gen-
eralization. To address this, Quentin et al. proposed NeSy
to extract symbolic logic from neural strategies [Delfosse et
al., 2023], and Jiang et al. introduced NLRL, which lever-
ages first-order logic to enhance both interpretability and
task transferability [Jiang and Luo, 2019]. Other approaches
learn abstractions from data [Furelos-Blanco et al., 2023;
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(a) (c)(b) (d)

Figure 7: The two rows represent Minigrid-small and Minigrid-large with random maps. (a) The reward curves of A2RL are
trained directly on 5 types of random maps. (b) The results of testing on 50 unseen maps after training on random maps, showing the
proportion of sub-tasks completed on the 50 unfamiliar maps. For each of the 5 trained models, three tests were conducted on each map, and
the best result among them was recorded. (c) The reward curve of A2RL during fine-tuning for generalization on the 50 unseen maps. (d)
The distribution of the number of steps required for the reward curve to first achieve convergence during fine-tuning (convergence is defined
as achieving success in more than 50 out of the most recent 100 episodes).

Parać et al., 2024], but all depend on predefined symbols or
labeled data, making automatic abstraction difficult. In con-
trast, A2RL can perform symbolic abstraction within the en-
vironment without predefined symbolic knowledge.

Knowledge Discovery in RL. Agents should infer “causal
rule” knowledge from interacting with the environment.
Some approaches use graph models or attention mecha-
nisms to infer causal relations [peng et al., 2022; Zhu et al.,
2020]; Ha et al. proposed world models for virtual trial-and-
error [Ha and Schmidhuber, 2018], but struggle to acquire
reliable rule-based knowledge and suffer from poor general-
ization. Existing methods fail to autonomously form symbols
or discover causality in non-symbolic settings, and their prob-
abilistic models lack logical reliability and expressive power.
A2RL can autonomously discover new symbols within the
environment and establish connections with existing symbols.

RL with Formal Knowledge. There are RL systems that
use symbolic rule knowledge to decompose tasks through
reward decomposition [Pateria et al., 2021]. Recent ef-
forts employ natural language instructions or Transformer
architectures to guide HRL and capture long-range depen-
dencies [Jiang et al., 2019; K et al., 2023; Chen et al.,
2021]. Alternative approaches combine classical planning
with HRL to reduce its sample complexity [Yang et al., 2018;
Liu et al., 2024]. Croonenborghs et al. investigated transfer
learning within Relational Reinforcement Learning, which

leverages existing knowledge to accelerate learning in tar-
get tasks; however, it is limited to tasks characterized by
symbolic feature spaces [Croonenborghs et al., 2007]. Most
current methods encode knowledge as rewards without rule-
based frameworks, and cannot dynamically acquire or revise
symbolic knowledge. In contrast, A2RL can update symbolic
structures through exploration within the environment.

7 Conclusion

In this paper, we present Abductive Abstract Reinforce-
ment Learning (A2RL), a novel framework that integrates
the strengths of symbolic abstraction with RL. A2RL enables
agents to decompose complex tasks into manageable sub-
tasks and perform abstractions directly from sub-symbolic
environments without relying on predefined symbols. It is
important to note that this work provides only a preliminary
implementation of A2RL. Future research will focus on en-
hancing the abstraction mechanisms and expanding the ap-
plication of A2RL to a wider range of real-world scenarios,
such as training large language model (LLM)-based reason-
ers with a formal step-by-step reasoning module. Through
the continued development of A2RL, we aim to further unify
symbolic reasoning with learning, advancing the creation of
more reliable and efficient AI systems capable of addressing
complex and unstructured challenges.
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