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Abstract

Multimodal Large Language Models (MLLMs) are
experiencing rapid growth, yielding a plethora of
novel works recently. The prevailing trend involves
adopting data-driven methodologies, wherein di-
verse instruction-following datasets were collected.
However, these approaches always face the chal-
lenge of limited visual perception capabilities, as
they solely utilizing CLIP-like encoders to extract
visual information from inputs. Though these en-
coders are pre-trained on billions of image-text
pairs, they still grapple with the information loss
dilemma, given that textual captions only partially
capture the contents depicted in images. To ad-
dress this limitation, this paper proposes to improve
the visual perception ability of MLLMSs through a
mixture-of-experts knowledge enhancement mech-
anism. Specifically, this work introduces a novel
method that incorporates multi-task encoders and
existing visual tools into the MLLMs training and
inference pipeline, aiming to provide a more com-
prehensive summarization of visual inputs. Exten-
sive experiments have evaluated its effectiveness
of advancing MLLMs, showcasing improved visual
perception capability achieved through the integra-
tion of visual experts.

1 Introduction

Recently, the development of large language models
(LLMs) [Chung er al., 2022; Touvron et al., 2023a; Tou-
vron et al., 2023b] has notably propelled advancements in
artificial general intelligence. Various domains within arti-
ficial intelligence have actively embraced LLMs to enhance
their performances across different tasks [Liu et al., 2023c;
Chen et al., 2023; Hong et al., 2023]. The multimodal dia-
logue field is no exception, witnessing a surge in the devel-
opment of multimodal large language models (MLLMs) in
recent months [Liu et al., 2023c; Zhu et al., 2023; Dai et al.,
2023; Ye et al., 2023b; Bai et al., 2023]. These works com-
monly insert visual encoders into LLMs, followed by fine-
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Figure 1: Examples from public image-text pairs. (a) Examples
from COCO Caption [Chen er al, 2015]. (b) Examples from
LLaVA-Instruct-150K [Liu et al., 2023c]. The short textual captions
in (a) only describe parts of the corresponding images. The captions
in (b) are more informative but still cannot describe all the content
inside these images. The orange boxes inside these images indicate
objects that are missed in the captions.

tuning a light-weight projection network to project extracted
visual information into the language latent space.

While recent advancements have notably enhanced the per-
formances of downstream multimodal dialogue tasks [Goyal
et al., 2017; Singh et al., 2019; Mishra et al., 2019; Masry et
al., 2022; Shah et al., 2019], these improvements primarily
stem from the collection of instruction data in various for-
mats [Liu et al., 2023c; Liu et al., 2023a; Zhu et al., 2023;
Ye et al., 2023a; Chen et al., 2023]. Pioneering works such as
MiniGPT-4 [Zhu et al., 2023] and LLaVA [Liu et al., 2023c]
introduced an automatic mechanism for generating general
multimodal instruction data, leveraging the capabilities of
ChatGPT [OpenAl, 2023]. By subsequently fine-tuning
MLLMs with the generated data, these approaches have
achieved substantial enhancements in general multimodal
tasks. Additionally, mPLUG-DocOwl [Ye et al., 2023a] tar-
gets to amass instruction data related to documents, specifi-
cally enhancing the performance of MLLMs in document un-
derstanding tasks [Masry et al., 2022; Mishra et al., 2019;
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Mathew et al., 2021; Berant et al., 2019]. Shikra [Chen ef al.,
20231, on the other hand, proposed to collect referring ex-
pression pairs and fine-tune MLLMs on these pairs, thereby
strengthening the models’ ability to handle the referential
dialogue tasks [Kazemzadeh er al., 2014]. Furthermore,
Instruct-BLIP [Dai et al., 2023] and other related works [Bai
et al., 2023; Wang et al., 2023] have proposed to assem-
ble various multimodal datasets with distinct instruction tem-
plates. Subsequent fine-tuning of MLLMs on these consol-
idated datasets has proven instrumental in significantly im-
proving their performances across different multimodal tasks.

As outlined above, while prior works have demonstrated
advantages across various multimodal dialogue scenarios,
they predominantly focus on collecting different types of in-
struction data, sharing a similar learning framework. Specif-
ically, these works consistently employ a light-weight pro-
jection module (e.g., Q-Former in BLIP-2 [Li et al., 2023])
to project visual information, extracted by CLIP-like en-
coders (e.g., EVA-CLIP [Sun er al., 2023]), into the lan-
guage latent space. Given that the CLIP-like encoders can-
not comprehensively describe the entirety of visual inputs
(for them pre-trained with short textual captions, as shown
in Fig.1(a)), MLLMs grapple with the visual information
loss dilemma, which further affects the final performances.
Moreover, though the detailed instruction data generated in
LLaVA [Liu et al., 2023c] or other works [Zhu et al., 2023;
Chen et al., 2023] can alleviate the above problem to some
extent, there are still lots of details that cannot be fully de-
scribed (as shown in Fig. 1(b)). To address this challenge,
there is a need for novel strategies that transcend the existing
learning frameworks, enabling a more nuanced and accurate
representation of visual inputs in MLLMs.

Inspired by the above, this paper explores MLLMs from
the perspective of visual perception ability enhancement.
Consequently, we introduce a simple but effective visual in-
formation learning framework, referred to as Incorporating
Visual Experts (IVE), designed to augment the visual percep-
tion capabilities of MLLMs through aggregating available vi-
sual information extracted by specific experts. Specifically,
IVE mainly involves two additional modules, i.e., multi-task
encoders and structural knowledge enhancement, for com-
prehensively describing the visual inputs. The multi-task en-
coders module integrates three auxiliary encoders, namely the
low-level information encoder and the document-related in-
formation encoder, alongside with a CLIP-like encoder for
semantics extraction. The above fusion aims to provide a
more comprehensive description of visual inputs within the
latent embedding space. The synergistic combination of these
encoders facilitates a more nuanced understanding of the vi-
sual inputs. The structural knowledge enhancement module
mainly utilizes specific visual tools to extract structural data
(e.g., the categories and locations of instances or textual in-
formation inside images). These structural data will serve as
prior knowledge and then be cooperated with the extracted
latent embeddings fed into LLMs.

The introduced IVE is easy to implement, and its effec-
tiveness has been substantiated through comprehensive ex-
periments across various multimodal tasks. In general multi-
modal dialogue scenarios [Goyal et al., 2017; Marino et al.,

2019], IVE excels in recognizing the intrinsic content of in-
put images, thereby generating more accurate responses to
each query in comparison to recent works [Liu et al., 2023c;
Zhu et al., 2023]. Furthermore, when applied to specific
multimodal dialogue tasks such as DocVQA [Mathew et
al., 2021], IVE shows competitive results compared with
mPLUG-DocOwl [Ye et al., 2023al, the recent method de-
signed specifically for document analysis tasks. The above
experiments further demonstrate the excellent visual percep-
tion ability achieved through the proposed integration strat-
egy of visual experts.

2 Related Work
2.1 Vision-and-Language Pre-training

Recent multimodal large language models (MLLMs) [Liu et
al., 2023c; Zhu et al., 2023; Dai et al., 2023; Ye et al., 2023a;
Bai et al., 2023; Ye et al., 2023b] are commonly built on
vision-and-language pre-training models (VLPs) [Chen et al.,
2020; Radford et al., 2021; Li et al., 2022], therefore this
paper first revisits the development of VLPs before intro-
ducing MLLMs. The predominant VLP approaches can be
broadly categorized into two frameworks: the one-stream
framework [Chen et al., 2020] and the two-stream frame-
work [Radford et al., 2021; Li et al., 2022]. Methods within
the one-stream framework [Chen et al., 2020] typically em-
ploy a single transformer architecture to process both text
and image data, incorporating various designs of loss func-
tions. In contrast, the two-stream framework involves the in-
dependent extraction of modality information using distinct
backbones. For efficiency, current MLLMs [Zhu et al., 2023;
Dai et al., 2023; Ye et al., 2023b] predominantly leverage
the visual module of two-stream methods to encode the latent
embeddings of visual inputs.

2.2 Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) have gar-
nered considerable attention from both academia and indus-
tries, with a surge in novel works emerging recently [Liu et
al., 2023c; Dai et al., 2023; Ye et al., 2023b; Bai et al., 2023;
Huang et al., 2024; Zong et al., 2024; Xuan et al., 2024]. A
common framework underpins most of these works, featur-
ing CLIP-like encoders responsible for extracting informa-
tion from visual inputs, an abstractor summarizing the ex-
tracted information with few tokens, a light-weight layer fur-
ther projecting the summarized information into the language
latent space and a pre-trained large language model handling
user questions in the context of the above extracted visual in-
formation. Despite their similar architectures, these works
demonstrate versatility in addressing various multimodal di-
alogue tasks through training on distinct types of instruction
data. For instance, LLaVA [Liu et al., 2023c] excels in gen-
erating detailed answers for generic images with training on
comprehensive instruction data. On the other hand, mPLUG-
DocOwl [Ye et al., 2023a] achieves significant improvements
in the performance of MLLMs on document analysis tasks by
training on document-related instruction data. Shikra [Chen
et al., 2023] enhances the model’s capability in handling re-
ferring questions by training on referring expression pairs.
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Figure 2: The illustrations of IVE. Two modules, i.e., the multi-task encoders and structural knowledge enhancement, are specifically de-
signed in the framework. The multi-task encoders integrates multiple types of complementary encoders to collaboratively capture the latent
information within visual inputs, and the structural knowledge enhancement module utilizes specific visual tools to detect the instances and
textual information inside images as the prior knowledge fed into the large language model.

Although these works yield remarkable results, they remain
constrained by the limited perception ability of CLIP-like en-
coders. In contrast to previous approaches, this work takes
a novel perspective by focusing on enhancing the visual per-
ception ability of MLLMs. The proposed approach involves
aggregating available visual experts to provide a more com-
prehensive description of visual inputs, aiming to overcome
the constraints imposed by the existing limitations in visual
perception ability.

3  Our Approach

3.1 Preliminaries

Generally, the multimodal large language models
(MLLMs) [Liu et al., 2023c¢; Dai et al., 2023; Ye et al., 2023b;
Bai et al., 2023] are usually composed of three modules,
i.e., the visual perception module, the light-weight projec-
tion module, and the large language model, respectively.
Specifically, the visual perception module extracts the inside
contents from visual inputs and then the light-weight projec-
tion module projects the above visual information into the
language latent space. The large language model receives the
projected visual information and generates textual responses
for each user query. Therefore, given the visual input as
x;, the query as ¢;, the visual perception module as F;s(+),
the light-weight projection module as F..;(-) and the
large language model as LLM(-), the process of generating
response in MLLMs can be formulated as:

Response,, ... = LLM(F pro5(Fyis(:)), ¢i), €))
where Response,, ..., denotes the generated response for the
query ¢; based on the visual input z;.

Limited by the computing and data resources, most current
MLLMs directly utilize well-trained large language models,

such as Flan-T5 [Chung et al., 2022] and LLaMA [Touvron
et al., 2023al, as the encyclopedia to answer the given ques-
tion. Therefore, the key for MLLMs lies in how to prop-
erly summarize the information of visual inputs into language
space. Currently, most MLLMs [Bai et al., 2023; Zhu et al.,
2023; Liu et al., 2023c; Dai et al., 2023; Ye et al., 2023b;
Ye et al., 2023a] usually utilize CLIP-like encoders to ex-
tract the visual information, and then fine-tune a light-weight
projection network with the collected instruction-following
data to project extracted visual information into language la-
tent space. Though extensive experiments have validated its
effectiveness, the descriptions of visual inputs extracted by
CLIP-like encoders are still not enough. As said “a picture
is worth a thousand words”, the CLIP-like encoders can only
extract coarse semantic features inside each image in spite of
their training on the billions of image-text pairs. To facilitate
the above information loss dilemma, this paper proposes to
incorporate visual experts in MLLMs, for comprehensively
summarizing the visual contents of inputs. Details of the pro-
posed approach will be described carefully in the next.

3.2 Incorporating Visual Experts into MLLMs

Different from previous works [Zhu et al., 2023; Liu et al.,
2023c; Ye et al., 2023b; Bai et al., 2023; Chen et al., 2023],
this paper improves the visual perception ability of MLLMs
from the perceptive of knowledge enhancement, and thus
proposes a simple but effective framework with primarily
Incorporating different types of Visual Experts into the cur-
rent MLLMs, referred as IVE. As shown in Fig. 2, the vi-
sual perception within IVE relies on two pivotal modules:
the multi-task encoders and structural knowledge enhance-
ment module. The multi-task encoders is designed to amal-
gamating various types of latent visual information extracted



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

by multiple visual encoders. This integration improves its
comprehensiveness in the view of latent embedding of vi-
sual inputs. Additionally, the structural knowledge enhance-
ment module is crafted to leverage visual tools, such as OCR
tools [JaidedAlI, 2020] and object detectors [Zhang er al.,
2023; Liu et al., 2023d], to extract prior knowledge from
images. This extracted knowledge is then treated as vi-
sual prompts and incorporated into the large language model
alongside the previously fused latent embeddings. Through
the above cooperative modules, IVE can comprehensively en-
code the contents of visual inputs from diverse perspectives,
thereby enhancing the visual perception ability of MLLMs.

Multi-task Encoders. The majority of current MLLMs
commonly rely on CLIP-like encoders for extracting seman-
tic information from visual inputs. However, the limited per-
ception ability associated with this strategy restricts their per-
formances across various multimodal dialogue scenes. In
contrast, IVE seeks to resolve this limitation by integrating
multiple types of complementary encoders to collaboratively
capture the latent information within visual inputs. As de-
picted in Fig. 2, three types of encoders are employed: the
semantic information encoder, the low-level information en-
coder, and the document-related information encoder, each
contributing distinct perspectives to the overall understand-
ing of visual content.

The semantic information encoder is designed to extract
the semantics from visual inputs and subsequently project
them into the language embedding space. Consistent with
prevalent methodologies [Chen et al., 2023; Liu et al., 2023c;
Li et al., 2023; Zhu et al., 2023; Ye et al., 2023b], IVE adopts
the CLIP-like encoder proposed in BLIP-2 [Li er al., 2023],
where EVA-CLIPg [Sun et al., 2023] is initially employed to
extract visual information, followed by the Q-former [Li et
al., 2023] designed to condense this information into a con-
cise representation using a few tokens. Leveraging extensive
training with abundant image-text pairs, this encoder gener-
ates embeddings adept at capturing the global semantic infor-
mation of each visual input. The process of semantic feature
extraction can thus be presented as follows:

Fs(z;) = CrossAttq(Enceva (i), {T0, 11, .-, Tm}), (2)

where Enc.,, denotes the visual encoder of EVA-CLIPg [Sun
et al., 2023], CrossAttq represents the operations in Q-
Former [Li et al., 20231, {Ty, T4, ..., T, } denotes the query
tokens and m is the sum of query tokens, respectively.

Given the brevity of captions that only provide a coarse
description of the global semantics within each image, the
semantic information extracted by Eq. (2) is apparently in-
sufficient. To enhance the richness of detailed information
within the extracted latent embedding, a low-level informa-
tion extractor is introduced as the supplement. This paper
adopts the encoder from VQGAN [Esser et al., 2021] as
the corresponding low-level information extractor, which can
encode images into latent embedding and then reconstruct
them into original images with the corresponding decoder.
However, directly integrating the extracted embedding into
MLLMs is costly because of its high dimensionality. Follow-
ing Flamingo [Alayrac et al., 2022], we also utilize several
query tokens (32 tokens) to summarize this latent embedding

with a 3-layer Perceiver Resampler [Alayrac et al., 2022], and
the resultant tokens are then considered as low-level latent
embedding. Consequently, the process of low-level informa-
tion extraction can be formulated as:

Fi(z;) = CrossAttpr (Encyqgan (i), {10, T4, ..., Tn}), ()

where Encyqgan denotes the pre-trained encoder of VQ-
GAN [Esser er al., 2021], CrossAttpr represents the oper-
ations in Perceiver Resampler [Alayrac et al., 2022] and n
represents the sum of query tokens for low-level information,
respectively.

While the aforementioned low-level information extrac-
tor contributes additional details upon the semantic embed-
ding, it’s noteworthy that both are trained on general images
and may lack specificity for certain types, such as the docu-
ment image. To address this, a document-related information
encoder is incorporated into the latent embedding learning
framework. In our framework, Pix2Struct-Large [Lee et al.,
2023], a recent state-of-the-art approach in document analy-
sis tasks, is employed for this purpose. Similar to the low-
level information encoder, 64 query tokens are employed to
succinctly summarize the extracted document-related infor-
mation using a 6-layer Perceiver Resampler [Alayrac et al.,
2022]. Generally, the process of document-related informa-
tion extraction can be formulated as:

Fa(x;) = CrossAttpr(Encpix(z;), {To, T1, ..., Tk }), (4)

where Enc,,ix denotes the pre-trained encoder of Pix2Struct-
Large [Lee et al., 2023] and k represents the sum of query
tokens for document-related information.

Consequently, the final fused latent embeddings of each
image in IVE can be formulated:

fi’l = [F;I‘O_] (FS(:EZ))’ F;roj (Fl(‘rl»? Fgroj (Fd(‘rl))L (5)
s 1 d 7 fecti
where F ., Fp,.; and F[,, . represents the linear projection

layer for projecting the semantic information, low-level infor-
maion and documented-related information into a common
language feature space, respectively.

Structural Knowledge Enhancement. In view of that
query tokens for each extractor undergo end-to-end training,
ensuring that the summarized embeddings encompass the en-
tirety of visual input remains a challenge. Thereby, this paper
further introduces a structural knowledge enhancement mod-
ule to explicitly extract structural data within each image us-
ing specific visual tools. Finally, these data are subsequently
treated as prior knowledge and fed into the large language
model alongside the fused latent embeddings.

Typically, human observation of an image involves first
identifying the objects (their categories and locations) or
textual information within this image. Drawing inspiration
from this human cognitive process, the structural knowl-
edge enhancement module is designed to extract three types
of information: the category and localization of instances,
together with textual content, respectively. We first uti-
lize two specific visual tools (i.e., RAM [Zhang et al.,
2023] and Grounding DINO [Liu et al., 2023d]) to rec-
ognize and localize the objects inside each image. Fur-
thermore, we utilize EasyOCR [JaidedAlI, 2020] to de-
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tect the contained textual information of each visual in-
put. Therefore, thanks to the above visual tools, most in-
stances [(co, 2, Y0, ©5,4)s -+ (Cq, 0, yd, 2}, y5)] and tex-
tual information [tg, 1, ..., t,] inside each image can be de-
tected, where c; denotes the category of the detected i-th in-
stance, (z9,y?, x},y!) represents the corresponding bound-
ing boxes, ¢; means the detected j-th visual text segment, ¢
and o are the sum of detected instances or textual segments,
respectively. Thereby, the final extracted structural knowl-
edge can be formulated as:

f;l = [(CO7x8>y87$(1)u yé)u '-'u(cqa ‘r27y27x¢117y;)7
t0,t1, s to)s (6)

To better align with LLM, we design the template in which
inserting the extracted structural knowledge. The details of
this template are shown in Appendix A of the supplemental
materials.

Difference with previous works. While extant
works [Gao et al., 2023; Shen et al., 2023], exemplified by
LLaMA-Adapter v2 [Gao et al., 2023], have explored the in-
tegration of visual tools to extract structural knowledge with
the aim of augmenting the visual perceptual capabilities of
MLLMs, it is notable that these approaches have predomi-
nantly restricted the deployment of visual tools solely into the
inference stage. In contrast, the proposed IVE is meticulously
crafted to harness structural knowledge throughout both the
training and inference phases of MLLMs. This strategic de-
sign of IVE serves the dual purpose of mitigating the inher-
ent noise introduced by the visual tools and comprehensively
capitalizing on the helpful cues they provide.

3.3 Training Pipeline

Once the latent embeddings and structural knowledge are
available, we feed them into a well-trained large-scale lan-
guage model (LLaMA2-chat (7B) [Touvron er al., 2023b],
utilized in this work) and conduct the overall training, which
makes LLM better handle these prompts while ignoring the
inevitable noises. Following previous works [Bai et al., 2023;
Dai et al., 2023], we reorganize several public multimodal
datasets [Marino et al., 2019; Masry et al., 2022; Mathew
et al., 2021; Liu et al., 2023c], and conduct supervised fine-
tuning on them. Overall, the training process goes through
three stages: pretraining, multi-task tuning, and specific fine-
tuning. In the pretraining stage, we primarily utilize weakly
labeled image-text pairs to train the alignment module in the
semantic information encoder. The multi-task tuning stage
involves training on various multimodal instruction datasets.
Subsequently, in the specific fine-tuning stage, we fine-tune
the model on the training set of specific datasets to better
adapt to their unique characteristics. Details of each train-
ing process are provided in Appendix B of the supplemental
materials.

4 Experiments

4.1 Datasets

Training Dataset. The entire training pipeline comprises
three stages. In the pre-training stage, about 300M image-text

pairs crawled from the Internet [Li er al., 2022] are initially
utilized to train Q-Former. Subsequently, the LLaVA-CC3M-
Pretrain-595K from LLaVA [Liu et al., 2023c] is employed to
further train Q-Former and the projection layer. In the multi-
task tuning stage, following previous work [Bai et al., 2023],
multi-task datasets are combined to jointly guide the further
training of IVE, including several general VQA datasets (e.g.,
VQAV2 [Goyal et al., 2017]), OCR-related VQA datasets
(e.g., OCRVQA [Mishra et al., 2019]), document-related
VQA datasets (e.g., DocVQA [Mathew et al., 20211]), ground-
ing datasets (e.g., RefCOCO [Kazemzadeh et al., 2014]), im-
age captioning datasets (e.g., COCO Caption [Chen et al.,
2015]), and multimodal instruction datasets (e.g., LLaVA-
Instruct-150K [Liu et al., 2023c]). The statistics of the used
training data in the mutl-task tuning stage are presented in
Appendix C of the supplemental materials. In the fine-tuning
stage, further fine-tuning is conducted on the training set of
specific datasets individually to fit their unique characteris-
tics, thus achieving better performances on specific tasks.
Evaluation Dataset. The evaluations cover general scene
recognition, character recognition, chart and document anal-
ysis, as well as other multimodal dialogue tasks. To this
end, the VQAV?2 test set [Goyal er al., 2017], OKVQA test
set [Marino er al., 2019], TextVQA validation set [Singh et
al., 2019], OCRVQA test set [Mishra et al., 2019], DocVQA
validation set [Mathew et al., 2021], ChartQA test set [Masry
et al., 2022], WTQ test set [Berant et al., 20191, and MME
Benchmark [Fu et al., 2023] are chosen for the evaluations.

4.2 TImplementation Details

The overall training process of IVE includes three stages.
In the pre-training stage, only the Q-Former and the projec-
tion layer of the semantic information encoder are trainable,
while the other two encoders are temporarily removed. More-
over, the parameters of other modules remain frozen. The in-
put resolution for the semantic information encoder is set as
224 x224. When training with the 300M image-text pairs [Li
et al., 2022], the training encompasses only 1 epoch, and a
global batch size of 2048. While training with the LLaVA-
CC3M-Pretrain-595K [Liu er al., 2023c], the training encom-
passes 5 epochs. The learning rate in this stage employs a co-
sine warm-up strategy (2000 steps), with a maximum learning
rate of le-4, and a minimum learning rate of le-6.

In the multi-task tuning and specific fine-tuning stage, the
language model undergoes tuning using LoRA [Hu et al.,
2021] with the hyper-parameters of rank=64. The Q-Former,
Perceiver Resampler, and their corresponding projection lay-
ers are trainable, while the parameters of other modules re-
main frozen. The input resolution for the semantic informa-
tion encoder is increased to 448 x448, while the low-level in-
formation encoder is configured with the input resolution of
256x256. The input resolution of the document-related in-
formation encoder is set as 1024 1024. As for the learning
rate, we employ a cosine warm-up strategy (500 steps), with
a minimum learning rate of le-6 and a maximum learning
rate of 3e-5 for the multi-task tuning stage, 1e-5 for the spe-
cific fine-tuning stage. AdamW serves as the optimizer for
all three training stages, with S1 = 0.9, 82 = 0.98, and the
weight decay of 0.05, respectively.
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Model LLM | VQAv2 OKVQA TextVQA ChartQA OCRVQA WTQ DocVQA
BLIP-2 [Li et al., 2023] 13B 65.0 45.9 42.4 - - - -
InstructBLIP [Dai et al., 2023] 13B - - 50.7 - - - -
Shikra [Chen et al., 2023] 13B 77.4 472 - - - - -
mPLUG-DocOwl [Ye et al., 2023a] 7B - - 52.6 57.4 - 26.9 62.2
Qwen-VL-Chat [Bai et al., 2023] 7B 78.2 56.6 61.5 66.3 70.5 62.6
LLaVA-1.5 [Liu et al., 2023b] 7B 78.5 - 58.2 - - - -
mPLUG-OwI2 [Ye et al., 2023b] 7B 79.4 57.7 58.2 - - - -
SPHINX-Intern2 [Liu et al., 2024] 7B 75.5 55.5 - - - e -
IVE(ours) 7B 78.8 60.3 62.0 65.3 71.1 29.8 64.1

Table 1: The direct-transfer results on VQA datasets.

4.3 Direct-transfer performances on VQA
Datasets

The VQA task entails multimodal large language mod-
els (MLLMs) answering questions based on both the vi-
sual inputs and user query. In this section, we conduct
direct-transfer evaluations on multiple VQA benchmarks us-
ing the IVE model trained after multi-task tuning stage.
We compare the proposed method with several state-of-the-
arts, including Qwen-VL-Chat [Bai et al., 2023], mPLUG-
DocOwl [Ye et al., 2023a], mPLUG-OwI12 [Ye et al., 2023b],
and LLaVA-1.5 [Liu et al, 2023b]. The evaluation encom-
passes seven benchmarks: VQAv2 [Goyal et al., 2017] and
OKVQA [Marino et al., 2019] for the general VQA task,
TextVQA [Singh er al, 2019] and OCRVQA [Mishra et
al., 2019] for the OCR VQA task, and ChartQA [Masry et
al., 2022], DocVQA [Mathew et al., 2021], and WTQ [Be-
rant et al., 2019] for the document or chart VQA task, re-
spectively. We employ the following prompt template for
all evaluations on these datasets: “<Img>{latent embed-
ding} </Img>{structural knowledge}{question}. Answer
the question using a single word or phrase.” In addition, as
the object detection results of the chart and document images
are usually useless, we design an automatic filtering mecha-
nism to filter out the detection results of these images.

As presented in Tab. 1, our proposed method shows
competitive performances when compared to recent ap-
proaches. Specifically, IVE achieves an accuracy of 60.3%
on OKVQA [Marino et al., 2019], which significantly sur-
passes the performance of recent state-of-the-art method
(mPLUG-OwWI2 [Ye et al., 2023bl, achieved with 57.7%).
In TextVQA [Singh er al., 2019] and OCRVQA [Mishra et
al., 2019] datasets, IVE achieves accuracies of 62.0% and
71.1%, outperforming Qwen-VL-Chat [Bai et al., 2023] with
0.5% and 0.6%, respectively. As for the DocVQA [Mathew et
al., 2021] and WTQ [Berant et al., 2019], IVE still achieves
consistent improvements compared with recent approaches.
More visualized examples have been shown in Appendix D
of the supplemental materials.

Additionally, to demonstrate the robustness of our method,
more validation about other widely-used VQA benchmarks
with unseen images are shown in Appendix E of the supple-
mental materials.

4.4 Fine-tuning Performances on VQA Datasets

To compare our approach with different specific VQA meth-
ods, we assess the performance of IVE further fine-tuning

Model LLM ‘ VQAv2 OKVQA OCRVQA ChartQA
BLIP2 [Li et al., 2023] 13B | 822 59.3 72.7
GIT2 [Wang et al., 2022] - 81.7 - 70.3
InstructBLIP [Dai ef al., 2023] 13B - 62.1 733
CogVLM [Wang et al., 2023] 7B 84.7 64.7 74.5 -
Pix2Struct-Large [Lee et al., 2023] - - 71.3 58.6
IVE(ours) 7B 84.0 65.2 74.9 68.3
Table 2: The fine-tuning results on VQA datasets.
Model LLM ‘ Perception  Cognition
Qwen-VL-Chat [Bai et al., 2023] 7B 1487.6 360.7
LLaVA-1.5 [Liu er al., 2023b] 7B 1510.7 -
mPLUG-OwI2 [Ye ef al., 2023b] 7B 1450.2 313.2
SPHINX-Intern2 [Liu et al., 2024] 7B 1260.4 294.6
IVE(Ours) 7B 1455.6 384.1

Table 3: The evaluations on MME Benchmark.

on the VQAv2 [Goyal et al, 2017], OKVQA [Marino
et al., 20191, OCRVQA [Mishra et al, 2019], and
ChartQA [Masry et al., 2022]. We still employ the prompt
template:  “<Img>{latent embedding}</Img>{structural
knowledge}{question}. Answer the question using a single
word or phrase.” during evaluation. The further fine-tuning
results of IVE on these VQA datasets are shown in Tab. 2.

The experimental results demonstrate that IVE, following
additional fine-tuning on specific datasets, achieves favor-
able improvements. Specifically, there are 5.2% and 4.9%
improvements compared with the direct-transfer results on
VQAV2 [Goyal et al., 2017] and OKVQA [Marino et al.,
2019], respectively. Notably, in the tasks related to charac-
ter and chart, IVE significantly outperforms the Pix2Struct-
Large [Lee et al., 2023] in OCRVQA [Mishra et al., 2019]
and ChartVQA [Masry et al., 2022], with 3.6% and 9.7%
improvements, respectively. Additionally, when compared
to the recent state-of-the-art (CogVLM [Wang et al., 2023]),
IVE still shows competitive results.

Given that the MME Benchmark [Fu et al., 2023] fo-
cuses on answering “’yes/no” formats, we conduct further
fine-tuning of our multi-task tuning model using a mixed
dataset composed of VQAV2 [Goyal et al., 2017] and LRV-
Instruction [Liu ef al., 2023al. Subsequently, we evaluate the
model on the MME Benchmark. As demonstrated in Tab. 3,
our method achieves the scores of 1455.6 and 384.1 in the
perception and cognition task of MME Benchmark [Fu et al.,
2023], respectively. Compared with recent state-of-the-arts
(mPLUG-OwI2 [Ye et al., 2023b] and LLaVA-1.5 [Liu e al.,
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Methods \ VQAv2 OKVQA TextVQA ChartQA OCRVQA WTQ DocVQA

semantic information encoder only 75.6 57.3 56.3 58.7 67.5 27.1 60.2

+ low-level information encoder 76.7 57.8 585 59.1 68.5 27.3 60.8

+ document-related information encoder 77.2 58.0 59.9 61.8 70.2 27.9 62.3

+ structural knowledge enhancement on Infer 76.2 57.6 60.4 63.3 70.6 28.6 62.7

+ structural knowledge enhancement on Train&Infer 78.8 60.3 62.0 65.3 71.1 29.8 64.1

Table 4: The ablation studies of each proposed module on VQA datasets.
2023b]), our IVE demonstrates superior stability. Model | VQAv2
4 Multi-task Encoders 81.3

4.5 Ablation Study + structural knowledge enhancement on Infer 82.9
To better evaluate the effectiveness of each proposed mod- + structural knowledge enhancement on Train&lInfer | 83.4

ule, we further conduct ablation studies with utilizing dif-
ferent combinations of proposed modules. All the ablations
are conducted with training on multi-task tuning datasets and
performing direct-transfer evaluations on different VQA test
sets.

Effectiveness of Multi-task Encoders. To evaluate the in-
dividual contributions of each encoder within our multi-task
encoders, three distinct experiments have been conducted.
The initial experiment exclusively employs the semantic in-
formation encoder. Subsequently, the low-level information
encoder and document-related information encoder are uti-
lized progressively. As shown in Tab. 4, combing the se-
mantic information encoder and the low-level information
encoder leads to improvements across various datasets com-
pared to only using the semantic information encoder. Fur-
ther fusion with the document-related information encoder re-
sults in a significant improvement on document-related anal-
ysis tasks, with its performance on ChartVQA [Masry et al.,
2022] rising from 59.1% to 61.8% and DocVQA [Mathew et
al., 2021] rising from 60.8% to 62.3%, respectively. More
visualized analysis have been present in Appendix D of the
supplemental materials.

Effectiveness of Structural Knowledge Enhancement.
To validate the effect of structural knowledge enhancement
and compare the different impacts of integrating structural
knowledge only in the inference phase or in both the train-
ing and inference phases, we further conduct two additional
experiments built upon the multi-task encoders.

As shown in Tab. 4, while evaluating VQAv2 [Goyal er al.,
2017] and OKVQA [Marino et al., 2019], the performances
will decrease with incorporating structural knowledge solely
during the inference phase. Conversely, integrating this struc-
tural knowledge during both the training and inference phases
yields improved results across a spectrum of datasets. The
above phenomenon demonstrates that the structural knowl-
edge introduces inherent noises, negatively impacting the ca-
pability of MLLMs while it is directly utilized. However,
when introducing these extracted knowledge during the train-
ing phase, the LLM is guided to autonomously discern per-
tinent information, thereby mitigating the adverse effects of
noise. More visualized analysis and effectiveness validation
about structural knowledge enhancement module are shown
in Appendix D and Appendix F of the supplemental materi-
als, respectively.

Moreover, to demonstrate that integrating structural knowl-
edge during both training and inference phases can mitigate

Table 5: The ablation studies while regarding ground truth as the
utilized structural knowledge.

the disturbation of noises in knowledge rather than simply
aligning prompt formats, we conduct additional experiments
with fine-tuning on the sampled VQAv2 [Goyal et al., 2017]
dataset. Specifically, we replace the automatically detected
results with the ground truth as finally utilized structural
knowledge. Then, we conduct the comparisons with integrat-
ing structural knowledge only in the inference phase or in
both training and inference phases. As shown in Tab. 5, uti-
lizing the ground truth as structural knowledge and integrat-
ing it during both training and inference phases only achieves
slight gains (0.5%) compared to the mechanism of integrating
ground truth during the inference phase (1.6% gains). This
observation demonstrates that our proposed method goes be-
yond simple prompt format alignment. Instead, it focuses
on autonomously discerning and extracting pertinent infor-
mation, thereby mitigating the adverse effects of noise.

5 Conclusion

This paper firstly reevaluates the existing limitations within
current multimodal large language models(MLLMs), and
points out that they always grapple with the information loss
dilemma. To enhance the corresponding visual perception
ability of MLLMs, this paper presents Incorporating Visual
Experts(IVE), the first work to aggregate available visual in-
formation through a mixture-of-experts mechanism in both
training and inference stages. Extensive experiments on a
wide range of multimodal dialogue datasets have evaluated
the effectiveness of IVE. Though the significant improve-
ments achieved by IVE, the types of visual experts utilized
in current pipeline are still limited. In addition, compared
to the methods which use only a semantic encoder branch,
IVE incurs an additional 979M parameters, which is far less
than the total parameters of MLLMs. In the future, we aim
to explore more efficient multi-encoder fusion strategies and
develop a more effective information compression projector.
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