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Abstract

The representation of feature space is a crucial en-
vironment where data points get vectorized and em-
bedded for subsequent modeling. Thus, the efficacy
of machine learning (ML) algorithms is closely re-
lated to the quality of feature engineering. As one
of the most important techniques, feature genera-
tion transforms raw data into an optimized feature
space conducive to model training and further re-
fines the space. Despite the advancements in auto-
mated feature engineering and feature generation,
current methodologies often suffer from three fun-
damental issues: lack of explainability, limited ap-
plicability, and inflexible strategy. These shortcom-
ings frequently hinder and limit the deployment
of ML models across varied scenarios. Our re-
search introduces a novel approach adopting large
language models (LLMs) and feature-generating
prompts to address these challenges. We propose
a dynamic and adaptive feature generation method
that enhances the interpretability of the feature gen-
eration process. Our approach broadens the appli-
cability across various data types and tasks and of-
fers advantages in terms of strategic flexibility. A
broad range of experiments showcases that our ap-
proach is significantly superior to existing methods.

1 Introduction

The success of machine learning (ML) algorithms generally
depends on three aspects: data processing, feature engineer-
ing, and modeling [Jordan and Mitchell, 2015]. Among these,
feature engineering is critical, directly influencing ML mod-
els’ performance and effectiveness. Within feature engineer-
ing, feature generation is a vital process of transforming raw
features into a structured format and optimizing the feature
space by creating new features from the original ones [Nam
et al., 2024]. This transformation usually involves mathemat-
ical or algorithmic operations on existing features. This opti-
mization can significantly enrich the feature space, enabling
ML models to draw and utilize data information more effec-
tively and achieve superior performance.

*Corresponding author.
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Figure 1: Our goal is to iteratively reconstruct the feature space to
create an optimal and explainable feature set that enhances perfor-
mance on downstream machine learning tasks.

Given the importance of feature engineering and feature
generation, extensive research has focused on enhancing both
the effectiveness and efficiency of these methods [Mumuni
and Mumuni, 2024; Gu et al., 2024]. As deep learning
has explosively developed, automated feature engineering has
emerged as a mainstream approach due to its convenience and
remarkable performance. These auto-engineering algorithms
greatly reduce the need for manual calculation and determi-
nation, and thus reduce subjective errors and mistakes. In the
field of automated feature generation, there are outstanding
works such as [Khurana er al., 2018; Zhang et al., 2024b;
Wang et al., 2022a]. These methods leverage advanced tech-
niques like reinforcement learning to generate optimal feature
sets that enhance the performance of downstream tasks while
maintaining a degree of explainability. Despite these methods
enriching the feature space and restructuring it into a more re-
fined space structure, like other automated feature generation
and broader automated feature engineering techniques, these
works have not resolved three fundamental issues: 1) Lack
of Explainability: Most feature engineering processes that
utilize deep learning algorithms are result-oriented “black
boxes”. The specific operations on features and the process
of restructuring feature space are usually hard for researchers
to understand. 2) Limited Applicability: For different data
types and downstream tasks, researchers need to manually se-
lect and switch among a wide range of feature engineering
methods, which demands a high level of domain knowledge
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and expertise from the researchers. This limited applicabil-
ity can be a significant barrier across varied ML scenarios.
3) Fixed Strategy: Existing methods usually require prede-
fined strategies for exploration and generation. Models utiliz-
ing these methods are unable to adapt or refine their strategies
based on insights acquired about the feature space during the
model’s learning process. Hence, these models lack the flex-
ibility to dynamically adjust to the evolving understanding of
the data.

Our Targets. We aim to develop an automated feature gen-
eration method that: (1) offers a transparent and under-
standable feature generation process; (2) adapts to various
data types and downstream tasks by selecting best-suited op-
erations automatically; (3) continuously learns from the fea-
ture space and refines its strategies based on new insights.
For target (1), we explicitly document the operations applied
during the feature generation and how they transform the in-
put data into a structured feature space. By doing so, we in-
tend to replace their lack of interpretability with a more open
and interpretable framework. For target (2), we apply a large
language model (LLM) that can assess the characteristics of
the data and the requirements of the task and dynamically
select the most appropriate strategies under proper guidance.
For target (3), we develop multiple expert-level LLM agents
with different strategies. These agents adjust their operations
and strategies in response to evolving data patterns, task re-
quirements, and actions of other agents.

Our Method. We employ a novel approach to automate and
enhance the feature generation process by adopting LLMs
with expert-level guidance. Our method starts by inputting
an original feature set and a predefined operation set into the
LLM, which then instantiates several expert agents. Each
agent generates new features with its exclusive strategy and
integrates these new features with the original features to pro-
duce enriched feature sets. The newly created feature sets are
applied to downstream tasks to evaluate their performance,
and the performance outcomes are fed back to the agents. The
agents “‘communicate” and share their inferences, and reflect
on the impact of their own and other agents’ operations on the
downstream tasks. In this way, the agents refine and optimize
their generation strategies to better capture how variations in
the feature space impact downstream tasks and, consequently,
reconstruct the feature space more adaptively and effectively.
The iteration continues with new feature sets until the opti-
mal feature set for the task is found or a predefined number
of iterations is reached.

Contributions. Our main contributions include:

e We propose a novel automated feature generation
methodology based on LLMs to restructure the feature
space of a dataset. This end-to-end structure enables
training with LLM agents on varied feature generation
strategies without manual selection of feature opera-
tions.

* We introduce a dynamic and adaptive generation process
based on feedback from downstream tasks. This method
effectively utilizes the in-context learning and reasoning
capabilities of LLMs in the feature generation process.

It significantly enhances the applicability and effective-
ness of the generated features across various machine
learning scenarios without the need to create additional
ML models.

* We conduct a series of experiments to validate the ef-
fectiveness and robustness of our method across differ-
ent datasets and downstream tasks. Our results demon-
strate that our method has clear advantages over existing
methods and considerable potential to promote a broader
range of feature engineering tasks.

2 Preliminary and Related Work

2.1 Feature Generation

Feature Engineering. Feature engineering is the process
of selecting, modifying, or creating new features from raw
data to improve the performance of machine learning mod-
els [Severyn and Moschitti, 2013]. This process can be de-
scribed as a function ¢ : F — F " that transforms the original
feature set F into a new feature set F~ through certain oper-
ations. Feature generation is a decisive category in the field
of feature engineering. Feature generation means generating
new attributes from existing features in a dataset through var-
ious mathematical or logical transformation operations. Fea-
ture generation methods can primarily be categorized into two
main classes: (1) latent representation learning based meth-
ods, such as deep factorization machines [Guo et al., 2017,
Song et al., 2019] and deep representation learning [Zhong
et al., 2016; Bengio et al., 2013]. These methods can cre-
ate complex latent feature spaces; however, their generation
processes often lack transparency and are difficult to trace or
explain [Schélkopf er al., 2021]; (2) feature transformation-
based methods, which generate new features by arithmetic or
aggregation operations [Nargesian et al., 2017; Wang ef al.,
2022c; Wang er al., 2022b]. These methods often require ex-
tensive manual operations and rely heavily on domain knowl-
edge to select transformations and adjust parameters.

Automated Feature Generation. With the widespread
adoption of large models and various deep learning meth-
ods in the feature engineering field, automated feature gen-
eration is experiencing significant development. Automated
feature generation enhances the feature space by system-
atically creating and integrating new features to improve
model performance [Xiang et al., 2021; Wang et al., 2022a;
Pan et al., 2020; Wang et al., 2022a]. For example, [Katz
et al., 2016] developed ExploreKit, which generates a large
set of candidate features by combining information from the
original features. [Khurana et al., 2016] explores the fea-
ture space using manually crafted heuristic traversal strate-
gies, while [Shi et al., 2018] proposed a feature optimization
approach using deep learning and feature selection to enhance
traffic classification performance. Although these methods
are more efficient than traditional manual feature engineering
and enable faster processing of large datasets, they often ig-
nore the semantic aspects of data. Furthermore, their “black
box” operation process makes the results difficult to explain.
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2.2 LLMs and Tree of Thoughts

LLMs’ Capabilities. LLMs have revolutionized numerous
fields with their extraordinary capabilities in in-context learn-
ing and step-by-step reasoning [Xie et al., 2024; Zhang et al.,
2024a; Wei et al., 2022]. These capabilities enable LLMs
to effectively understand and navigate complex tasks given
appropriate guidance and precise prompts. Thus, they ex-
hibit professional competence across various specialized do-
mains [Wang et al., 2023; Zhang et al., 2024c; Zhang et
al., 2025a; Wang et al., 2025]. Recent advancements in
prompt engineering and reasoning structures have further en-
abled these models to tackle complex data analysis tasks and
multi-step feature engineering processes [Peng er al., 2023;
Liu et al., 2023].

Prompting. LLM prompting leverages pre-trained models
to recall existing knowledge and generate output based on
specific guideline prompts [White et al., 2023]. This process
interacts closely with LLMs’ capabilities for in-context learn-
ing and step-by-step reasoning [Chu et al., 2023]. Prompts
containing context details guide models to think more co-
herently when handling long tasks. Moreover, step-by-
step reasoning prompts can guide a model through logical
thought processes by mimicking human-like reasoning to
solve complex problems [Yu ef al., 2023; Wei et al., 2022;
Diao et al., 2023].

Tree of Thoughts. One line of work in prompting meth-
ods focuses on enhancing the structured reasoning capabil-
ities of LLMs to guide them through logical analysis and
problem-solving tasks. Input-Output (I0) Prompting [Wang
et al., 2024; Hao et al., 2023] involves wrapping the input x
with task-specific instructions or examples to guide the model
to produce the desired output y. This method is straight-
forward, but its guiding capability is limited in complex
tasks. Chain-of-Thought (CoT) Prompting [Wei et al., 2022;
Besta et al., 2024; Zhang et al., 2025c] involves a sequence of
intermediate, coherent language expressions zi, . .., z, that
logically bridge the input x to the output y. This method en-
hances the model’s logical capabilities for complex problem-
solving, but it is limited to linear, single-strategy reason-
ing, capturing only a subset of the possible solutions. Tree
of Thoughts (ToT) Prompting [Yao et al., 2024] extends the
CoT prompting by exploring multiple reasoning paths over
thoughts. ToT operates as a search over a tree structure where
each node represents a partial solution within the input and
contextual thoughts. ToT has advantages over other methods
by exploring multiple reasoning paths with different strate-
gies [Zhang et al., 2025b]. Thus, it performs better in deep
data analysis and multi-step feature engineering.

3 Methodology

In this section, we design a novel feature generation method
called LLM Feature Generation (LFG), which is highly in-
terpretable, dynamically adaptable, and employs an end-to-
end approach to significantly enhance downstream task per-
formance. In this method, we apply an LLM as an auto-
generator of features. We augment the LLM with the ToT
technique to generate detailed inference along with each step

of generation so that each decision is explainable. Further-
more, we collect the performance of downstream tasks to of-
fer feedback to the LLM generator. Our entire workflow is
divided into two main parts: (1) Automated Feature Gener-
ation with LLM Agents; (2) Feedback and Optimization.

3.1 Important Definitions

We first define the feature set and operation set, along with
their corresponding mathematical symbols.

Feature Set. Let D = {F,y} be the dataset. Here, F =
{f1, f2,- -, fn} is the feature set, where each column rep-
resents a feature f;, and each row represents a data sample;
y is the corresponding target label set for the samples. Our
main purpose is to reconstruct the feature space of the dataset

D={F,y}.

Operation Set. The operation set O consists of mathemati-
cal operations performed on existing features to generate new
ones. Operations are of two types: unary and binary. Unary
operations include “square”, “exp”, “log”, etc.; binary opera-

9%

tions include “plus”, “multiply”, “divide”, etc.

Optimization Objective. Our objective is to construct an
optimal and interpretable feature space that can enhance the
performance of downstream tasks. Given the feature set F
and the operation set O, our optimization goal is to find a

reconstructed feature set

F* = argmax O (F.,y), (1)
]:
where R is a downstream ML task (e.g., classification, re-
gression, ranking, detection), 6 is the performance metric of
‘R, and F is a reconstructed feature set derived from F. Here,
F is generated by applying operations from O to the original
feature set F using a certain algorithmic structure.

3.2 Automated Feature Generation with LLM
Agents

In this section, we introduce the concept of LLM agents and
detail their role in feature generation. We utilize an LLM
to generate several agents for feature-generation tasks. Here,
each agent acts as an automated feature generator, which ap-
plies specific operations on a given feature set to generate new
features or delete existing features based on iterative prompts.
These agents can emulate expert-level logical reasoning and
decision-making capabilities, thus optimizing the feature set
for input data of downstream tasks and enhancing their per-
formance.

Agents. We first define an agent .4; that operates on a fea-
ture subset F; = {f1,..., fn} by applying operations to the
features f; and f;. The F; is a subset of F. The agent draws
operations from an operation set O, to generate new features:

Fr=FU{g1, gk} 2)

Each new feature gy, is produced by applying an operation
o to the features f; and f;:

gk = o(fi, f5)- 3)
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Figure 2: The framework of LFG. First, we input the original feature set and operation set into the LLM’s context window. Second, we guide
the LLM in creating three expert agents. Each agent generates new features with operations from the operation set, and then combines new
features with original features to create a new feature subset. Then, each of these subsets is individually evaluated on a downstream task.
After that, we provide the performance of each feature subset in downstream tasks as feedback to the respective agents and iterate the process
until the best feature subset is found or the maximum number of iterations is reached.

Here, F; is the initial feature subset for A;; }'l/ is the output
feature subset with original and all new features from A;; and
gk is the new feature from applying operation o to features
fi, [; € Fi. Thus, we complete one generation node s; of
A;, and layer Layer, consists of [ total generation nodes.

3.3 Feedback and Optimization

We now have a new feature set composed of all [ subsets, de-
noted as }'l, = {Fi,01,-.-,95}. After the agents generate
all [ subsets, we move forward to evaluate the performance
of these subsets in downstream tasks and the effectiveness of
the generated nodes at this layer. We then gather performance
metrics from downstream tasks as feedback 6 = {6,}Z_, for
each iteration ¢ corresponding to each generation layer. This
feedback reflects the effectiveness of the newly created fea-
ture subset and illustrates the agents’ contribution to the task.
The agents evaluate their performance by comparing the met-
ric 0; with 0(;_y). If 6, significantly improves over 6(;_1),
the feature generation strategy is considered “effective”. The
agents’ self-evaluation positively correlates with the increase
in these metrics; a larger improvement signifies a more suc-
cessful feature generation strategy.

Furthermore, each agent shares its reasoning process dur-
ing generating features, including the logic behind selecting
specific operations. This transparency enables agents to un-
derstand and adopt diverse strategies to achieve collabora-
tive improvement. Through self-evaluation and peer interac-
tions, agents identify which strategies successfully enhanced
performance and which may require adjustments or replace-
ments. In the subsequent rounds, agents generate increas-
ingly effective feature subsets adopting ]-'l, (from the previous
round) and O to form the next layer of generated nodes. The
iterative process continues until the optimal feature set Fis
found or the maximum number of iterations 7" is reached:

F = argmax 6O(F) 4)
Fe{F"|leL}

where {F;™ | | € L} is the set of optimal feature subsets
from each iteration [, and 6(F) is the performance score of a
feature set .

Monte Carlo Tree Search. In order to further optimize the
feature space and balance exploration with exploitation, we
employ an improved Monte Carlo Tree Search (MCTS) [Yao
et al., 2024; Browne et al., 2012] to explore new or underuti-
lized feature space structures after the initial 7" iterations. We
adopt this MCTS framework because of its random sampling-
based search strategy, which enhances the probability of find-
ing superior feature combinations. In our case, this flexible
searching method constructs a tree from all agents’ genera-
tion nodes and adjusts the search direction based on the per-
formance feedback. Here, we define the root node as the orig-
inal feature set given to the LLM, with each generation node
representing a tree node. The search covers all generation
nodes in the last iteration layer Layerr as leaf nodes.

We start with node evaluation by calculating the improve-
ment in the downstream task’s performance compared to the
parent node. The evaluation reflects the effectiveness of
newly generated features. Then, the MCTS iteratively builds
a search tree by cycling through four phases: selection, ex-
pansion, evaluation, and searching. In the selection phase,
children nodes are recursively selected from the root utilizing
the Upper Confidence Bound (UCB) [Auer et al., 2002]:

2]
UCB(i) = w; + Oy =2t ©)

84

where s; and s; are the visit counts for node ¢ and its par-
ent respectively, C' is a hyperparameter balancing exploration
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Figure 3: The framework of MCTS for feature generation includes five stages: 1) Performance Evaluation, 2) Node Selection, 3) Node

Expansion, 4) Node Generation, 5) Optimal Subset Searching.

and exploitation. The value w; represents the average per-
formance improvement of all descendant nodes of node 1,
computed based on changes in the downstream task perfor-
mance metric 6. Specifically, for each node 7, the value of
w; is calculated as the average performance improvement ob-
served from its child nodes in the downstream tasks. This is

given by:
1 ()
=z > (6

j€C;

(4
=0 1))

w; (6)
Here, C; is the set of child nodes of node i, and |C;| is its
cardinality (i.e., the number of child nodes of 7). AU =

(9? ) 95?11)) represents the performance improvement con-

tributed by child node j € C;, where 0§j ) and 0221) are the

performance metrics associated with the state after exploring
child j and the state before, respectively.

In the tree, we select the most promising node s;. We de-
fine the selection criterion for each node as:

57" = argmax {¢(s1) + (1)}, ™
s1EL

where v (s;) and ¢(s;) represent the current and future
value of the node. We apply further strategies to generate
and expand feature subsets upon selecting these nodes.

On the selected nodes s{°°*, more complex or novel fea-
ture operations are implemented to generate additional fea-
ture subsets. These newly generated subsets, ]-"l/ are then
used for further evaluation in downstream tasks to validate
their efficacy. The process is mathematically defined as:

]:l/ g(‘/-y_—lselect7 O/), (8)

where G is the transformation function generating ]-'l/ by
applying operations from a selected subset O’ C O (the pre-
defined complete operation set) to F;°t. At the end of the
MCTS process, the optimal feature subset is determined by
choosing the leaf node with the highest w; value, represent-
ing the feature set that maximized performance improvement
during simulations:

-F*:-Fi*7

where ¢*

€))

= argmax w;.
i€LeafNodes

Datasets Samples  Features Class
Ion 351 34 2
Ama 1,500 10,000 2
Aba 4,177 8 3
Dia 441,455 330 2

Table 1: Datasets descriptions.

This F* represents the optimal feature subset identified by the
MCTS, which should then be validated further in real-world
tasks to confirm its efficacy.

4 Experiments

In this section, we present three experiments to demonstrate
the effectiveness of the LFG. First, we compare LFG against
several baseline methods on multiple downstream classifica-
tion tasks. Second, we perform a robustness check on LFG’s
performance improvement. Finally, we further study and ana-
lyze iterative performance improvements in experimental re-
sults and discuss their reasons.

4.1 Experimental Setup

Datasets. We evaluate the LFG method on four real-world
datasets from UCI, including lonosphere (Ino) [Sigillito et
al., 1989], Amazon Commerce Reviews (Ama) [Liu, 2011],
and Abalone (Aba) [Nash et al., 19951, as well as Diabetes
Health Indicators Dataset (Dia) [Teboul, 2022] from Kag-
gle. The detailed information is shown in Table 1. For each
dataset, we randomly selected 55% of the data for training.

Metrics. We evaluate the model performance by the follow-
ing metrics: Overall Accuracy (Acc) measures the proportion
of true results (both true positives and true negatives) in the
total dataset. Precision (Prec) reflects the ratio of true posi-
tive predictions to all positive predictions for each class. Re-
call (Rec), also known as sensitivity, reflects the ratio of true
positive predictions to all actual positives for each class. F-
Measure (F1) is the harmonic mean of precision and recall,
providing a single score that balances both metrics.
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Downstream Tasks. We apply the LFG model across a
range of classification models, including Random Forests
(RF), Decision Tree (DT), K-Nearest Neighbor (KNN) and
Multilayer Perceptrons (MLP). We compare the performance
outcomes in these models both with and without our method.

Baseline Models. We compare the LFG method with raw
data (Raw), the Least Absolute Shrinkage and Selection Op-
erator (Lasso), and Feature Engineering for Predictive Mod-
eling using Reinforcement Learning [Khurana er al., 2018]
(RL). Here, we set the same operation set for both LFG and
RL method to consist of square root, square, cosine, sine,
tangent, exp, cube, log, reciprocal, sigmoid, plus, subtract,
multiply, and divide. For our LLM, we perform all the exper-
iments on the OpenAI API, GPT-3.5 Turbo model [OpenAl,
2024].

4.2 Experimental Results

Overall Performance. Table 2 shows the overall perfor-
mance results for LFG and the baseline models.

(1) Comparison with baseline models. From the table, we
can see that the LFG method consistently surpasses baseline
methods across a variety of metrics and datasets. Specifically,
we show the results of LFG in 3 iterations of generation, de-
noted as LFG-3, and compare it with the full LFGin T < 10.
On dataset Ion, the LFG achieves the best accuracy of 95.6%,
which is a 6.4% increase over raw data on task RF, and 4.5%
over the RL method. On dataset Ama, the LFG-3 improves
the accuracy of raw data of 59.6% to 61.5% while LFG per-
forms an increase of 4.3% on RF. Beyond accuracy, LFG con-
sistently demonstrates significant improvements over base-
line methods across other metrics and datasets. For instance,
on dataset /on, the highest recall improvement of 9.8% on DT
reflects LFG’s ability to effectively handle positive samples.
Similarly, the improvements in F1, such as increasing from
0.476 to 0.607 on dataset Ama on KNN and from 0.855 to
0.932 on dataset Jon on DT, showcase the model’s adaptabil-
ity across diverse tasks and feature distributions.

(2) Performance across different models and metrics. In
precision, the LFG also shows superior performance. For ex-
ample, on dataset lon, the LFG reaches a precision of 90.6%,
surpassing the highest precision of 86.7% among all baselines
on KNN. This result indicates that the LFG is effective in re-
ducing misclassifications. Regarding the metric recall, the
LFG increases the Ion’s recall by 9.8% compared to vanilla
data and by 4.3% compared to best of baselines on DT task,
which demonstrates that LFG brings higher improvement on
identifying positive samples. On the Ama dataset, our method
significantly improves F1. The 3-iteration version, LFG-3, in-
creased the F1 from an initial 63.8% to 67.6%. The full LFG
model further boosted this performance, reaching a final F1
of 68.0%. As the harmonic mean of precision and recall, this
substantial improvement in F1 showcases the model’s capa-
bility to effectively balance between reducing misclassifica-
tions and minimizing missed classifications.

Robustness Check. We validate the experiments through
five-fold cross-validation. The LFG method demonstrates ro-
bust performance, achieving notable metric improvements.
With LFG-3, it gains 2.72% in accuracy and approximately
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5% in precision, recall, and F1. The full LFG model fur-
ther boosts these gains to 4.81% in accuracy and approxi-
mately 7% in other metrics. This consistent enhancement is
driven by the extended iterations, which continue to refine the
feature space, and it illustrates the adaptability, effectiveness,
and reliability of the LFG method.

Iterative Performance Improvements. We then compare
the performance improvements of LFG-3 and LFG. On one
hand, the incremental improvement from LFG-3 to LFG il-
lustrates the continuous enhancement in all metrics, indicat-
ing that during additional iterations, the model refines and
adjusts its generation strategy to explore better solutions for
the feature space. On the other hand, the results of LFG-
3 with only three iterations already show notable enhance-
ment in all datasets. This shows that the model effectively
and rapidly finds the zones of optimal feature space within
a limited number of steps. As shown in Figure 5, we can
see that the average number of features in a feature subset in-
creases continuously in the first 5 rounds of generation. The
increase in features implies that the feature generation algo-
rithm is actively finding new, potential feature combinations
in the feature space, effectively expanding the feature space.

5 Conclusion

In this paper, we present a novel feature generation method
LFG utilizing LLMs to enhance automated feature engineer-
ing’s interpretability, adaptability, and strategic flexibility.
Our target in designing the model is to address traditional fea-
ture generation challenges, including a lack of explainability,
limited applicability, and rigid strategy formulation. Our ap-
proach utilizes expert-level LLM agents to overcome these.
These problems can significantly limit the broader deploy-
ment of feature engineering on machine learning tasks in di-
verse scenarios. Thus, we present LFG with a dynamic, adap-
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Metrics | Model RF DT KNN MLP
Ton Ama Aba Dia Ton Ama  Aba Dia Ton Ama Aba Dia Ton Ama Aba Dia
Raw 0.892 0.596 0.539 0.859 | 0.873 0.536 0.489 0.794 | 0.810 0.548 0.529 0.847 | 0.892 0.639 0.546 0.862
Ace Lasso 0.892 0.627 0.537 0.860 | 0.880 0.554 0.491 0.796 | 0.848 0.533 0.532 0.849 | 0.905 0.671 0.552 0.863
RL 0911 0.607 0.559 0.859 | 0.892 0.548 0.508 0.796 | 0.829 0.542 0.534 0.848 | 0911 0.616 0.558 0.864
LFG-3 | 0918 0.615 0.564 0.860 | 0.905 0.590 0.523 0.800 | 0.873 0.607 0.541 0.848 | 0918 0.676 0.572 0.866
LFG 0956 0.639 0.564 0.861 | 0.937 0.590 0.523 0.800 | 0.886 0.607 0.541 0.848 | 0.943 0.680 0.573 0.866
Ton Ama Aba Dia Ton Ama  Aba Dia Ton Ama Aba Dia Ton Ama Aba Dia
Raw 0.884 0.598 0.533 0.681 | 0.899 0.537 0.492 0.588 | 0.867 0.605 0.525 0.643 | 0.900 0.638 0.541 0.697
Prec Lasso 0.866 0.624 0.531 0.684 | 0.857 0.554 0.493 0.590 | 0.865 0.544 0.532 0.647 | 0.904 0.671 0.549 0.703
RL 0919 0.610 0.554 0.683 | 0.892 0.548 0.495 0.590 | 0.856 0.542 0.528 0.642 | 0915 0.616 0.544 0.708
LFG-3 | 0915 0.623 0.562 0.688 | 0.892 0.591 0.524 0.592 | 0.891 0.608 0.544 0.645 | 0.940 0.676 0.560 0.719
LFG 0.962 0.639 0.562 0.690 | 0.929 0.591 0.524 0.592 | 0.906 0.608 0.544 0.645 | 0953 0.681 0.562 0.719
Ton Ama Aba Dia Ion Ama  Aba Dia Ton Ama Aba Dia Ton Ama Aba Dia
Raw 0.880 0.597 0.545 0.570 | 0.837 0.537 0.493 0.597 | 0.768 0.548 0.533 0.577 | 0.892 0.639 0.544 0.595
Rec Lasso 0.887 0.622 0.541 0.575 | 0.874 0.554 0.496 0.599 | 0.802 0.510 0.542 0.580 | 0.885 0.672 0.552 0.591
RL 0911 0.607 0.559 0.568 | 0.892 0.548 0.508 0.598 | 0.829 0.542 0.534 0.579 | 0911 0.616 0.558 0.589
LFG-3 | 0.904 0.618 0.564 0.568 | 0.902 0.591 0.526 0.601 | 0.828 0.607 0.546 0.582 | 0.897 0.676 0.573 0.562
LFG 0.944 0.639 0.564 0.570 | 0.935 0.591 0.526 0.601 | 0.828 0.607 0.546 0.582 | 0.921 0.681 0.565 0.562
Ton Ama Aba Dia Ton Ama  Aba Dia Ton Ama Aba Dia Ton Ama Aba Dia
Raw 0.882 0.595 0.537 0.587 | 0.855 0.536 0492 0.592 | 0.781 0476 0.528 0.592 | 0.889 0.638 0.541 0.618
F1 Lasso 0.875 0.622 0.533 0.594 | 0.865 0.554 0.493 0.594 | 0.821 0.403 0.534 0.595 | 0.893 0.671 0.550 0.614
RL 0.909 0.602 0.556 0.584 | 0.890 0.548 0.498 0.594 | 0.814 0.542 0.529 0.594 | 0.909 0.615 0.544 0.611
LFG-3 | 0.909 0.612 0.562 0.584 | 0.897 0.590 0.525 0.596 | 0.849 0.607 0.541 0.598 | 0.911 0.676 0.563 0.576
LFG 0.952 0.639 0.562 0.587 | 0.932 0.590 0.525 0.596 | 0.854 0.607 0.541 0.598 | 0.935 0.680 0.563 0.576

Table 2: Overall performance on downstream tasks. The best results are highlighted in bold, and the runner-up results are highlighted in

underline. (Higher values indicate better performance.)

Iteration 1

Tree of Thoughts method. Given a tabular dataset, they generate new
features from numerical attributes over five rounds. In each round,
agents can either:
Select one or two features, apply an operation from the set to create
a new feature, and add it.
Delete a feature.

\ Operation Seft: ...

!
: Three agents collaboratively perform feature engineering using the
|

I Each agent will detail their thought process, considering others'

I thoughts and correcting any errors. This continues until each expert
I creates a definitive set of generated features. After each round, an
I accuracy improvement value is provided for evaluation. Based on this
I criterion, the three agents will refine and expand upon each other's

I ideas before proceeding to the next round of feature generation and
I selection

I /"Response Organization:

! The entire process will be organized in a markdown table format,

! continuing until a conclusive set of generated features is found. The

I table should capture each agent's detailed thought process, the

! steps taken (including selections, operations, and deletions), and the

| reasoning behind these decisions, especially considering previous

\ thoughts and admitting errors. The process of iterative refinement I

\ | and idea expansion will be documented, giving credit where it's due, /
\\_until a conclusive answer is found.

N

Figure 6: The exemplary prompt for LLM to generate agents and
features. The Feature Engineering is shown in blue , the Iterative
Refinement and Evaluation is shown in green and the Markdown

and Organization is shown in purple . The LLM follows the in-

structions to start the first iteration and continues to generate features
with the downstream tasks’ performance data.

tive, automated feature generation approach to enhance inter-
pretability and extend utility across various data types and
tasks. Moreover, we present extensive experimental results
demonstrating that our approach outperforms various existing
methods. For future work, we plan to extend this automated
feature engineering paradigm across various techniques and
machine learning tasks and investigate transformations our
approach applies to the feature space to gain deeper insights
into its underlying mechanisms and impacts.

6 Limitations and Ethics Statements

While our LFG shows significant advancements and wide
adaptability, there are several limitations that require further
exploration, including: (1) high computational demands and
limited scalability with very large or complex datasets. With
LLM agents being the generator, the computational demands
are comparatively higher than traditional methods; (2) the
effectiveness of the generated features heavily relies on the
quality of input data, which can affect the model’s perfor-
mance in scenarios with poorly curated or noisy datasets; (3)
the current work focuses solely on the tabular feature genera-
tion process. More complex generation methods on different
data are not considered. Extending the LFG to handle feature
generation in non-tabular scenarios remains a challenge.

The LFG framework can enhance the effectiveness and ex-
plainability of the feature generation process. However, as
the framework uses pre-trained GPT-3.5 Turbo as the gen-
eration model, it may inherit the ethical concerns associated
with GPT-3.5 Turbo, such as responding to harmful queries
or exhibiting biased behaviors.
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